summaryrefslogtreecommitdiffstats
path: root/src/util/rb_tree.c
diff options
context:
space:
mode:
authorJason Ekstrand <[email protected]>2018-04-05 08:21:49 -0700
committerLionel Landwerlin <[email protected]>2018-07-05 11:57:45 +0100
commit2602ea89d55cd1004bbec46c8ff1ac1ad1510940 (patch)
treef97c0dace92b5693ffc2cc4814fb26941d0b6fa8 /src/util/rb_tree.c
parent144b40db541183ba2ee18efa4e1531aabcf9c6e8 (diff)
util: rb-tree: A simple, invasive, red-black tree
This is a simple, invasive, liberally licensed red-black tree implementation. It's an invasive data structure similar to the Linux kernel linked-list where the intention is that you embed a rb_node struct the data structure you intend to put into the tree. The implementation is mostly based on the one in "Introduction to Algorithms", third edition, by Cormen, Leiserson, Rivest, and Stein. There were a few other key design points: * It's an invasive data structure similar to the [Linux kernel linked list]. * It uses NULL for leaves instead of a sentinel. This means a few algorithms differ a small bit from the ones in "Introduction to Algorithms". * All search operations are inlined so that the compiler can optimize away the function pointer call. Reviewed-by: Lionel Landwerlin <[email protected]>
Diffstat (limited to 'src/util/rb_tree.c')
-rw-r--r--src/util/rb_tree.c421
1 files changed, 421 insertions, 0 deletions
diff --git a/src/util/rb_tree.c b/src/util/rb_tree.c
new file mode 100644
index 00000000000..a86fa31a809
--- /dev/null
+++ b/src/util/rb_tree.c
@@ -0,0 +1,421 @@
+/*
+ * Copyright © 2017 Jason Ekstrand
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "rb_tree.h"
+
+/** \file rb_tree.c
+ *
+ * An implementation of a red-black tree
+ *
+ * This file implements the guts of a red-black tree. The implementation
+ * is mostly based on the one in "Introduction to Algorithms", third
+ * edition, by Cormen, Leiserson, Rivest, and Stein. The primary
+ * divergence in our algorithms from those presented in CLRS is that we use
+ * NULL for the leaves instead of a sentinel. This means we have to do a
+ * tiny bit more tracking in our implementation of delete but it makes the
+ * algorithms far more explicit than stashing stuff in the sentinel.
+ */
+
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+static bool
+rb_node_is_black(struct rb_node *n)
+{
+ /* NULL nodes are leaves and therefore black */
+ return (n == NULL) || (n->parent & 1);
+}
+
+static bool
+rb_node_is_red(struct rb_node *n)
+{
+ return !rb_node_is_black(n);
+}
+
+static void
+rb_node_set_black(struct rb_node *n)
+{
+ n->parent |= 1;
+}
+
+static void
+rb_node_set_red(struct rb_node *n)
+{
+ n->parent &= ~1ull;
+}
+
+static void
+rb_node_copy_color(struct rb_node *dst, struct rb_node *src)
+{
+ dst->parent = (dst->parent & ~1ull) | (src->parent & 1);
+}
+
+static void
+rb_node_set_parent(struct rb_node *n, struct rb_node *p)
+{
+ n->parent = (n->parent & 1) | (uintptr_t)p;
+}
+
+static struct rb_node *
+rb_node_minimum(struct rb_node *node)
+{
+ while (node->left)
+ node = node->left;
+ return node;
+}
+
+static struct rb_node *
+rb_node_maximum(struct rb_node *node)
+{
+ while (node->right)
+ node = node->right;
+ return node;
+}
+
+void
+rb_tree_init(struct rb_tree *T)
+{
+ T->root = NULL;
+}
+
+/**
+ * Replace the subtree of T rooted at u with the subtree rooted at v
+ *
+ * This is called RB-transplant in CLRS.
+ *
+ * The node to be replaced is assumed to be a non-leaf.
+ */
+static void
+rb_tree_splice(struct rb_tree *T, struct rb_node *u, struct rb_node *v)
+{
+ assert(u);
+ struct rb_node *p = rb_node_parent(u);
+ if (p == NULL) {
+ assert(T->root == u);
+ T->root = v;
+ } else if (u == p->left) {
+ p->left = v;
+ } else {
+ assert(u == p->right);
+ p->right = v;
+ }
+ if (v)
+ rb_node_set_parent(v, p);
+}
+
+static void
+rb_tree_rotate_left(struct rb_tree *T, struct rb_node *x)
+{
+ assert(x && x->right);
+
+ struct rb_node *y = x->right;
+ x->right = y->left;
+ if (y->left)
+ rb_node_set_parent(y->left, x);
+ rb_tree_splice(T, x, y);
+ y->left = x;
+ rb_node_set_parent(x, y);
+}
+
+static void
+rb_tree_rotate_right(struct rb_tree *T, struct rb_node *y)
+{
+ assert(y && y->left);
+
+ struct rb_node *x = y->left;
+ y->left = x->right;
+ if (x->right)
+ rb_node_set_parent(x->right, y);
+ rb_tree_splice(T, y, x);
+ x->right = y;
+ rb_node_set_parent(y, x);
+}
+
+void
+rb_tree_insert_at(struct rb_tree *T, struct rb_node *parent,
+ struct rb_node *node, bool insert_left)
+{
+ /* This sets null children, parent, and a color of red */
+ memset(node, 0, sizeof(*node));
+
+ if (parent == NULL) {
+ assert(T->root == NULL);
+ T->root = node;
+ rb_node_set_black(node);
+ return;
+ }
+
+ if (insert_left) {
+ assert(parent->left == NULL);
+ parent->left = node;
+ } else {
+ assert(parent->right == NULL);
+ parent->right = node;
+ }
+ rb_node_set_parent(node, parent);
+
+ /* Now we do the insertion fixup */
+ struct rb_node *z = node;
+ while (rb_node_is_red(rb_node_parent(z))) {
+ struct rb_node *z_p = rb_node_parent(z);
+ assert(z == z_p->left || z == z_p->right);
+ struct rb_node *z_p_p = rb_node_parent(z_p);
+ assert(z_p_p != NULL);
+ if (z_p == z_p_p->left) {
+ struct rb_node *y = z_p_p->right;
+ if (rb_node_is_red(y)) {
+ rb_node_set_black(z_p);
+ rb_node_set_black(y);
+ rb_node_set_red(z_p_p);
+ z = z_p_p;
+ } else {
+ if (z == z_p->right) {
+ z = z_p;
+ rb_tree_rotate_left(T, z);
+ /* We changed z */
+ z_p = rb_node_parent(z);
+ assert(z == z_p->left || z == z_p->right);
+ z_p_p = rb_node_parent(z_p);
+ }
+ rb_node_set_black(z_p);
+ rb_node_set_red(z_p_p);
+ rb_tree_rotate_right(T, z_p_p);
+ }
+ } else {
+ struct rb_node *y = z_p_p->left;
+ if (rb_node_is_red(y)) {
+ rb_node_set_black(z_p);
+ rb_node_set_black(y);
+ rb_node_set_red(z_p_p);
+ z = z_p_p;
+ } else {
+ if (z == z_p->left) {
+ z = z_p;
+ rb_tree_rotate_right(T, z);
+ /* We changed z */
+ z_p = rb_node_parent(z);
+ assert(z == z_p->left || z == z_p->right);
+ z_p_p = rb_node_parent(z_p);
+ }
+ rb_node_set_black(z_p);
+ rb_node_set_red(z_p_p);
+ rb_tree_rotate_left(T, z_p_p);
+ }
+ }
+ }
+ rb_node_set_black(T->root);
+}
+
+void
+rb_tree_remove(struct rb_tree *T, struct rb_node *z)
+{
+ /* x_p is always the parent node of X. We have to track this
+ * separately because x may be NULL.
+ */
+ struct rb_node *x, *x_p;
+ struct rb_node *y = z;
+ bool y_was_black = rb_node_is_black(y);
+ if (z->left == NULL) {
+ x = z->right;
+ x_p = rb_node_parent(z);
+ rb_tree_splice(T, z, x);
+ } else if (z->right == NULL) {
+ x = z->left;
+ x_p = rb_node_parent(z);
+ rb_tree_splice(T, z, x);
+ } else {
+ /* Find the minimum sub-node of z->right */
+ y = rb_node_minimum(z->right);
+ y_was_black = rb_node_is_black(y);
+
+ x = y->right;
+ if (rb_node_parent(y) == z) {
+ x_p = y;
+ } else {
+ x_p = rb_node_parent(y);
+ rb_tree_splice(T, y, x);
+ y->right = z->right;
+ rb_node_set_parent(y->right, y);
+ }
+ assert(y->left == NULL);
+ rb_tree_splice(T, z, y);
+ y->left = z->left;
+ rb_node_set_parent(y->left, y);
+ rb_node_copy_color(y, z);
+ }
+
+ assert(x_p == NULL || x == x_p->left || x == x_p->right);
+
+ if (!y_was_black)
+ return;
+
+ /* Fixup RB tree after the delete */
+ while (x != T->root && rb_node_is_black(x)) {
+ if (x == x_p->left) {
+ struct rb_node *w = x_p->right;
+ if (rb_node_is_red(w)) {
+ rb_node_set_black(w);
+ rb_node_set_red(x_p);
+ rb_tree_rotate_left(T, x_p);
+ assert(x == x_p->left);
+ w = x_p->right;
+ }
+ if (rb_node_is_black(w->left) && rb_node_is_black(w->right)) {
+ rb_node_set_red(w);
+ x = x_p;
+ } else {
+ if (rb_node_is_black(w->right)) {
+ rb_node_set_black(w->left);
+ rb_node_set_red(w);
+ rb_tree_rotate_right(T, w);
+ w = x_p->right;
+ }
+ rb_node_copy_color(w, x_p);
+ rb_node_set_black(x_p);
+ rb_node_set_black(w->right);
+ rb_tree_rotate_left(T, x_p);
+ x = T->root;
+ }
+ } else {
+ struct rb_node *w = x_p->left;
+ if (rb_node_is_red(w)) {
+ rb_node_set_black(w);
+ rb_node_set_red(x_p);
+ rb_tree_rotate_right(T, x_p);
+ assert(x == x_p->right);
+ w = x_p->left;
+ }
+ if (rb_node_is_black(w->right) && rb_node_is_black(w->left)) {
+ rb_node_set_red(w);
+ x = x_p;
+ } else {
+ if (rb_node_is_black(w->left)) {
+ rb_node_set_black(w->right);
+ rb_node_set_red(w);
+ rb_tree_rotate_left(T, w);
+ w = x_p->left;
+ }
+ rb_node_copy_color(w, x_p);
+ rb_node_set_black(x_p);
+ rb_node_set_black(w->left);
+ rb_tree_rotate_right(T, x_p);
+ x = T->root;
+ }
+ }
+ x_p = rb_node_parent(x);
+ }
+ if (x)
+ rb_node_set_black(x);
+}
+
+struct rb_node *
+rb_tree_first(struct rb_tree *T)
+{
+ return T->root ? rb_node_minimum(T->root) : NULL;
+}
+
+struct rb_node *
+rb_tree_last(struct rb_tree *T)
+{
+ return T->root ? rb_node_maximum(T->root) : NULL;
+}
+
+struct rb_node *
+rb_node_next(struct rb_node *node)
+{
+ if (node->right) {
+ /* If we have a right child, then the next thing (compared to this
+ * node) is the left-most child of our right child.
+ */
+ return rb_node_minimum(node->right);
+ } else {
+ /* If node doesn't have a right child, crawl back up the to the
+ * left until we hit a parent to the right.
+ */
+ struct rb_node *p = rb_node_parent(node);
+ while (p && node == p->right) {
+ node = p;
+ p = rb_node_parent(node);
+ }
+ assert(p == NULL || node == p->left);
+ return p;
+ }
+}
+
+struct rb_node *
+rb_node_prev(struct rb_node *node)
+{
+ if (node->left) {
+ /* If we have a left child, then the previous thing (compared to
+ * this node) is the right-most child of our left child.
+ */
+ return rb_node_maximum(node->left);
+ } else {
+ /* If node doesn't have a left child, crawl back up the to the
+ * right until we hit a parent to the left.
+ */
+ struct rb_node *p = rb_node_parent(node);
+ while (p && node == p->left) {
+ node = p;
+ p = rb_node_parent(node);
+ }
+ assert(p == NULL || node == p->right);
+ return p;
+ }
+}
+
+static void
+validate_rb_node(struct rb_node *n, int black_depth)
+{
+ if (n == NULL) {
+ assert(black_depth == 0);
+ return;
+ }
+
+ if (rb_node_is_black(n)) {
+ black_depth--;
+ } else {
+ assert(rb_node_is_black(n->left));
+ assert(rb_node_is_black(n->right));
+ }
+
+ validate_rb_node(n->left, black_depth);
+ validate_rb_node(n->right, black_depth);
+}
+
+void
+rb_tree_validate(struct rb_tree *T)
+{
+ if (T->root == NULL)
+ return;
+
+ assert(rb_node_is_black(T->root));
+
+ unsigned black_depth = 0;
+ for (struct rb_node *n = T->root; n; n = n->left) {
+ if (rb_node_is_black(n))
+ black_depth++;
+ }
+
+ validate_rb_node(T->root, black_depth);
+}