diff options
author | Alyssa Rosenzweig <[email protected]> | 2019-07-10 10:33:24 -0700 |
---|---|---|
committer | Alyssa Rosenzweig <[email protected]> | 2019-07-10 10:43:23 -0700 |
commit | ec2a59cd7aa42652645e76e29a72335370c80e50 (patch) | |
tree | 08e75a12d073cc627307bc59ab3a8d057244b68e /src/panfrost/bifrost/disassemble.c | |
parent | a2d0ea92ba752c62e59aa681acda7b97fc86d100 (diff) |
panfrost: Move non-Gallium files outside of Gallium
In preparation for a Panfrost-based non-Gallium driver (maybe
Vulkan...?), hoist everything except for the Gallium driver into a
shared src/panfrost. Practically, that means the compilers, the headers,
and pandecode.
Signed-off-by: Alyssa Rosenzweig <[email protected]>
Diffstat (limited to 'src/panfrost/bifrost/disassemble.c')
-rw-r--r-- | src/panfrost/bifrost/disassemble.c | 2227 |
1 files changed, 2227 insertions, 0 deletions
diff --git a/src/panfrost/bifrost/disassemble.c b/src/panfrost/bifrost/disassemble.c new file mode 100644 index 00000000000..03ade19a689 --- /dev/null +++ b/src/panfrost/bifrost/disassemble.c @@ -0,0 +1,2227 @@ +/* + * Copyright (C) 2019 Connor Abbott <[email protected]> + * Copyright (C) 2019 Lyude Paul <[email protected]> + * Copyright (C) 2019 Ryan Houdek <[email protected]> + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <stdbool.h> +#include <stdio.h> +#include <stdint.h> +#include <assert.h> +#include <inttypes.h> +#include <string.h> + +#include "bifrost.h" +#include "disassemble.h" +#include "util/macros.h" + +// return bits (high, lo] +static uint64_t bits(uint32_t word, unsigned lo, unsigned high) +{ + if (high == 32) + return word >> lo; + return (word & ((1 << high) - 1)) >> lo; +} + +// each of these structs represents an instruction that's dispatched in one +// cycle. Note that these instructions are packed in funny ways within the +// clause, hence the need for a separate struct. +struct bifrost_alu_inst { + uint32_t fma_bits; + uint32_t add_bits; + uint64_t reg_bits; +}; + +struct bifrost_regs { + unsigned uniform_const : 8; + unsigned reg2 : 6; + unsigned reg3 : 6; + unsigned reg0 : 5; + unsigned reg1 : 6; + unsigned ctrl : 4; +}; + +static unsigned get_reg0(struct bifrost_regs regs) +{ + if (regs.ctrl == 0) + return regs.reg0 | ((regs.reg1 & 0x1) << 5); + + return regs.reg0 <= regs.reg1 ? regs.reg0 : 63 - regs.reg0; +} + +static unsigned get_reg1(struct bifrost_regs regs) +{ + return regs.reg0 <= regs.reg1 ? regs.reg1 : 63 - regs.reg1; +} + +enum bifrost_reg_write_unit { + REG_WRITE_NONE = 0, // don't write + REG_WRITE_TWO, // write using reg2 + REG_WRITE_THREE, // write using reg3 +}; + +// this represents the decoded version of the ctrl register field. +struct bifrost_reg_ctrl{ + bool read_reg0; + bool read_reg1; + bool read_reg3; + enum bifrost_reg_write_unit fma_write_unit; + enum bifrost_reg_write_unit add_write_unit; + bool clause_start; +}; + +enum fma_src_type { + FMA_ONE_SRC, + FMA_TWO_SRC, + FMA_FADD, + FMA_FMINMAX, + FMA_FADD16, + FMA_FMINMAX16, + FMA_FCMP, + FMA_FCMP16, + FMA_THREE_SRC, + FMA_FMA, + FMA_FMA16, + FMA_FOUR_SRC, + FMA_FMA_MSCALE, + FMA_SHIFT_ADD64, +}; + +struct fma_op_info { + unsigned op; + char name[30]; + enum fma_src_type src_type; +}; + +enum add_src_type { + ADD_ONE_SRC, + ADD_TWO_SRC, + ADD_FADD, + ADD_FMINMAX, + ADD_FADD16, + ADD_FMINMAX16, + ADD_THREE_SRC, + ADD_FADDMscale, + ADD_FCMP, + ADD_FCMP16, + ADD_TEX_COMPACT, // texture instruction with embedded sampler + ADD_TEX, // texture instruction with sampler/etc. in uniform port + ADD_VARYING_INTERP, + ADD_BLENDING, + ADD_LOAD_ATTR, + ADD_VARYING_ADDRESS, + ADD_BRANCH, +}; + +struct add_op_info { + unsigned op; + char name[30]; + enum add_src_type src_type; + bool has_data_reg; +}; + +struct bifrost_tex_ctrl { + unsigned sampler_index : 4; // also used to signal indirects + unsigned tex_index : 7; + bool no_merge_index : 1; // whether to merge (direct) sampler & texture indices + bool filter : 1; // use the usual filtering pipeline (0 for texelFetch & textureGather) + unsigned unk0 : 2; + bool texel_offset : 1; // *Offset() + bool is_shadow : 1; + bool is_array : 1; + unsigned tex_type : 2; // 2D, 3D, Cube, Buffer + bool compute_lod : 1; // 0 for *Lod() + bool not_supply_lod : 1; // 0 for *Lod() or when a bias is applied + bool calc_gradients : 1; // 0 for *Grad() + unsigned unk1 : 1; + unsigned result_type : 4; // integer, unsigned, float TODO: why is this 4 bits? + unsigned unk2 : 4; +}; + +struct bifrost_dual_tex_ctrl { + unsigned sampler_index0 : 2; + unsigned unk0 : 2; + unsigned tex_index0 : 2; + unsigned sampler_index1 : 2; + unsigned tex_index1 : 2; + unsigned unk1 : 22; +}; + +enum branch_cond { + BR_COND_LT = 0, + BR_COND_LE = 1, + BR_COND_GE = 2, + BR_COND_GT = 3, + // Equal vs. not-equal determined by src0/src1 comparison + BR_COND_EQ = 4, + // floating-point comparisons + // Becomes UNE when you flip the arguments + BR_COND_OEQ = 5, + // TODO what happens when you flip the arguments? + BR_COND_OGT = 6, + BR_COND_OLT = 7, +}; + +enum branch_bit_size { + BR_SIZE_32 = 0, + BR_SIZE_16XX = 1, + BR_SIZE_16YY = 2, + // For the above combinations of bitsize and location, an extra bit is + // encoded via comparing the sources. The only possible source of ambiguity + // would be if the sources were the same, but then the branch condition + // would be always true or always false anyways, so we can ignore it. But + // this no longer works when comparing the y component to the x component, + // since it's valid to compare the y component of a source against its own + // x component. Instead, the extra bit is encoded via an extra bitsize. + BR_SIZE_16YX0 = 3, + BR_SIZE_16YX1 = 4, + BR_SIZE_32_AND_16X = 5, + BR_SIZE_32_AND_16Y = 6, + // Used for comparisons with zero and always-true, see below. I think this + // only works for integer comparisons. + BR_SIZE_ZERO = 7, +}; + +enum branch_code { + BR_ALWAYS = 63, +}; + +void dump_header(struct bifrost_header header, bool verbose); +void dump_instr(const struct bifrost_alu_inst *instr, struct bifrost_regs next_regs, uint64_t *consts, + unsigned data_reg, unsigned offset, bool verbose); +bool dump_clause(uint32_t *words, unsigned *size, unsigned offset, bool verbose); + +void dump_header(struct bifrost_header header, bool verbose) { + if (header.clause_type != 0) { + printf("id(%du) ", header.scoreboard_index); + } + + if (header.scoreboard_deps != 0) { + printf("next-wait("); + bool first = true; + for (unsigned i = 0; i < 8; i++) { + if (header.scoreboard_deps & (1 << i)) { + if (!first) { + printf(", "); + } + printf("%d", i); + first = false; + } + } + printf(") "); + } + + if (header.datareg_writebarrier) + printf("data-reg-barrier "); + + if (!header.no_end_of_shader) + printf("eos "); + + if (!header.back_to_back) { + printf("nbb "); + if (header.branch_cond) + printf("branch-cond "); + else + printf("branch-uncond "); + } + + if (header.elide_writes) + printf("we "); + + if (header.suppress_inf) + printf("suppress-inf "); + if (header.suppress_nan) + printf("suppress-nan "); + + if (header.unk0) + printf("unk0 "); + if (header.unk1) + printf("unk1 "); + if (header.unk2) + printf("unk2 "); + if (header.unk3) + printf("unk3 "); + if (header.unk4) + printf("unk4 "); + + printf("\n"); + + if (verbose) { + printf("# clause type %d, next clause type %d\n", + header.clause_type, header.next_clause_type); + } +} + +static struct bifrost_reg_ctrl DecodeRegCtrl(struct bifrost_regs regs) +{ + struct bifrost_reg_ctrl decoded = {}; + unsigned ctrl; + if (regs.ctrl == 0) { + ctrl = regs.reg1 >> 2; + decoded.read_reg0 = !(regs.reg1 & 0x2); + decoded.read_reg1 = false; + } else { + ctrl = regs.ctrl; + decoded.read_reg0 = decoded.read_reg1 = true; + } + switch (ctrl) { + case 1: + decoded.fma_write_unit = REG_WRITE_TWO; + break; + case 3: + decoded.fma_write_unit = REG_WRITE_TWO; + decoded.read_reg3 = true; + break; + case 4: + decoded.read_reg3 = true; + break; + case 5: + decoded.add_write_unit = REG_WRITE_TWO; + break; + case 6: + decoded.add_write_unit = REG_WRITE_TWO; + decoded.read_reg3 = true; + break; + case 8: + decoded.clause_start = true; + break; + case 9: + decoded.fma_write_unit = REG_WRITE_TWO; + decoded.clause_start = true; + break; + case 11: + break; + case 12: + decoded.read_reg3 = true; + decoded.clause_start = true; + break; + case 13: + decoded.add_write_unit = REG_WRITE_TWO; + decoded.clause_start = true; + break; + case 15: + decoded.fma_write_unit = REG_WRITE_THREE; + decoded.add_write_unit = REG_WRITE_TWO; + break; + default: + printf("# unknown reg ctrl %d\n", ctrl); + } + + return decoded; +} + +// Pass in the add_write_unit or fma_write_unit, and this returns which register +// the ADD/FMA units are writing to +static unsigned GetRegToWrite(enum bifrost_reg_write_unit unit, struct bifrost_regs regs) +{ + switch (unit) { + case REG_WRITE_TWO: + return regs.reg2; + case REG_WRITE_THREE: + return regs.reg3; + default: /* REG_WRITE_NONE */ + assert(0); + return 0; + } +} + +static void dump_regs(struct bifrost_regs srcs) +{ + struct bifrost_reg_ctrl ctrl = DecodeRegCtrl(srcs); + printf("# "); + if (ctrl.read_reg0) + printf("port 0: R%d ", get_reg0(srcs)); + if (ctrl.read_reg1) + printf("port 1: R%d ", get_reg1(srcs)); + + if (ctrl.fma_write_unit == REG_WRITE_TWO) + printf("port 2: R%d (write FMA) ", srcs.reg2); + else if (ctrl.add_write_unit == REG_WRITE_TWO) + printf("port 2: R%d (write ADD) ", srcs.reg2); + + if (ctrl.fma_write_unit == REG_WRITE_THREE) + printf("port 3: R%d (write FMA) ", srcs.reg3); + else if (ctrl.add_write_unit == REG_WRITE_THREE) + printf("port 3: R%d (write ADD) ", srcs.reg3); + else if (ctrl.read_reg3) + printf("port 3: R%d (read) ", srcs.reg3); + + if (srcs.uniform_const) { + if (srcs.uniform_const & 0x80) { + printf("uniform: U%d", (srcs.uniform_const & 0x7f) * 2); + } + } + + printf("\n"); +} +static void dump_const_imm(uint32_t imm) +{ + union { + float f; + uint32_t i; + } fi; + fi.i = imm; + printf("0x%08x /* %f */", imm, fi.f); +} + +static uint64_t get_const(uint64_t *consts, struct bifrost_regs srcs) +{ + unsigned low_bits = srcs.uniform_const & 0xf; + uint64_t imm; + switch (srcs.uniform_const >> 4) { + case 4: imm = consts[0]; break; + case 5: imm = consts[1]; break; + case 6: imm = consts[2]; break; + case 7: imm = consts[3]; break; + case 2: imm = consts[4]; break; + case 3: imm = consts[5]; break; + default: assert(0); break; + } + return imm | low_bits; +} + +static void dump_uniform_const_src(struct bifrost_regs srcs, uint64_t *consts, bool high32) +{ + if (srcs.uniform_const & 0x80) { + unsigned uniform = (srcs.uniform_const & 0x7f) * 2; + printf("U%d", uniform + (high32 ? 1 : 0)); + } else if (srcs.uniform_const >= 0x20) { + uint64_t imm = get_const(consts, srcs); + if (high32) + dump_const_imm(imm >> 32); + else + dump_const_imm(imm); + } else { + switch (srcs.uniform_const) { + case 0: printf("0"); break; + case 5: printf("atest-data"); break; + case 6: printf("sample-ptr"); break; + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: + printf("blend-descriptor%u", (unsigned) srcs.uniform_const - 8); + break; + default: + printf("unkConst%u", (unsigned) srcs.uniform_const); + break; + } + + if (high32) + printf(".y"); + else + printf(".x"); + } +} + +static void dump_src(unsigned src, struct bifrost_regs srcs, uint64_t *consts, bool isFMA) +{ + switch (src) { + case 0: printf("R%d", get_reg0(srcs)); break; + case 1: printf("R%d", get_reg1(srcs)); break; + case 2: printf("R%d", srcs.reg3); break; + case 3: + if (isFMA) + printf("0"); + else + printf("T"); // i.e. the output of FMA this cycle + break; + case 4: + dump_uniform_const_src(srcs, consts, false); + break; + case 5: + dump_uniform_const_src(srcs, consts, true); + break; + case 6: printf("T0"); break; + case 7: printf("T1"); break; + } +} + +static void dump_output_mod(unsigned mod) +{ + switch (mod) { + case 0: + break; + case 1: + printf(".clamp_0_inf"); break; // max(out, 0) + case 2: + printf(".clamp_m1_1"); break; // clamp(out, -1, 1) + case 3: + printf(".clamp_0_1"); break; // clamp(out, 0, 1) + default: + break; + } +} + +static void dump_minmax_mode(unsigned mod) +{ + switch (mod) { + case 0: + /* Same as fmax() and fmin() -- return the other number if any + * number is NaN. Also always return +0 if one argument is +0 and + * the other is -0. + */ + break; + case 1: + /* Instead of never returning a NaN, always return one. The + * "greater"/"lesser" NaN is always returned, first by checking the + * sign and then the mantissa bits. + */ + printf(".nan_wins"); break; + case 2: + /* For max, implement src0 > src1 ? src0 : src1 + * For min, implement src0 < src1 ? src0 : src1 + * + * This includes handling NaN's and signedness of 0 differently + * from above, since +0 and -0 compare equal and comparisons always + * return false for NaN's. As a result, this mode is *not* + * commutative. + */ + printf(".src1_wins"); break; + case 3: + /* For max, implement src0 < src1 ? src1 : src0 + * For min, implement src0 > src1 ? src1 : src0 + */ + printf(".src0_wins"); break; + default: + break; + } +} + +static void dump_round_mode(unsigned mod) +{ + switch (mod) { + case 0: + /* roundTiesToEven, the IEEE default. */ + break; + case 1: + /* roundTowardPositive in the IEEE spec. */ + printf(".round_pos"); break; + case 2: + /* roundTowardNegative in the IEEE spec. */ + printf(".round_neg"); break; + case 3: + /* roundTowardZero in the IEEE spec. */ + printf(".round_zero"); break; + default: + break; + } +} + +static const struct fma_op_info FMAOpInfos[] = { + { 0x00000, "FMA.f32", FMA_FMA }, + { 0x40000, "MAX.f32", FMA_FMINMAX }, + { 0x44000, "MIN.f32", FMA_FMINMAX }, + { 0x48000, "FCMP.GL", FMA_FCMP }, + { 0x4c000, "FCMP.D3D", FMA_FCMP }, + { 0x4ff98, "ADD.i32", FMA_TWO_SRC }, + { 0x4ffd8, "SUB.i32", FMA_TWO_SRC }, + { 0x4fff0, "SUBB.i32", FMA_TWO_SRC }, + { 0x50000, "FMA_MSCALE", FMA_FMA_MSCALE }, + { 0x58000, "ADD.f32", FMA_FADD }, + { 0x5c000, "CSEL.FEQ.f32", FMA_FOUR_SRC }, + { 0x5c200, "CSEL.FGT.f32", FMA_FOUR_SRC }, + { 0x5c400, "CSEL.FGE.f32", FMA_FOUR_SRC }, + { 0x5c600, "CSEL.IEQ.f32", FMA_FOUR_SRC }, + { 0x5c800, "CSEL.IGT.i32", FMA_FOUR_SRC }, + { 0x5ca00, "CSEL.IGE.i32", FMA_FOUR_SRC }, + { 0x5cc00, "CSEL.UGT.i32", FMA_FOUR_SRC }, + { 0x5ce00, "CSEL.UGE.i32", FMA_FOUR_SRC }, + { 0x5d8d0, "ICMP.D3D.GT.v2i16", FMA_TWO_SRC }, + { 0x5d9d0, "UCMP.D3D.GT.v2i16", FMA_TWO_SRC }, + { 0x5dad0, "ICMP.D3D.GE.v2i16", FMA_TWO_SRC }, + { 0x5dbd0, "UCMP.D3D.GE.v2i16", FMA_TWO_SRC }, + { 0x5dcd0, "ICMP.D3D.EQ.v2i16", FMA_TWO_SRC }, + { 0x5de40, "ICMP.GL.GT.i32", FMA_TWO_SRC }, // src0 > src1 ? 1 : 0 + { 0x5de48, "ICMP.GL.GE.i32", FMA_TWO_SRC }, + { 0x5de50, "UCMP.GL.GT.i32", FMA_TWO_SRC }, + { 0x5de58, "UCMP.GL.GE.i32", FMA_TWO_SRC }, + { 0x5de60, "ICMP.GL.EQ.i32", FMA_TWO_SRC }, + { 0x5dec0, "ICMP.D3D.GT.i32", FMA_TWO_SRC }, // src0 > src1 ? ~0 : 0 + { 0x5dec8, "ICMP.D3D.GE.i32", FMA_TWO_SRC }, + { 0x5ded0, "UCMP.D3D.GT.i32", FMA_TWO_SRC }, + { 0x5ded8, "UCMP.D3D.GE.i32", FMA_TWO_SRC }, + { 0x5dee0, "ICMP.D3D.EQ.i32", FMA_TWO_SRC }, + { 0x60200, "RSHIFT_NAND.i32", FMA_THREE_SRC }, + { 0x603c0, "RSHIFT_NAND.v2i16", FMA_THREE_SRC }, + { 0x60e00, "RSHIFT_OR.i32", FMA_THREE_SRC }, + { 0x60fc0, "RSHIFT_OR.v2i16", FMA_THREE_SRC }, + { 0x61200, "RSHIFT_AND.i32", FMA_THREE_SRC }, + { 0x613c0, "RSHIFT_AND.v2i16", FMA_THREE_SRC }, + { 0x61e00, "RSHIFT_NOR.i32", FMA_THREE_SRC }, // ~((src0 << src2) | src1) + { 0x61fc0, "RSHIFT_NOR.v2i16", FMA_THREE_SRC }, // ~((src0 << src2) | src1) + { 0x62200, "LSHIFT_NAND.i32", FMA_THREE_SRC }, + { 0x623c0, "LSHIFT_NAND.v2i16", FMA_THREE_SRC }, + { 0x62e00, "LSHIFT_OR.i32", FMA_THREE_SRC }, // (src0 << src2) | src1 + { 0x62fc0, "LSHIFT_OR.v2i16", FMA_THREE_SRC }, // (src0 << src2) | src1 + { 0x63200, "LSHIFT_AND.i32", FMA_THREE_SRC }, // (src0 << src2) & src1 + { 0x633c0, "LSHIFT_AND.v2i16", FMA_THREE_SRC }, + { 0x63e00, "LSHIFT_NOR.i32", FMA_THREE_SRC }, + { 0x63fc0, "LSHIFT_NOR.v2i16", FMA_THREE_SRC }, + { 0x64200, "RSHIFT_XOR.i32", FMA_THREE_SRC }, + { 0x643c0, "RSHIFT_XOR.v2i16", FMA_THREE_SRC }, + { 0x64600, "RSHIFT_XNOR.i32", FMA_THREE_SRC }, // ~((src0 >> src2) ^ src1) + { 0x647c0, "RSHIFT_XNOR.v2i16", FMA_THREE_SRC }, // ~((src0 >> src2) ^ src1) + { 0x64a00, "LSHIFT_XOR.i32", FMA_THREE_SRC }, + { 0x64bc0, "LSHIFT_XOR.v2i16", FMA_THREE_SRC }, + { 0x64e00, "LSHIFT_XNOR.i32", FMA_THREE_SRC }, // ~((src0 >> src2) ^ src1) + { 0x64fc0, "LSHIFT_XNOR.v2i16", FMA_THREE_SRC }, // ~((src0 >> src2) ^ src1) + { 0x65200, "LSHIFT_ADD.i32", FMA_THREE_SRC }, + { 0x65600, "LSHIFT_SUB.i32", FMA_THREE_SRC }, // (src0 << src2) - src1 + { 0x65a00, "LSHIFT_RSUB.i32", FMA_THREE_SRC }, // src1 - (src0 << src2) + { 0x65e00, "RSHIFT_ADD.i32", FMA_THREE_SRC }, + { 0x66200, "RSHIFT_SUB.i32", FMA_THREE_SRC }, + { 0x66600, "RSHIFT_RSUB.i32", FMA_THREE_SRC }, + { 0x66a00, "ARSHIFT_ADD.i32", FMA_THREE_SRC }, + { 0x66e00, "ARSHIFT_SUB.i32", FMA_THREE_SRC }, + { 0x67200, "ARSHIFT_RSUB.i32", FMA_THREE_SRC }, + { 0x80000, "FMA.v2f16", FMA_FMA16 }, + { 0xc0000, "MAX.v2f16", FMA_FMINMAX16 }, + { 0xc4000, "MIN.v2f16", FMA_FMINMAX16 }, + { 0xc8000, "FCMP.GL", FMA_FCMP16 }, + { 0xcc000, "FCMP.D3D", FMA_FCMP16 }, + { 0xcf900, "ADD.v2i16", FMA_TWO_SRC }, + { 0xcfc10, "ADDC.i32", FMA_TWO_SRC }, + { 0xcfd80, "ADD.i32.i16.X", FMA_TWO_SRC }, + { 0xcfd90, "ADD.i32.u16.X", FMA_TWO_SRC }, + { 0xcfdc0, "ADD.i32.i16.Y", FMA_TWO_SRC }, + { 0xcfdd0, "ADD.i32.u16.Y", FMA_TWO_SRC }, + { 0xd8000, "ADD.v2f16", FMA_FADD16 }, + { 0xdc000, "CSEL.FEQ.v2f16", FMA_FOUR_SRC }, + { 0xdc200, "CSEL.FGT.v2f16", FMA_FOUR_SRC }, + { 0xdc400, "CSEL.FGE.v2f16", FMA_FOUR_SRC }, + { 0xdc600, "CSEL.IEQ.v2f16", FMA_FOUR_SRC }, + { 0xdc800, "CSEL.IGT.v2i16", FMA_FOUR_SRC }, + { 0xdca00, "CSEL.IGE.v2i16", FMA_FOUR_SRC }, + { 0xdcc00, "CSEL.UGT.v2i16", FMA_FOUR_SRC }, + { 0xdce00, "CSEL.UGE.v2i16", FMA_FOUR_SRC }, + { 0xdd000, "F32_TO_F16", FMA_TWO_SRC }, + { 0xe0046, "F16_TO_I16.XX", FMA_ONE_SRC }, + { 0xe0047, "F16_TO_U16.XX", FMA_ONE_SRC }, + { 0xe004e, "F16_TO_I16.YX", FMA_ONE_SRC }, + { 0xe004f, "F16_TO_U16.YX", FMA_ONE_SRC }, + { 0xe0056, "F16_TO_I16.XY", FMA_ONE_SRC }, + { 0xe0057, "F16_TO_U16.XY", FMA_ONE_SRC }, + { 0xe005e, "F16_TO_I16.YY", FMA_ONE_SRC }, + { 0xe005f, "F16_TO_U16.YY", FMA_ONE_SRC }, + { 0xe00c0, "I16_TO_F16.XX", FMA_ONE_SRC }, + { 0xe00c1, "U16_TO_F16.XX", FMA_ONE_SRC }, + { 0xe00c8, "I16_TO_F16.YX", FMA_ONE_SRC }, + { 0xe00c9, "U16_TO_F16.YX", FMA_ONE_SRC }, + { 0xe00d0, "I16_TO_F16.XY", FMA_ONE_SRC }, + { 0xe00d1, "U16_TO_F16.XY", FMA_ONE_SRC }, + { 0xe00d8, "I16_TO_F16.YY", FMA_ONE_SRC }, + { 0xe00d9, "U16_TO_F16.YY", FMA_ONE_SRC }, + { 0xe0136, "F32_TO_I32", FMA_ONE_SRC }, + { 0xe0137, "F32_TO_U32", FMA_ONE_SRC }, + { 0xe0178, "I32_TO_F32", FMA_ONE_SRC }, + { 0xe0179, "U32_TO_F32", FMA_ONE_SRC }, + { 0xe0198, "I16_TO_I32.X", FMA_ONE_SRC }, + { 0xe0199, "U16_TO_U32.X", FMA_ONE_SRC }, + { 0xe019a, "I16_TO_I32.Y", FMA_ONE_SRC }, + { 0xe019b, "U16_TO_U32.Y", FMA_ONE_SRC }, + { 0xe019c, "I16_TO_F32.X", FMA_ONE_SRC }, + { 0xe019d, "U16_TO_F32.X", FMA_ONE_SRC }, + { 0xe019e, "I16_TO_F32.Y", FMA_ONE_SRC }, + { 0xe019f, "U16_TO_F32.Y", FMA_ONE_SRC }, + { 0xe01a2, "F16_TO_F32.X", FMA_ONE_SRC }, + { 0xe01a3, "F16_TO_F32.Y", FMA_ONE_SRC }, + { 0xe032c, "NOP", FMA_ONE_SRC }, + { 0xe032d, "MOV", FMA_ONE_SRC }, + { 0xe032f, "SWZ.YY.v2i16", FMA_ONE_SRC }, + // From the ARM patent US20160364209A1: + // "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s, + // and x1 is a floating point value in a predetermined range where the + // value 1 is within the range and not at one extremity of the range (e.g. + // choose a range where 1 is towards middle of range)." + // + // This computes x1. + { 0xe0345, "LOG_FREXPM", FMA_ONE_SRC }, + // Given a floating point number m * 2^e, returns m * 2^{-1}. This is + // exactly the same as the mantissa part of frexp(). + { 0xe0365, "FRCP_FREXPM", FMA_ONE_SRC }, + // Given a floating point number m * 2^e, returns m * 2^{-2} if e is even, + // and m * 2^{-1} if e is odd. In other words, scales by powers of 4 until + // within the range [0.25, 1). Used for square-root and reciprocal + // square-root. + { 0xe0375, "FSQRT_FREXPM", FMA_ONE_SRC }, + // Given a floating point number m * 2^e, computes -e - 1 as an integer. + // Zero and infinity/NaN return 0. + { 0xe038d, "FRCP_FREXPE", FMA_ONE_SRC }, + // Computes floor(e/2) + 1. + { 0xe03a5, "FSQRT_FREXPE", FMA_ONE_SRC }, + // Given a floating point number m * 2^e, computes -floor(e/2) - 1 as an + // integer. + { 0xe03ad, "FRSQ_FREXPE", FMA_ONE_SRC }, + { 0xe03c5, "LOG_FREXPE", FMA_ONE_SRC }, + { 0xe0b80, "IMAX3", FMA_THREE_SRC }, + { 0xe0bc0, "UMAX3", FMA_THREE_SRC }, + { 0xe0c00, "IMIN3", FMA_THREE_SRC }, + { 0xe0c40, "UMIN3", FMA_THREE_SRC }, + { 0xe0f40, "CSEL", FMA_THREE_SRC }, // src2 != 0 ? src1 : src0 + { 0xe0fc0, "MUX.i32", FMA_THREE_SRC }, // see ADD comment + { 0xe1845, "CEIL", FMA_ONE_SRC }, + { 0xe1885, "FLOOR", FMA_ONE_SRC }, + { 0xe19b0, "ATAN_LDEXP.Y.f32", FMA_TWO_SRC }, + { 0xe19b8, "ATAN_LDEXP.X.f32", FMA_TWO_SRC }, + // These instructions in the FMA slot, together with LSHIFT_ADD_HIGH32.i32 + // in the ADD slot, allow one to do a 64-bit addition with an extra small + // shift on one of the sources. There are three possible scenarios: + // + // 1) Full 64-bit addition. Do: + // out.x = LSHIFT_ADD_LOW32.i64 src1.x, src2.x, shift + // out.y = LSHIFT_ADD_HIGH32.i32 src1.y, src2.y + // + // The shift amount is applied to src2 before adding. The shift amount, and + // any extra bits from src2 plus the overflow bit, are sent directly from + // FMA to ADD instead of being passed explicitly. Hence, these two must be + // bundled together into the same instruction. + // + // 2) Add a 64-bit value src1 to a zero-extended 32-bit value src2. Do: + // out.x = LSHIFT_ADD_LOW32.u32 src1.x, src2, shift + // out.y = LSHIFT_ADD_HIGH32.i32 src1.x, 0 + // + // Note that in this case, the second argument to LSHIFT_ADD_HIGH32 is + // ignored, so it can actually be anything. As before, the shift is applied + // to src2 before adding. + // + // 3) Add a 64-bit value to a sign-extended 32-bit value src2. Do: + // out.x = LSHIFT_ADD_LOW32.i32 src1.x, src2, shift + // out.y = LSHIFT_ADD_HIGH32.i32 src1.x, 0 + // + // The only difference is the .i32 instead of .u32. Otherwise, this is + // exactly the same as before. + // + // In all these instructions, the shift amount is stored where the third + // source would be, so the shift has to be a small immediate from 0 to 7. + // This is fine for the expected use-case of these instructions, which is + // manipulating 64-bit pointers. + // + // These instructions can also be combined with various load/store + // instructions which normally take a 64-bit pointer in order to add a + // 32-bit or 64-bit offset to the pointer before doing the operation, + // optionally shifting the offset. The load/store op implicity does + // LSHIFT_ADD_HIGH32.i32 internally. Letting ptr be the pointer, and offset + // the desired offset, the cases go as follows: + // + // 1) Add a 64-bit offset: + // LSHIFT_ADD_LOW32.i64 ptr.x, offset.x, shift + // ld_st_op ptr.y, offset.y, ... + // + // Note that the output of LSHIFT_ADD_LOW32.i64 is not used, instead being + // implicitly sent to the load/store op to serve as the low 32 bits of the + // pointer. + // + // 2) Add a 32-bit unsigned offset: + // temp = LSHIFT_ADD_LOW32.u32 ptr.x, offset, shift + // ld_st_op temp, ptr.y, ... + // + // Now, the low 32 bits of offset << shift + ptr are passed explicitly to + // the ld_st_op, to match the case where there is no offset and ld_st_op is + // called directly. + // + // 3) Add a 32-bit signed offset: + // temp = LSHIFT_ADD_LOW32.i32 ptr.x, offset, shift + // ld_st_op temp, ptr.y, ... + // + // Again, the same as the unsigned case except for the offset. + { 0xe1c80, "LSHIFT_ADD_LOW32.u32", FMA_SHIFT_ADD64 }, + { 0xe1cc0, "LSHIFT_ADD_LOW32.i64", FMA_SHIFT_ADD64 }, + { 0xe1d80, "LSHIFT_ADD_LOW32.i32", FMA_SHIFT_ADD64 }, + { 0xe1e00, "SEL.XX.i16", FMA_TWO_SRC }, + { 0xe1e08, "SEL.YX.i16", FMA_TWO_SRC }, + { 0xe1e10, "SEL.XY.i16", FMA_TWO_SRC }, + { 0xe1e18, "SEL.YY.i16", FMA_TWO_SRC }, + { 0xe7800, "IMAD", FMA_THREE_SRC }, + { 0xe78db, "POPCNT", FMA_ONE_SRC }, +}; + +static struct fma_op_info find_fma_op_info(unsigned op) +{ + for (unsigned i = 0; i < ARRAY_SIZE(FMAOpInfos); i++) { + unsigned opCmp = ~0; + switch (FMAOpInfos[i].src_type) { + case FMA_ONE_SRC: + opCmp = op; + break; + case FMA_TWO_SRC: + opCmp = op & ~0x7; + break; + case FMA_FCMP: + case FMA_FCMP16: + opCmp = op & ~0x1fff; + break; + case FMA_THREE_SRC: + case FMA_SHIFT_ADD64: + opCmp = op & ~0x3f; + break; + case FMA_FADD: + case FMA_FMINMAX: + case FMA_FADD16: + case FMA_FMINMAX16: + opCmp = op & ~0x3fff; + break; + case FMA_FMA: + case FMA_FMA16: + opCmp = op & ~0x3ffff; + break; + case FMA_FOUR_SRC: + opCmp = op & ~0x1ff; + break; + case FMA_FMA_MSCALE: + opCmp = op & ~0x7fff; + break; + default: + opCmp = ~0; + break; + } + if (FMAOpInfos[i].op == opCmp) + return FMAOpInfos[i]; + } + + struct fma_op_info info; + snprintf(info.name, sizeof(info.name), "op%04x", op); + info.op = op; + info.src_type = FMA_THREE_SRC; + return info; +} + +static void dump_fcmp(unsigned op) +{ + switch (op) { + case 0: + printf(".OEQ"); + break; + case 1: + printf(".OGT"); + break; + case 2: + printf(".OGE"); + break; + case 3: + printf(".UNE"); + break; + case 4: + printf(".OLT"); + break; + case 5: + printf(".OLE"); + break; + default: + printf(".unk%d", op); + break; + } +} + +static void dump_16swizzle(unsigned swiz) +{ + if (swiz == 2) + return; + printf(".%c%c", "xy"[swiz & 1], "xy"[(swiz >> 1) & 1]); +} + +static void dump_fma_expand_src0(unsigned ctrl) +{ + switch (ctrl) { + case 3: + case 4: + case 6: + printf(".x"); + break; + case 5: + case 7: + printf(".y"); + break; + case 0: + case 1: + case 2: + break; + default: + printf(".unk"); + break; + } +} + +static void dump_fma_expand_src1(unsigned ctrl) +{ + switch (ctrl) { + case 1: + case 3: + printf(".x"); + break; + case 2: + case 4: + case 5: + printf(".y"); + break; + case 0: + case 6: + case 7: + break; + default: + printf(".unk"); + break; + } +} + +static void dump_fma(uint64_t word, struct bifrost_regs regs, struct bifrost_regs next_regs, uint64_t *consts, bool verbose) +{ + if (verbose) { + printf("# FMA: %016" PRIx64 "\n", word); + } + struct bifrost_fma_inst FMA; + memcpy((char *) &FMA, (char *) &word, sizeof(struct bifrost_fma_inst)); + struct fma_op_info info = find_fma_op_info(FMA.op); + + printf("%s", info.name); + if (info.src_type == FMA_FADD || + info.src_type == FMA_FMINMAX || + info.src_type == FMA_FMA || + info.src_type == FMA_FADD16 || + info.src_type == FMA_FMINMAX16 || + info.src_type == FMA_FMA16) { + dump_output_mod(bits(FMA.op, 12, 14)); + switch (info.src_type) { + case FMA_FADD: + case FMA_FMA: + case FMA_FADD16: + case FMA_FMA16: + dump_round_mode(bits(FMA.op, 10, 12)); + break; + case FMA_FMINMAX: + case FMA_FMINMAX16: + dump_minmax_mode(bits(FMA.op, 10, 12)); + break; + default: + assert(0); + } + } else if (info.src_type == FMA_FCMP || info.src_type == FMA_FCMP16) { + dump_fcmp(bits(FMA.op, 10, 13)); + if (info.src_type == FMA_FCMP) + printf(".f32"); + else + printf(".v2f16"); + } else if (info.src_type == FMA_FMA_MSCALE) { + if (FMA.op & (1 << 11)) { + switch ((FMA.op >> 9) & 0x3) { + case 0: + /* This mode seems to do a few things: + * - Makes 0 * infinity (and incidentally 0 * nan) return 0, + * since generating a nan would poison the result of + * 1/infinity and 1/0. + * - Fiddles with which nan is returned in nan * nan, + * presumably to make sure that the same exact nan is + * returned for 1/nan. + */ + printf(".rcp_mode"); + break; + case 3: + /* Similar to the above, but src0 always wins when multiplying + * 0 by infinity. + */ + printf(".sqrt_mode"); + break; + default: + printf(".unk%d_mode", (int) (FMA.op >> 9) & 0x3); + } + } else { + dump_output_mod(bits(FMA.op, 9, 11)); + } + } + + printf(" "); + + struct bifrost_reg_ctrl next_ctrl = DecodeRegCtrl(next_regs); + if (next_ctrl.fma_write_unit != REG_WRITE_NONE) { + printf("{R%d, T0}, ", GetRegToWrite(next_ctrl.fma_write_unit, next_regs)); + } else { + printf("T0, "); + } + + switch (info.src_type) { + case FMA_ONE_SRC: + dump_src(FMA.src0, regs, consts, true); + break; + case FMA_TWO_SRC: + dump_src(FMA.src0, regs, consts, true); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + break; + case FMA_FADD: + case FMA_FMINMAX: + if (FMA.op & 0x10) + printf("-"); + if (FMA.op & 0x200) + printf("abs("); + dump_src(FMA.src0, regs, consts, true); + dump_fma_expand_src0((FMA.op >> 6) & 0x7); + if (FMA.op & 0x200) + printf(")"); + printf(", "); + if (FMA.op & 0x20) + printf("-"); + if (FMA.op & 0x8) + printf("abs("); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_fma_expand_src1((FMA.op >> 6) & 0x7); + if (FMA.op & 0x8) + printf(")"); + break; + case FMA_FADD16: + case FMA_FMINMAX16: { + bool abs1 = FMA.op & 0x8; + bool abs2 = (FMA.op & 0x7) < FMA.src0; + if (FMA.op & 0x10) + printf("-"); + if (abs1 || abs2) + printf("abs("); + dump_src(FMA.src0, regs, consts, true); + dump_16swizzle((FMA.op >> 6) & 0x3); + if (abs1 || abs2) + printf(")"); + printf(", "); + if (FMA.op & 0x20) + printf("-"); + if (abs1 && abs2) + printf("abs("); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_16swizzle((FMA.op >> 8) & 0x3); + if (abs1 && abs2) + printf(")"); + break; + } + case FMA_FCMP: + if (FMA.op & 0x200) + printf("abs("); + dump_src(FMA.src0, regs, consts, true); + dump_fma_expand_src0((FMA.op >> 6) & 0x7); + if (FMA.op & 0x200) + printf(")"); + printf(", "); + if (FMA.op & 0x20) + printf("-"); + if (FMA.op & 0x8) + printf("abs("); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_fma_expand_src1((FMA.op >> 6) & 0x7); + if (FMA.op & 0x8) + printf(")"); + break; + case FMA_FCMP16: + dump_src(FMA.src0, regs, consts, true); + // Note: this is kinda a guess, I haven't seen the blob set this to + // anything other than the identity, but it matches FMA_TWO_SRCFmod16 + dump_16swizzle((FMA.op >> 6) & 0x3); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_16swizzle((FMA.op >> 8) & 0x3); + break; + case FMA_SHIFT_ADD64: + dump_src(FMA.src0, regs, consts, true); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + printf(", "); + printf("shift:%u", (FMA.op >> 3) & 0x7); + break; + case FMA_THREE_SRC: + dump_src(FMA.src0, regs, consts, true); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + printf(", "); + dump_src((FMA.op >> 3) & 0x7, regs, consts, true); + break; + case FMA_FMA: + if (FMA.op & (1 << 14)) + printf("-"); + if (FMA.op & (1 << 9)) + printf("abs("); + dump_src(FMA.src0, regs, consts, true); + dump_fma_expand_src0((FMA.op >> 6) & 0x7); + if (FMA.op & (1 << 9)) + printf(")"); + printf(", "); + if (FMA.op & (1 << 16)) + printf("abs("); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_fma_expand_src1((FMA.op >> 6) & 0x7); + if (FMA.op & (1 << 16)) + printf(")"); + printf(", "); + if (FMA.op & (1 << 15)) + printf("-"); + if (FMA.op & (1 << 17)) + printf("abs("); + dump_src((FMA.op >> 3) & 0x7, regs, consts, true); + if (FMA.op & (1 << 17)) + printf(")"); + break; + case FMA_FMA16: + if (FMA.op & (1 << 14)) + printf("-"); + dump_src(FMA.src0, regs, consts, true); + dump_16swizzle((FMA.op >> 6) & 0x3); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + dump_16swizzle((FMA.op >> 8) & 0x3); + printf(", "); + if (FMA.op & (1 << 15)) + printf("-"); + dump_src((FMA.op >> 3) & 0x7, regs, consts, true); + dump_16swizzle((FMA.op >> 16) & 0x3); + break; + case FMA_FOUR_SRC: + dump_src(FMA.src0, regs, consts, true); + printf(", "); + dump_src(FMA.op & 0x7, regs, consts, true); + printf(", "); + dump_src((FMA.op >> 3) & 0x7, regs, consts, true); + printf(", "); + dump_src((FMA.op >> 6) & 0x7, regs, consts, true); + break; + case FMA_FMA_MSCALE: + if (FMA.op & (1 << 12)) + printf("abs("); + dump_src(FMA.src0, regs, consts, true); + if (FMA.op & (1 << 12)) + printf(")"); + printf(", "); + if (FMA.op & (1 << 13)) + printf("-"); + dump_src(FMA.op & 0x7, regs, consts, true); + printf(", "); + if (FMA.op & (1 << 14)) + printf("-"); + dump_src((FMA.op >> 3) & 0x7, regs, consts, true); + printf(", "); + dump_src((FMA.op >> 6) & 0x7, regs, consts, true); + break; + } + printf("\n"); +} + +static const struct add_op_info add_op_infos[] = { + { 0x00000, "MAX.f32", ADD_FMINMAX }, + { 0x02000, "MIN.f32", ADD_FMINMAX }, + { 0x04000, "ADD.f32", ADD_FADD }, + { 0x06000, "FCMP.GL", ADD_FCMP }, + { 0x07000, "FCMP.D3D", ADD_FCMP }, + { 0x07856, "F16_TO_I16", ADD_ONE_SRC }, + { 0x07857, "F16_TO_U16", ADD_ONE_SRC }, + { 0x078c0, "I16_TO_F16.XX", ADD_ONE_SRC }, + { 0x078c1, "U16_TO_F16.XX", ADD_ONE_SRC }, + { 0x078c8, "I16_TO_F16.YX", ADD_ONE_SRC }, + { 0x078c9, "U16_TO_F16.YX", ADD_ONE_SRC }, + { 0x078d0, "I16_TO_F16.XY", ADD_ONE_SRC }, + { 0x078d1, "U16_TO_F16.XY", ADD_ONE_SRC }, + { 0x078d8, "I16_TO_F16.YY", ADD_ONE_SRC }, + { 0x078d9, "U16_TO_F16.YY", ADD_ONE_SRC }, + { 0x07936, "F32_TO_I32", ADD_ONE_SRC }, + { 0x07937, "F32_TO_U32", ADD_ONE_SRC }, + { 0x07978, "I32_TO_F32", ADD_ONE_SRC }, + { 0x07979, "U32_TO_F32", ADD_ONE_SRC }, + { 0x07998, "I16_TO_I32.X", ADD_ONE_SRC }, + { 0x07999, "U16_TO_U32.X", ADD_ONE_SRC }, + { 0x0799a, "I16_TO_I32.Y", ADD_ONE_SRC }, + { 0x0799b, "U16_TO_U32.Y", ADD_ONE_SRC }, + { 0x0799c, "I16_TO_F32.X", ADD_ONE_SRC }, + { 0x0799d, "U16_TO_F32.X", ADD_ONE_SRC }, + { 0x0799e, "I16_TO_F32.Y", ADD_ONE_SRC }, + { 0x0799f, "U16_TO_F32.Y", ADD_ONE_SRC }, + // take the low 16 bits, and expand it to a 32-bit float + { 0x079a2, "F16_TO_F32.X", ADD_ONE_SRC }, + // take the high 16 bits, ... + { 0x079a3, "F16_TO_F32.Y", ADD_ONE_SRC }, + { 0x07b2b, "SWZ.YX.v2i16", ADD_ONE_SRC }, + { 0x07b2c, "NOP", ADD_ONE_SRC }, + { 0x07b29, "SWZ.XX.v2i16", ADD_ONE_SRC }, + // Logically, this should be SWZ.XY, but that's equivalent to a move, and + // this seems to be the canonical way the blob generates a MOV. + { 0x07b2d, "MOV", ADD_ONE_SRC }, + { 0x07b2f, "SWZ.YY.v2i16", ADD_ONE_SRC }, + // Given a floating point number m * 2^e, returns m ^ 2^{-1}. + { 0x07b65, "FRCP_FREXPM", ADD_ONE_SRC }, + { 0x07b75, "FSQRT_FREXPM", ADD_ONE_SRC }, + { 0x07b8d, "FRCP_FREXPE", ADD_ONE_SRC }, + { 0x07ba5, "FSQRT_FREXPE", ADD_ONE_SRC }, + { 0x07bad, "FRSQ_FREXPE", ADD_ONE_SRC }, + // From the ARM patent US20160364209A1: + // "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s, + // and x1 is a floating point value in a predetermined range where the + // value 1 is within the range and not at one extremity of the range (e.g. + // choose a range where 1 is towards middle of range)." + // + // This computes s. + { 0x07bc5, "FLOG_FREXPE", ADD_ONE_SRC }, + { 0x07d45, "CEIL", ADD_ONE_SRC }, + { 0x07d85, "FLOOR", ADD_ONE_SRC }, + { 0x07f18, "LSHIFT_ADD_HIGH32.i32", ADD_TWO_SRC }, + { 0x08000, "LD_ATTR.f16", ADD_LOAD_ATTR, true }, + { 0x08100, "LD_ATTR.v2f16", ADD_LOAD_ATTR, true }, + { 0x08200, "LD_ATTR.v3f16", ADD_LOAD_ATTR, true }, + { 0x08300, "LD_ATTR.v4f16", ADD_LOAD_ATTR, true }, + { 0x08400, "LD_ATTR.f32", ADD_LOAD_ATTR, true }, + { 0x08500, "LD_ATTR.v3f32", ADD_LOAD_ATTR, true }, + { 0x08600, "LD_ATTR.v3f32", ADD_LOAD_ATTR, true }, + { 0x08700, "LD_ATTR.v4f32", ADD_LOAD_ATTR, true }, + { 0x08800, "LD_ATTR.i32", ADD_LOAD_ATTR, true }, + { 0x08900, "LD_ATTR.v3i32", ADD_LOAD_ATTR, true }, + { 0x08a00, "LD_ATTR.v3i32", ADD_LOAD_ATTR, true }, + { 0x08b00, "LD_ATTR.v4i32", ADD_LOAD_ATTR, true }, + { 0x08c00, "LD_ATTR.u32", ADD_LOAD_ATTR, true }, + { 0x08d00, "LD_ATTR.v3u32", ADD_LOAD_ATTR, true }, + { 0x08e00, "LD_ATTR.v3u32", ADD_LOAD_ATTR, true }, + { 0x08f00, "LD_ATTR.v4u32", ADD_LOAD_ATTR, true }, + { 0x0a000, "LD_VAR.32", ADD_VARYING_INTERP, true }, + { 0x0b000, "TEX", ADD_TEX_COMPACT, true }, + { 0x0c188, "LOAD.i32", ADD_TWO_SRC, true }, + { 0x0c1a0, "LD_UBO.i32", ADD_TWO_SRC, true }, + { 0x0c1b8, "LD_SCRATCH.v2i32", ADD_TWO_SRC, true }, + { 0x0c1c8, "LOAD.v2i32", ADD_TWO_SRC, true }, + { 0x0c1e0, "LD_UBO.v2i32", ADD_TWO_SRC, true }, + { 0x0c1f8, "LD_SCRATCH.v2i32", ADD_TWO_SRC, true }, + { 0x0c208, "LOAD.v4i32", ADD_TWO_SRC, true }, + // src0 = offset, src1 = binding + { 0x0c220, "LD_UBO.v4i32", ADD_TWO_SRC, true }, + { 0x0c238, "LD_SCRATCH.v4i32", ADD_TWO_SRC, true }, + { 0x0c248, "STORE.v4i32", ADD_TWO_SRC, true }, + { 0x0c278, "ST_SCRATCH.v4i32", ADD_TWO_SRC, true }, + { 0x0c588, "STORE.i32", ADD_TWO_SRC, true }, + { 0x0c5b8, "ST_SCRATCH.i32", ADD_TWO_SRC, true }, + { 0x0c5c8, "STORE.v2i32", ADD_TWO_SRC, true }, + { 0x0c5f8, "ST_SCRATCH.v2i32", ADD_TWO_SRC, true }, + { 0x0c648, "LOAD.u16", ADD_TWO_SRC, true }, // zero-extends + { 0x0ca88, "LOAD.v3i32", ADD_TWO_SRC, true }, + { 0x0caa0, "LD_UBO.v3i32", ADD_TWO_SRC, true }, + { 0x0cab8, "LD_SCRATCH.v3i32", ADD_TWO_SRC, true }, + { 0x0cb88, "STORE.v3i32", ADD_TWO_SRC, true }, + { 0x0cbb8, "ST_SCRATCH.v3i32", ADD_TWO_SRC, true }, + // *_FAST does not exist on G71 (added to G51, G72, and everything after) + { 0x0cc00, "FRCP_FAST.f32", ADD_ONE_SRC }, + { 0x0cc20, "FRSQ_FAST.f32", ADD_ONE_SRC }, + // Given a floating point number m * 2^e, produces a table-based + // approximation of 2/m using the top 17 bits. Includes special cases for + // infinity, NaN, and zero, and copies the sign bit. + { 0x0ce00, "FRCP_TABLE", ADD_ONE_SRC }, + // Exists on G71 + { 0x0ce10, "FRCP_FAST.f16.X", ADD_ONE_SRC }, + // A similar table for inverse square root, using the high 17 bits of the + // mantissa as well as the low bit of the exponent. + { 0x0ce20, "FRSQ_TABLE", ADD_ONE_SRC }, + { 0x0ce30, "FRCP_FAST.f16.Y", ADD_ONE_SRC }, + { 0x0ce50, "FRSQ_FAST.f16.X", ADD_ONE_SRC }, + // Used in the argument reduction for log. Given a floating-point number + // m * 2^e, uses the top 4 bits of m to produce an approximation to 1/m + // with the exponent forced to 0 and only the top 5 bits are nonzero. 0, + // infinity, and NaN all return 1.0. + // See the ARM patent for more information. + { 0x0ce60, "FRCP_APPROX", ADD_ONE_SRC }, + { 0x0ce70, "FRSQ_FAST.f16.Y", ADD_ONE_SRC }, + { 0x0cf40, "ATAN_ASSIST", ADD_TWO_SRC }, + { 0x0cf48, "ATAN_TABLE", ADD_TWO_SRC }, + { 0x0cf50, "SIN_TABLE", ADD_ONE_SRC }, + { 0x0cf51, "COS_TABLE", ADD_ONE_SRC }, + { 0x0cf58, "EXP_TABLE", ADD_ONE_SRC }, + { 0x0cf60, "FLOG2_TABLE", ADD_ONE_SRC }, + { 0x0cf64, "FLOGE_TABLE", ADD_ONE_SRC }, + { 0x0d000, "BRANCH", ADD_BRANCH }, + // For each bit i, return src2[i] ? src0[i] : src1[i]. In other words, this + // is the same as (src2 & src0) | (~src2 & src1). + { 0x0e8c0, "MUX", ADD_THREE_SRC }, + { 0x0e9b0, "ATAN_LDEXP.Y.f32", ADD_TWO_SRC }, + { 0x0e9b8, "ATAN_LDEXP.X.f32", ADD_TWO_SRC }, + { 0x0ea60, "SEL.XX.i16", ADD_TWO_SRC }, + { 0x0ea70, "SEL.XY.i16", ADD_TWO_SRC }, + { 0x0ea68, "SEL.YX.i16", ADD_TWO_SRC }, + { 0x0ea78, "SEL.YY.i16", ADD_TWO_SRC }, + { 0x0ec00, "F32_TO_F16", ADD_TWO_SRC }, + { 0x0f640, "ICMP.GL.GT", ADD_TWO_SRC }, // src0 > src1 ? 1 : 0 + { 0x0f648, "ICMP.GL.GE", ADD_TWO_SRC }, + { 0x0f650, "UCMP.GL.GT", ADD_TWO_SRC }, + { 0x0f658, "UCMP.GL.GE", ADD_TWO_SRC }, + { 0x0f660, "ICMP.GL.EQ", ADD_TWO_SRC }, + { 0x0f6c0, "ICMP.D3D.GT", ADD_TWO_SRC }, // src0 > src1 ? ~0 : 0 + { 0x0f6c8, "ICMP.D3D.GE", ADD_TWO_SRC }, + { 0x0f6d0, "UCMP.D3D.GT", ADD_TWO_SRC }, + { 0x0f6d8, "UCMP.D3D.GE", ADD_TWO_SRC }, + { 0x0f6e0, "ICMP.D3D.EQ", ADD_TWO_SRC }, + { 0x10000, "MAX.v2f16", ADD_FMINMAX16 }, + { 0x11000, "ADD_MSCALE.f32", ADD_FADDMscale }, + { 0x12000, "MIN.v2f16", ADD_FMINMAX16 }, + { 0x14000, "ADD.v2f16", ADD_FADD16 }, + { 0x17000, "FCMP.D3D", ADD_FCMP16 }, + { 0x178c0, "ADD.i32", ADD_TWO_SRC }, + { 0x17900, "ADD.v2i16", ADD_TWO_SRC }, + { 0x17ac0, "SUB.i32", ADD_TWO_SRC }, + { 0x17c10, "ADDC.i32", ADD_TWO_SRC }, // adds src0 to the bottom bit of src1 + { 0x17d80, "ADD.i32.i16.X", ADD_TWO_SRC }, + { 0x17d90, "ADD.i32.u16.X", ADD_TWO_SRC }, + { 0x17dc0, "ADD.i32.i16.Y", ADD_TWO_SRC }, + { 0x17dd0, "ADD.i32.u16.Y", ADD_TWO_SRC }, + // Compute varying address and datatype (for storing in the vertex shader), + // and store the vec3 result in the data register. The result is passed as + // the 3 normal arguments to ST_VAR. + { 0x18000, "LD_VAR_ADDR.f16", ADD_VARYING_ADDRESS, true }, + { 0x18100, "LD_VAR_ADDR.f32", ADD_VARYING_ADDRESS, true }, + { 0x18200, "LD_VAR_ADDR.i32", ADD_VARYING_ADDRESS, true }, + { 0x18300, "LD_VAR_ADDR.u32", ADD_VARYING_ADDRESS, true }, + // Implements alpha-to-coverage, as well as possibly the late depth and + // stencil tests. The first source is the existing sample mask in R60 + // (possibly modified by gl_SampleMask), and the second source is the alpha + // value. The sample mask is written right away based on the + // alpha-to-coverage result using the normal register write mechanism, + // since that doesn't need to read from any memory, and then written again + // later based on the result of the stencil and depth tests using the + // special register. + { 0x191e8, "ATEST.f32", ADD_TWO_SRC, true }, + { 0x191f0, "ATEST.X.f16", ADD_TWO_SRC, true }, + { 0x191f8, "ATEST.Y.f16", ADD_TWO_SRC, true }, + // store a varying given the address and datatype from LD_VAR_ADDR + { 0x19300, "ST_VAR.v1", ADD_THREE_SRC, true }, + { 0x19340, "ST_VAR.v2", ADD_THREE_SRC, true }, + { 0x19380, "ST_VAR.v3", ADD_THREE_SRC, true }, + { 0x193c0, "ST_VAR.v4", ADD_THREE_SRC, true }, + // This takes the sample coverage mask (computed by ATEST above) as a + // regular argument, in addition to the vec4 color in the special register. + { 0x1952c, "BLEND", ADD_BLENDING, true }, + { 0x1a000, "LD_VAR.16", ADD_VARYING_INTERP, true }, + { 0x1ae60, "TEX", ADD_TEX, true }, + { 0x1c000, "RSHIFT_NAND.i32", ADD_THREE_SRC }, + { 0x1c300, "RSHIFT_OR.i32", ADD_THREE_SRC }, + { 0x1c400, "RSHIFT_AND.i32", ADD_THREE_SRC }, + { 0x1c700, "RSHIFT_NOR.i32", ADD_THREE_SRC }, + { 0x1c800, "LSHIFT_NAND.i32", ADD_THREE_SRC }, + { 0x1cb00, "LSHIFT_OR.i32", ADD_THREE_SRC }, + { 0x1cc00, "LSHIFT_AND.i32", ADD_THREE_SRC }, + { 0x1cf00, "LSHIFT_NOR.i32", ADD_THREE_SRC }, + { 0x1d000, "RSHIFT_XOR.i32", ADD_THREE_SRC }, + { 0x1d100, "RSHIFT_XNOR.i32", ADD_THREE_SRC }, + { 0x1d200, "LSHIFT_XOR.i32", ADD_THREE_SRC }, + { 0x1d300, "LSHIFT_XNOR.i32", ADD_THREE_SRC }, + { 0x1d400, "LSHIFT_ADD.i32", ADD_THREE_SRC }, + { 0x1d500, "LSHIFT_SUB.i32", ADD_THREE_SRC }, + { 0x1d500, "LSHIFT_RSUB.i32", ADD_THREE_SRC }, + { 0x1d700, "RSHIFT_ADD.i32", ADD_THREE_SRC }, + { 0x1d800, "RSHIFT_SUB.i32", ADD_THREE_SRC }, + { 0x1d900, "RSHIFT_RSUB.i32", ADD_THREE_SRC }, + { 0x1da00, "ARSHIFT_ADD.i32", ADD_THREE_SRC }, + { 0x1db00, "ARSHIFT_SUB.i32", ADD_THREE_SRC }, + { 0x1dc00, "ARSHIFT_RSUB.i32", ADD_THREE_SRC }, + { 0x1dd18, "OR.i32", ADD_TWO_SRC }, + { 0x1dd20, "AND.i32", ADD_TWO_SRC }, + { 0x1dd60, "LSHIFT.i32", ADD_TWO_SRC }, + { 0x1dd50, "XOR.i32", ADD_TWO_SRC }, + { 0x1dd80, "RSHIFT.i32", ADD_TWO_SRC }, + { 0x1dda0, "ARSHIFT.i32", ADD_TWO_SRC }, +}; + +static struct add_op_info find_add_op_info(unsigned op) +{ + for (unsigned i = 0; i < ARRAY_SIZE(add_op_infos); i++) { + unsigned opCmp = ~0; + switch (add_op_infos[i].src_type) { + case ADD_ONE_SRC: + case ADD_BLENDING: + opCmp = op; + break; + case ADD_TWO_SRC: + opCmp = op & ~0x7; + break; + case ADD_THREE_SRC: + opCmp = op & ~0x3f; + break; + case ADD_TEX: + opCmp = op & ~0xf; + break; + case ADD_FADD: + case ADD_FMINMAX: + case ADD_FADD16: + opCmp = op & ~0x1fff; + break; + case ADD_FMINMAX16: + case ADD_FADDMscale: + opCmp = op & ~0xfff; + break; + case ADD_FCMP: + case ADD_FCMP16: + opCmp = op & ~0x7ff; + break; + case ADD_TEX_COMPACT: + opCmp = op & ~0x3ff; + break; + case ADD_VARYING_INTERP: + opCmp = op & ~0x7ff; + break; + case ADD_VARYING_ADDRESS: + opCmp = op & ~0xff; + break; + case ADD_LOAD_ATTR: + opCmp = op & ~0x7f; + break; + case ADD_BRANCH: + opCmp = op & ~0xfff; + break; + default: + opCmp = ~0; + break; + } + if (add_op_infos[i].op == opCmp) + return add_op_infos[i]; + } + + struct add_op_info info; + snprintf(info.name, sizeof(info.name), "op%04x", op); + info.op = op; + info.src_type = ADD_TWO_SRC; + info.has_data_reg = true; + return info; +} + +static void dump_add(uint64_t word, struct bifrost_regs regs, struct bifrost_regs next_regs, uint64_t *consts, + unsigned data_reg, unsigned offset, bool verbose) +{ + if (verbose) { + printf("# ADD: %016" PRIx64 "\n", word); + } + struct bifrost_add_inst ADD; + memcpy((char *) &ADD, (char *) &word, sizeof(ADD)); + struct add_op_info info = find_add_op_info(ADD.op); + + printf("%s", info.name); + + // float16 seems like it doesn't support output modifiers + if (info.src_type == ADD_FADD || info.src_type == ADD_FMINMAX) { + // output modifiers + dump_output_mod(bits(ADD.op, 8, 10)); + if (info.src_type == ADD_FADD) + dump_round_mode(bits(ADD.op, 10, 12)); + else + dump_minmax_mode(bits(ADD.op, 10, 12)); + } else if (info.src_type == ADD_FCMP || info.src_type == ADD_FCMP16) { + dump_fcmp(bits(ADD.op, 3, 6)); + if (info.src_type == ADD_FCMP) + printf(".f32"); + else + printf(".v2f16"); + } else if (info.src_type == ADD_FADDMscale) { + switch ((ADD.op >> 6) & 0x7) { + case 0: break; + // causes GPU hangs on G71 + case 1: printf(".invalid"); break; + // Same as usual outmod value. + case 2: printf(".clamp_0_1"); break; + // If src0 is infinite or NaN, flush it to zero so that the other + // source is passed through unmodified. + case 3: printf(".flush_src0_inf_nan"); break; + // Vice versa. + case 4: printf(".flush_src1_inf_nan"); break; + // Every other case seems to behave the same as the above? + default: printf(".unk%d", (ADD.op >> 6) & 0x7); break; + } + } else if (info.src_type == ADD_VARYING_INTERP) { + if (ADD.op & 0x200) + printf(".reuse"); + if (ADD.op & 0x400) + printf(".flat"); + switch ((ADD.op >> 7) & 0x3) { + case 0: printf(".per_frag"); break; + case 1: printf(".centroid"); break; + case 2: break; + case 3: printf(".explicit"); break; + } + printf(".v%d", ((ADD.op >> 5) & 0x3) + 1); + } else if (info.src_type == ADD_BRANCH) { + enum branch_code branchCode = (enum branch_code) ((ADD.op >> 6) & 0x3f); + if (branchCode == BR_ALWAYS) { + // unconditional branch + } else { + enum branch_cond cond = (enum branch_cond) ((ADD.op >> 6) & 0x7); + enum branch_bit_size size = (enum branch_bit_size) ((ADD.op >> 9) & 0x7); + bool portSwapped = (ADD.op & 0x7) < ADD.src0; + // See the comment in branch_bit_size + if (size == BR_SIZE_16YX0) + portSwapped = true; + if (size == BR_SIZE_16YX1) + portSwapped = false; + // These sizes are only for floating point comparisons, so the + // non-floating-point comparisons are reused to encode the flipped + // versions. + if (size == BR_SIZE_32_AND_16X || size == BR_SIZE_32_AND_16Y) + portSwapped = false; + // There's only one argument, so we reuse the extra argument to + // encode this. + if (size == BR_SIZE_ZERO) + portSwapped = !(ADD.op & 1); + + switch (cond) { + case BR_COND_LT: + if (portSwapped) + printf(".LT.u"); + else + printf(".LT.i"); + break; + case BR_COND_LE: + if (size == BR_SIZE_32_AND_16X || size == BR_SIZE_32_AND_16Y) { + printf(".UNE.f"); + } else { + if (portSwapped) + printf(".LE.u"); + else + printf(".LE.i"); + } + break; + case BR_COND_GT: + if (portSwapped) + printf(".GT.u"); + else + printf(".GT.i"); + break; + case BR_COND_GE: + if (portSwapped) + printf(".GE.u"); + else + printf(".GE.i"); + break; + case BR_COND_EQ: + if (portSwapped) + printf(".NE.i"); + else + printf(".EQ.i"); + break; + case BR_COND_OEQ: + if (portSwapped) + printf(".UNE.f"); + else + printf(".OEQ.f"); + break; + case BR_COND_OGT: + if (portSwapped) + printf(".OGT.unk.f"); + else + printf(".OGT.f"); + break; + case BR_COND_OLT: + if (portSwapped) + printf(".OLT.unk.f"); + else + printf(".OLT.f"); + break; + } + switch (size) { + case BR_SIZE_32: + case BR_SIZE_32_AND_16X: + case BR_SIZE_32_AND_16Y: + printf("32"); + break; + case BR_SIZE_16XX: + case BR_SIZE_16YY: + case BR_SIZE_16YX0: + case BR_SIZE_16YX1: + printf("16"); + break; + case BR_SIZE_ZERO: { + unsigned ctrl = (ADD.op >> 1) & 0x3; + if (ctrl == 0) + printf("32.Z"); + else + printf("16.Z"); + break; + } + } + } + } + printf(" "); + + struct bifrost_reg_ctrl next_ctrl = DecodeRegCtrl(next_regs); + if (next_ctrl.add_write_unit != REG_WRITE_NONE) { + printf("{R%d, T1}, ", GetRegToWrite(next_ctrl.add_write_unit, next_regs)); + } else { + printf("T1, "); + } + + switch (info.src_type) { + case ADD_BLENDING: + // Note: in this case, regs.uniform_const == location | 0x8 + // This probably means we can't load uniforms or immediates in the + // same instruction. This re-uses the encoding that normally means + // "disabled", where the low 4 bits are ignored. Perhaps the extra + // 0x8 or'd in indicates this is happening. + printf("location:%d, ", regs.uniform_const & 0x7); + // fallthrough + case ADD_ONE_SRC: + dump_src(ADD.src0, regs, consts, false); + break; + case ADD_TEX: + case ADD_TEX_COMPACT: { + int tex_index; + int sampler_index; + bool dualTex = false; + if (info.src_type == ADD_TEX_COMPACT) { + tex_index = (ADD.op >> 3) & 0x7; + sampler_index = (ADD.op >> 7) & 0x7; + bool unknown = (ADD.op & 0x40); + // TODO: figure out if the unknown bit is ever 0 + if (!unknown) + printf("unknown "); + } else { + uint64_t constVal = get_const(consts, regs); + uint32_t controlBits = (ADD.op & 0x8) ? (constVal >> 32) : constVal; + struct bifrost_tex_ctrl ctrl; + memcpy((char *) &ctrl, (char *) &controlBits, sizeof(ctrl)); + + // TODO: figure out what actually triggers dual-tex + if (ctrl.result_type == 9) { + struct bifrost_dual_tex_ctrl dualCtrl; + memcpy((char *) &dualCtrl, (char *) &controlBits, sizeof(ctrl)); + printf("(dualtex) tex0:%d samp0:%d tex1:%d samp1:%d ", + dualCtrl.tex_index0, dualCtrl.sampler_index0, + dualCtrl.tex_index1, dualCtrl.sampler_index1); + if (dualCtrl.unk0 != 3) + printf("unk:%d ", dualCtrl.unk0); + dualTex = true; + } else { + if (ctrl.no_merge_index) { + tex_index = ctrl.tex_index; + sampler_index = ctrl.sampler_index; + } else { + tex_index = sampler_index = ctrl.tex_index; + unsigned unk = ctrl.sampler_index >> 2; + if (unk != 3) + printf("unk:%d ", unk); + if (ctrl.sampler_index & 1) + tex_index = -1; + if (ctrl.sampler_index & 2) + sampler_index = -1; + } + + if (ctrl.unk0 != 3) + printf("unk0:%d ", ctrl.unk0); + if (ctrl.unk1) + printf("unk1 "); + if (ctrl.unk2 != 0xf) + printf("unk2:%x ", ctrl.unk2); + + switch (ctrl.result_type) { + case 0x4: + printf("f32 "); break; + case 0xe: + printf("i32 "); break; + case 0xf: + printf("u32 "); break; + default: + printf("unktype(%x) ", ctrl.result_type); + } + + switch (ctrl.tex_type) { + case 0: + printf("cube "); break; + case 1: + printf("buffer "); break; + case 2: + printf("2D "); break; + case 3: + printf("3D "); break; + } + + if (ctrl.is_shadow) + printf("shadow "); + if (ctrl.is_array) + printf("array "); + + if (!ctrl.filter) { + if (ctrl.calc_gradients) { + int comp = (controlBits >> 20) & 0x3; + printf("txg comp:%d ", comp); + } else { + printf("txf "); + } + } else { + if (!ctrl.not_supply_lod) { + if (ctrl.compute_lod) + printf("lod_bias "); + else + printf("lod "); + } + + if (!ctrl.calc_gradients) + printf("grad "); + } + + if (ctrl.texel_offset) + printf("offset "); + } + } + + if (!dualTex) { + if (tex_index == -1) + printf("tex:indirect "); + else + printf("tex:%d ", tex_index); + + if (sampler_index == -1) + printf("samp:indirect "); + else + printf("samp:%d ", sampler_index); + } + break; + } + case ADD_VARYING_INTERP: { + unsigned addr = ADD.op & 0x1f; + if (addr < 0b10100) { + // direct addr + printf("%d", addr); + } else if (addr < 0b11000) { + if (addr == 22) + printf("fragw"); + else if (addr == 23) + printf("fragz"); + else + printf("unk%d", addr); + } else { + dump_src(ADD.op & 0x7, regs, consts, false); + } + printf(", "); + dump_src(ADD.src0, regs, consts, false); + break; + } + case ADD_VARYING_ADDRESS: { + dump_src(ADD.src0, regs, consts, false); + printf(", "); + dump_src(ADD.op & 0x7, regs, consts, false); + printf(", "); + unsigned location = (ADD.op >> 3) & 0x1f; + if (location < 16) { + printf("location:%d", location); + } else if (location == 20) { + printf("location:%u", (uint32_t) get_const(consts, regs)); + } else if (location == 21) { + printf("location:%u", (uint32_t) (get_const(consts, regs) >> 32)); + } else { + printf("location:%d(unk)", location); + } + break; + } + case ADD_LOAD_ATTR: + printf("location:%d, ", (ADD.op >> 3) & 0xf); + case ADD_TWO_SRC: + dump_src(ADD.src0, regs, consts, false); + printf(", "); + dump_src(ADD.op & 0x7, regs, consts, false); + break; + case ADD_THREE_SRC: + dump_src(ADD.src0, regs, consts, false); + printf(", "); + dump_src(ADD.op & 0x7, regs, consts, false); + printf(", "); + dump_src((ADD.op >> 3) & 0x7, regs, consts, false); + break; + case ADD_FADD: + case ADD_FMINMAX: + if (ADD.op & 0x10) + printf("-"); + if (ADD.op & 0x1000) + printf("abs("); + dump_src(ADD.src0, regs, consts, false); + switch ((ADD.op >> 6) & 0x3) { + case 3: + printf(".x"); + break; + default: + break; + } + if (ADD.op & 0x1000) + printf(")"); + printf(", "); + if (ADD.op & 0x20) + printf("-"); + if (ADD.op & 0x8) + printf("abs("); + dump_src(ADD.op & 0x7, regs, consts, false); + switch ((ADD.op >> 6) & 0x3) { + case 1: + case 3: + printf(".x"); + break; + case 2: + printf(".y"); + break; + case 0: + break; + default: + printf(".unk"); + break; + } + if (ADD.op & 0x8) + printf(")"); + break; + case ADD_FADD16: + if (ADD.op & 0x10) + printf("-"); + if (ADD.op & 0x1000) + printf("abs("); + dump_src(ADD.src0, regs, consts, false); + if (ADD.op & 0x1000) + printf(")"); + dump_16swizzle((ADD.op >> 6) & 0x3); + printf(", "); + if (ADD.op & 0x20) + printf("-"); + if (ADD.op & 0x8) + printf("abs("); + dump_src(ADD.op & 0x7, regs, consts, false); + dump_16swizzle((ADD.op >> 8) & 0x3); + if (ADD.op & 0x8) + printf(")"); + break; + case ADD_FMINMAX16: { + bool abs1 = ADD.op & 0x8; + bool abs2 = (ADD.op & 0x7) < ADD.src0; + if (ADD.op & 0x10) + printf("-"); + if (abs1 || abs2) + printf("abs("); + dump_src(ADD.src0, regs, consts, false); + dump_16swizzle((ADD.op >> 6) & 0x3); + if (abs1 || abs2) + printf(")"); + printf(", "); + if (ADD.op & 0x20) + printf("-"); + if (abs1 && abs2) + printf("abs("); + dump_src(ADD.op & 0x7, regs, consts, false); + dump_16swizzle((ADD.op >> 8) & 0x3); + if (abs1 && abs2) + printf(")"); + break; + } + case ADD_FADDMscale: { + if (ADD.op & 0x400) + printf("-"); + if (ADD.op & 0x200) + printf("abs("); + dump_src(ADD.src0, regs, consts, false); + if (ADD.op & 0x200) + printf(")"); + + printf(", "); + + if (ADD.op & 0x800) + printf("-"); + dump_src(ADD.op & 0x7, regs, consts, false); + + printf(", "); + + dump_src((ADD.op >> 3) & 0x7, regs, consts, false); + break; + } + case ADD_FCMP: + if (ADD.op & 0x400) { + printf("-"); + } + if (ADD.op & 0x100) { + printf("abs("); + } + dump_src(ADD.src0, regs, consts, false); + switch ((ADD.op >> 6) & 0x3) { + case 3: + printf(".x"); + break; + default: + break; + } + if (ADD.op & 0x100) { + printf(")"); + } + printf(", "); + if (ADD.op & 0x200) { + printf("abs("); + } + dump_src(ADD.op & 0x7, regs, consts, false); + switch ((ADD.op >> 6) & 0x3) { + case 1: + case 3: + printf(".x"); + break; + case 2: + printf(".y"); + break; + case 0: + break; + default: + printf(".unk"); + break; + } + if (ADD.op & 0x200) { + printf(")"); + } + break; + case ADD_FCMP16: + dump_src(ADD.src0, regs, consts, false); + dump_16swizzle((ADD.op >> 6) & 0x3); + printf(", "); + dump_src(ADD.op & 0x7, regs, consts, false); + dump_16swizzle((ADD.op >> 8) & 0x3); + break; + case ADD_BRANCH: { + enum branch_code code = (enum branch_code) ((ADD.op >> 6) & 0x3f); + enum branch_bit_size size = (enum branch_bit_size) ((ADD.op >> 9) & 0x7); + if (code != BR_ALWAYS) { + dump_src(ADD.src0, regs, consts, false); + switch (size) { + case BR_SIZE_16XX: + printf(".x"); + break; + case BR_SIZE_16YY: + case BR_SIZE_16YX0: + case BR_SIZE_16YX1: + printf(".y"); + break; + case BR_SIZE_ZERO: { + unsigned ctrl = (ADD.op >> 1) & 0x3; + switch (ctrl) { + case 1: + printf(".y"); + break; + case 2: + printf(".x"); + break; + default: + break; + } + } + default: + break; + } + printf(", "); + } + if (code != BR_ALWAYS && size != BR_SIZE_ZERO) { + dump_src(ADD.op & 0x7, regs, consts, false); + switch (size) { + case BR_SIZE_16XX: + case BR_SIZE_16YX0: + case BR_SIZE_16YX1: + case BR_SIZE_32_AND_16X: + printf(".x"); + break; + case BR_SIZE_16YY: + case BR_SIZE_32_AND_16Y: + printf(".y"); + break; + default: + break; + } + printf(", "); + } + // I haven't had the chance to test if this actually specifies the + // branch offset, since I couldn't get it to produce values other + // than 5 (uniform/const high), but these three bits are always + // consistent across branch instructions, so it makes sense... + int offsetSrc = (ADD.op >> 3) & 0x7; + if (offsetSrc == 4 || offsetSrc == 5) { + // If the offset is known/constant, we can decode it + uint32_t raw_offset; + if (offsetSrc == 4) + raw_offset = get_const(consts, regs); + else + raw_offset = get_const(consts, regs) >> 32; + // The high 4 bits are flags, while the rest is the + // twos-complement offset in bytes (here we convert to + // clauses). + int32_t branch_offset = ((int32_t) raw_offset << 4) >> 8; + + // If high4 is the high 4 bits of the last 64-bit constant, + // this is calculated as (high4 + 4) & 0xf, or 0 if the branch + // offset itself is the last constant. Not sure if this is + // actually used, or just garbage in unused bits, but in any + // case, we can just ignore it here since it's redundant. Note + // that if there is any padding, this will be 4 since the + // padding counts as the last constant. + unsigned flags = raw_offset >> 28; + (void) flags; + + // Note: the offset is in bytes, relative to the beginning of the + // current clause, so a zero offset would be a loop back to the + // same clause (annoyingly different from Midgard). + printf("clause_%d", offset + branch_offset); + } else { + dump_src(offsetSrc, regs, consts, false); + } + } + } + if (info.has_data_reg) { + printf(", R%d", data_reg); + } + printf("\n"); +} + +void dump_instr(const struct bifrost_alu_inst *instr, struct bifrost_regs next_regs, uint64_t *consts, + unsigned data_reg, unsigned offset, bool verbose) +{ + struct bifrost_regs regs; + memcpy((char *) ®s, (char *) &instr->reg_bits, sizeof(regs)); + + if (verbose) { + printf("# regs: %016" PRIx64 "\n", instr->reg_bits); + dump_regs(regs); + } + dump_fma(instr->fma_bits, regs, next_regs, consts, verbose); + dump_add(instr->add_bits, regs, next_regs, consts, data_reg, offset, verbose); +} + +bool dump_clause(uint32_t *words, unsigned *size, unsigned offset, bool verbose) { + // State for a decoded clause + struct bifrost_alu_inst instrs[8] = {}; + uint64_t consts[6] = {}; + unsigned num_instrs = 0; + unsigned num_consts = 0; + uint64_t header_bits = 0; + bool stopbit = false; + + unsigned i; + for (i = 0; ; i++, words += 4) { + if (verbose) { + printf("# "); + for (int j = 0; j < 4; j++) + printf("%08x ", words[3 - j]); // low bit on the right + printf("\n"); + } + unsigned tag = bits(words[0], 0, 8); + + // speculatively decode some things that are common between many formats, so we can share some code + struct bifrost_alu_inst main_instr = {}; + // 20 bits + main_instr.add_bits = bits(words[2], 2, 32 - 13); + // 23 bits + main_instr.fma_bits = bits(words[1], 11, 32) | bits(words[2], 0, 2) << (32 - 11); + // 35 bits + main_instr.reg_bits = ((uint64_t) bits(words[1], 0, 11)) << 24 | (uint64_t) bits(words[0], 8, 32); + + uint64_t const0 = bits(words[0], 8, 32) << 4 | (uint64_t) words[1] << 28 | bits(words[2], 0, 4) << 60; + uint64_t const1 = bits(words[2], 4, 32) << 4 | (uint64_t) words[3] << 32; + + bool stop = tag & 0x40; + + if (verbose) { + printf("# tag: 0x%02x\n", tag); + } + if (tag & 0x80) { + unsigned idx = stop ? 5 : 2; + main_instr.add_bits |= ((tag >> 3) & 0x7) << 17; + instrs[idx + 1] = main_instr; + instrs[idx].add_bits = bits(words[3], 0, 17) | ((tag & 0x7) << 17); + instrs[idx].fma_bits |= bits(words[2], 19, 32) << 10; + consts[0] = bits(words[3], 17, 32) << 4; + } else { + bool done = false; + switch ((tag >> 3) & 0x7) { + case 0x0: + switch (tag & 0x7) { + case 0x3: + main_instr.add_bits |= bits(words[3], 29, 32) << 17; + instrs[1] = main_instr; + num_instrs = 2; + done = stop; + break; + case 0x4: + instrs[2].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17; + instrs[2].fma_bits |= bits(words[2], 19, 32) << 10; + consts[0] = const0; + num_instrs = 3; + num_consts = 1; + done = stop; + break; + case 0x1: + case 0x5: + instrs[2].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17; + instrs[2].fma_bits |= bits(words[2], 19, 32) << 10; + main_instr.add_bits |= bits(words[3], 26, 29) << 17; + instrs[3] = main_instr; + if ((tag & 0x7) == 0x5) { + num_instrs = 4; + done = stop; + } + break; + case 0x6: + instrs[5].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17; + instrs[5].fma_bits |= bits(words[2], 19, 32) << 10; + consts[0] = const0; + num_instrs = 6; + num_consts = 1; + done = stop; + break; + case 0x7: + instrs[5].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17; + instrs[5].fma_bits |= bits(words[2], 19, 32) << 10; + main_instr.add_bits |= bits(words[3], 26, 29) << 17; + instrs[6] = main_instr; + num_instrs = 7; + done = stop; + break; + default: + printf("unknown tag bits 0x%02x\n", tag); + } + break; + case 0x2: + case 0x3: { + unsigned idx = ((tag >> 3) & 0x7) == 2 ? 4 : 7; + main_instr.add_bits |= (tag & 0x7) << 17; + instrs[idx] = main_instr; + consts[0] |= (bits(words[2], 19, 32) | ((uint64_t) words[3] << 13)) << 19; + num_consts = 1; + num_instrs = idx + 1; + done = stop; + break; + } + case 0x4: { + unsigned idx = stop ? 4 : 1; + main_instr.add_bits |= (tag & 0x7) << 17; + instrs[idx] = main_instr; + instrs[idx + 1].fma_bits |= bits(words[3], 22, 32); + instrs[idx + 1].reg_bits = bits(words[2], 19, 32) | (bits(words[3], 0, 22) << (32 - 19)); + break; + } + case 0x1: + // only constants can come after this + num_instrs = 1; + done = stop; + case 0x5: + header_bits = bits(words[2], 19, 32) | ((uint64_t) words[3] << (32 - 19)); + main_instr.add_bits |= (tag & 0x7) << 17; + instrs[0] = main_instr; + break; + case 0x6: + case 0x7: { + unsigned pos = tag & 0xf; + // note that `pos' encodes both the total number of + // instructions and the position in the constant stream, + // presumably because decoded constants and instructions + // share a buffer in the decoder, but we only care about + // the position in the constant stream; the total number of + // instructions is redundant. + unsigned const_idx = 7; + switch (pos) { + case 0: + case 1: + case 2: + case 6: + const_idx = 0; + break; + case 3: + case 4: + case 7: + case 9: + const_idx = 1; + break; + case 5: + case 0xa: + const_idx = 2; + break; + case 8: + case 0xb: + case 0xc: + const_idx = 3; + break; + case 0xd: + const_idx = 4; + break; + default: + printf("# unknown pos 0x%x\n", pos); + } + if (num_consts < const_idx + 2) + num_consts = const_idx + 2; + consts[const_idx] = const0; + consts[const_idx + 1] = const1; + done = stop; + break; + } + default: + break; + } + + if (done) + break; + } + } + + *size = i + 1; + + if (verbose) { + printf("# header: %012" PRIx64 "\n", header_bits); + } + + struct bifrost_header header; + memcpy((char *) &header, (char *) &header_bits, sizeof(struct bifrost_header)); + dump_header(header, verbose); + if (!header.no_end_of_shader) + stopbit = true; + + printf("{\n"); + for (i = 0; i < num_instrs; i++) { + struct bifrost_regs next_regs; + if (i + 1 == num_instrs) { + memcpy((char *) &next_regs, (char *) &instrs[0].reg_bits, + sizeof(next_regs)); + } else { + memcpy((char *) &next_regs, (char *) &instrs[i + 1].reg_bits, + sizeof(next_regs)); + } + + dump_instr(&instrs[i], next_regs, consts, header.datareg, offset, verbose); + } + printf("}\n"); + + if (verbose) { + for (unsigned i = 0; i < num_consts; i++) { + printf("# const%d: %08" PRIx64 "\n", 2 * i, consts[i] & 0xffffffff); + printf("# const%d: %08" PRIx64 "\n", 2 * i + 1, consts[i] >> 32); + } + } + return stopbit; +} + +void disassemble_bifrost(uint8_t *code, size_t size, bool verbose) +{ + uint32_t *words = (uint32_t *) code; + uint32_t *words_end = words + (size / 4); + // used for displaying branch targets + unsigned offset = 0; + while (words != words_end) + { + // we don't know what the program-end bit is quite yet, so for now just + // assume that an all-0 quadword is padding + uint32_t zero[4] = {}; + if (memcmp(words, zero, 4 * sizeof(uint32_t)) == 0) + break; + printf("clause_%d:\n", offset); + unsigned size; + if (dump_clause(words, &size, offset, verbose) == true) { + break; + } + words += size * 4; + offset += size; + } +} + |