diff options
author | Bryan Cain <[email protected]> | 2011-04-25 23:37:47 -0500 |
---|---|---|
committer | Bryan Cain <[email protected]> | 2011-08-01 17:59:07 -0500 |
commit | f379d8f73063a4c4d6cf379318c6b37118d46bfa (patch) | |
tree | 4781440de470ee78ba321f6713009864fe0466d9 /src/mesa | |
parent | 6f243ec25d88589747c7a595903e201b90a4d767 (diff) |
st/mesa: Add a GLSL IR to TGSI translator.
It is still a work in progress at this point, but it produces working and
reasonably well-optimized code.
Originally based on ir_to_mesa and st_mesa_to_tgsi, but does not directly use
Mesa IR instructions in TGSI generation, instead generating TGSI from the
intermediate class glsl_to_tgsi_instruction. It also has new optimization
passes to replace _mesa_optimize_program.
Diffstat (limited to 'src/mesa')
-rw-r--r-- | src/mesa/sources.mak | 3 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_cb_program.c | 14 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_glsl_to_tgsi.cpp | 4431 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_glsl_to_tgsi.h | 66 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_mesa_to_tgsi.c | 4 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_mesa_to_tgsi.h | 6 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_program.c | 399 | ||||
-rw-r--r-- | src/mesa/state_tracker/st_program.h | 27 |
8 files changed, 4767 insertions, 183 deletions
diff --git a/src/mesa/sources.mak b/src/mesa/sources.mak index 4b2ec08bbb0..ed008f8813e 100644 --- a/src/mesa/sources.mak +++ b/src/mesa/sources.mak @@ -336,7 +336,8 @@ MESA_GALLIUM_SOURCES = \ MESA_GALLIUM_CXX_SOURCES = \ $(MAIN_CXX_SOURCES) \ - $(SHADER_CXX_SOURCES) + $(SHADER_CXX_SOURCES) \ + state_tracker/st_glsl_to_tgsi.cpp # All the core C sources, for dependency checking ALL_SOURCES = \ diff --git a/src/mesa/state_tracker/st_cb_program.c b/src/mesa/state_tracker/st_cb_program.c index 32694975d17..2abb4d8f082 100644 --- a/src/mesa/state_tracker/st_cb_program.c +++ b/src/mesa/state_tracker/st_cb_program.c @@ -44,6 +44,7 @@ #include "st_program.h" #include "st_mesa_to_tgsi.h" #include "st_cb_program.h" +#include "st_glsl_to_tgsi.h" @@ -129,6 +130,9 @@ st_delete_program(struct gl_context *ctx, struct gl_program *prog) { struct st_vertex_program *stvp = (struct st_vertex_program *) prog; st_release_vp_variants( st, stvp ); + + if (stvp->glsl_to_tgsi) + free_glsl_to_tgsi_visitor(stvp->glsl_to_tgsi); } break; case MESA_GEOMETRY_PROGRAM: @@ -137,6 +141,9 @@ st_delete_program(struct gl_context *ctx, struct gl_program *prog) (struct st_geometry_program *) prog; st_release_gp_variants(st, stgp); + + if (stgp->glsl_to_tgsi) + free_glsl_to_tgsi_visitor(stgp->glsl_to_tgsi); if (stgp->tgsi.tokens) { st_free_tokens((void *) stgp->tgsi.tokens); @@ -151,6 +158,9 @@ st_delete_program(struct gl_context *ctx, struct gl_program *prog) st_release_fp_variants(st, stfp); + if (stfp->glsl_to_tgsi) + free_glsl_to_tgsi_visitor(stfp->glsl_to_tgsi); + if (stfp->tgsi.tokens) { st_free_tokens(stfp->tgsi.tokens); stfp->tgsi.tokens = NULL; @@ -242,4 +252,8 @@ st_init_program_functions(struct dd_function_table *functions) functions->DeleteProgram = st_delete_program; functions->IsProgramNative = st_is_program_native; functions->ProgramStringNotify = st_program_string_notify; + + functions->NewShader = st_new_shader; + functions->NewShaderProgram = st_new_shader_program; + functions->LinkShader = st_link_shader; } diff --git a/src/mesa/state_tracker/st_glsl_to_tgsi.cpp b/src/mesa/state_tracker/st_glsl_to_tgsi.cpp new file mode 100644 index 00000000000..e1102503ee0 --- /dev/null +++ b/src/mesa/state_tracker/st_glsl_to_tgsi.cpp @@ -0,0 +1,4431 @@ +/* + * Copyright (C) 2005-2007 Brian Paul All Rights Reserved. + * Copyright (C) 2008 VMware, Inc. All Rights Reserved. + * Copyright © 2010 Intel Corporation + * Copyright © 2011 Bryan Cain + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/** + * \file glsl_to_tgsi.cpp + * + * Translate GLSL IR to Mesa's gl_program representation and to TGSI. + */ + +#include <stdio.h> +#include "main/compiler.h" +#include "ir.h" +#include "ir_visitor.h" +#include "ir_print_visitor.h" +#include "ir_expression_flattening.h" +#include "glsl_types.h" +#include "glsl_parser_extras.h" +#include "../glsl/program.h" +#include "ir_optimization.h" +#include "ast.h" + +extern "C" { +#include "main/mtypes.h" +#include "main/shaderapi.h" +#include "main/shaderobj.h" +#include "main/uniforms.h" +#include "program/hash_table.h" +#include "program/prog_instruction.h" +#include "program/prog_optimize.h" +#include "program/prog_print.h" +#include "program/program.h" +#include "program/prog_uniform.h" +#include "program/prog_parameter.h" +#include "program/sampler.h" + +#include "pipe/p_compiler.h" +#include "pipe/p_context.h" +#include "pipe/p_screen.h" +#include "pipe/p_shader_tokens.h" +#include "pipe/p_state.h" +#include "util/u_math.h" +#include "tgsi/tgsi_ureg.h" +#include "tgsi/tgsi_dump.h" +#include "st_context.h" +#include "st_program.h" +#include "st_glsl_to_tgsi.h" +#include "st_mesa_to_tgsi.h" + +#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \ + (1 << PROGRAM_ENV_PARAM) | \ + (1 << PROGRAM_STATE_VAR) | \ + (1 << PROGRAM_NAMED_PARAM) | \ + (1 << PROGRAM_CONSTANT) | \ + (1 << PROGRAM_UNIFORM)) +} + +class st_src_reg; +class st_dst_reg; + +static int swizzle_for_size(int size); + +/** + * This struct is a corresponding struct to Mesa prog_src_register, with + * wider fields. + */ +class st_src_reg { +public: + st_src_reg(gl_register_file file, int index, const glsl_type *type) + { + this->file = file; + this->index = index; + if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) + this->swizzle = swizzle_for_size(type->vector_elements); + else + this->swizzle = SWIZZLE_XYZW; + this->negate = 0; + this->reladdr = NULL; + } + + st_src_reg() + { + this->file = PROGRAM_UNDEFINED; + this->index = 0; + this->swizzle = 0; + this->negate = 0; + this->reladdr = NULL; + } + + explicit st_src_reg(st_dst_reg reg); + + gl_register_file file; /**< PROGRAM_* from Mesa */ + int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */ + GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */ + int negate; /**< NEGATE_XYZW mask from mesa */ + /** Register index should be offset by the integer in this reg. */ + st_src_reg *reladdr; +}; + +class st_dst_reg { +public: + st_dst_reg(gl_register_file file, int writemask) + { + this->file = file; + this->index = 0; + this->writemask = writemask; + this->cond_mask = COND_TR; + this->reladdr = NULL; + } + + st_dst_reg() + { + this->file = PROGRAM_UNDEFINED; + this->index = 0; + this->writemask = 0; + this->cond_mask = COND_TR; + this->reladdr = NULL; + } + + explicit st_dst_reg(st_src_reg reg); + + gl_register_file file; /**< PROGRAM_* from Mesa */ + int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */ + int writemask; /**< Bitfield of WRITEMASK_[XYZW] */ + GLuint cond_mask:4; + /** Register index should be offset by the integer in this reg. */ + st_src_reg *reladdr; +}; + +st_src_reg::st_src_reg(st_dst_reg reg) +{ + this->file = reg.file; + this->index = reg.index; + this->swizzle = SWIZZLE_XYZW; + this->negate = 0; + this->reladdr = NULL; +} + +st_dst_reg::st_dst_reg(st_src_reg reg) +{ + this->file = reg.file; + this->index = reg.index; + this->writemask = WRITEMASK_XYZW; + this->cond_mask = COND_TR; + this->reladdr = reg.reladdr; +} + +class glsl_to_tgsi_instruction : public exec_node { +public: + /* Callers of this ralloc-based new need not call delete. It's + * easier to just ralloc_free 'ctx' (or any of its ancestors). */ + static void* operator new(size_t size, void *ctx) + { + void *node; + + node = rzalloc_size(ctx, size); + assert(node != NULL); + + return node; + } + + enum prog_opcode op; + st_dst_reg dst; + st_src_reg src[3]; + /** Pointer to the ir source this tree came from for debugging */ + ir_instruction *ir; + GLboolean cond_update; + bool saturate; + int sampler; /**< sampler index */ + int tex_target; /**< One of TEXTURE_*_INDEX */ + GLboolean tex_shadow; + + class function_entry *function; /* Set on OPCODE_CAL or OPCODE_BGNSUB */ +}; + +class variable_storage : public exec_node { +public: + variable_storage(ir_variable *var, gl_register_file file, int index) + : file(file), index(index), var(var) + { + /* empty */ + } + + gl_register_file file; + int index; + ir_variable *var; /* variable that maps to this, if any */ +}; + +class function_entry : public exec_node { +public: + ir_function_signature *sig; + + /** + * identifier of this function signature used by the program. + * + * At the point that Mesa instructions for function calls are + * generated, we don't know the address of the first instruction of + * the function body. So we make the BranchTarget that is called a + * small integer and rewrite them during set_branchtargets(). + */ + int sig_id; + + /** + * Pointer to first instruction of the function body. + * + * Set during function body emits after main() is processed. + */ + glsl_to_tgsi_instruction *bgn_inst; + + /** + * Index of the first instruction of the function body in actual + * Mesa IR. + * + * Set after convertion from glsl_to_tgsi_instruction to prog_instruction. + */ + int inst; + + /** Storage for the return value. */ + st_src_reg return_reg; +}; + +class glsl_to_tgsi_visitor : public ir_visitor { +public: + glsl_to_tgsi_visitor(); + ~glsl_to_tgsi_visitor(); + + function_entry *current_function; + + struct gl_context *ctx; + struct gl_program *prog; + struct gl_shader_program *shader_program; + struct gl_shader_compiler_options *options; + + int next_temp; + + int num_address_regs; + bool indirect_addr_temps; + bool indirect_addr_consts; + + variable_storage *find_variable_storage(ir_variable *var); + + function_entry *get_function_signature(ir_function_signature *sig); + + st_src_reg get_temp(const glsl_type *type); + void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr); + + st_src_reg st_src_reg_for_float(float val); + + /** + * \name Visit methods + * + * As typical for the visitor pattern, there must be one \c visit method for + * each concrete subclass of \c ir_instruction. Virtual base classes within + * the hierarchy should not have \c visit methods. + */ + /*@{*/ + virtual void visit(ir_variable *); + virtual void visit(ir_loop *); + virtual void visit(ir_loop_jump *); + virtual void visit(ir_function_signature *); + virtual void visit(ir_function *); + virtual void visit(ir_expression *); + virtual void visit(ir_swizzle *); + virtual void visit(ir_dereference_variable *); + virtual void visit(ir_dereference_array *); + virtual void visit(ir_dereference_record *); + virtual void visit(ir_assignment *); + virtual void visit(ir_constant *); + virtual void visit(ir_call *); + virtual void visit(ir_return *); + virtual void visit(ir_discard *); + virtual void visit(ir_texture *); + virtual void visit(ir_if *); + /*@}*/ + + st_src_reg result; + + /** List of variable_storage */ + exec_list variables; + + /** List of function_entry */ + exec_list function_signatures; + int next_signature_id; + + /** List of glsl_to_tgsi_instruction */ + exec_list instructions; + + glsl_to_tgsi_instruction *emit(ir_instruction *ir, enum prog_opcode op); + + glsl_to_tgsi_instruction *emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0); + + glsl_to_tgsi_instruction *emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0, st_src_reg src1); + + glsl_to_tgsi_instruction *emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, + st_src_reg src0, st_src_reg src1, st_src_reg src2); + + /** + * Emit the correct dot-product instruction for the type of arguments + */ + void emit_dp(ir_instruction *ir, + st_dst_reg dst, + st_src_reg src0, + st_src_reg src1, + unsigned elements); + + void emit_scalar(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0); + + void emit_scalar(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0, st_src_reg src1); + + void emit_scs(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, const st_src_reg &src); + + GLboolean try_emit_mad(ir_expression *ir, + int mul_operand); + GLboolean try_emit_sat(ir_expression *ir); + + void emit_swz(ir_expression *ir); + + bool process_move_condition(ir_rvalue *ir); + + void rename_temp_register(int index, int new_index); + int get_first_temp_read(int index); + int get_first_temp_write(int index); + int get_last_temp_read(int index); + int get_last_temp_write(int index); + + void copy_propagate(void); + void eliminate_dead_code(void); + void merge_registers(void); + void renumber_registers(void); + + void *mem_ctx; +}; + +static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, NULL); + +static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP); + +static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X); + +static void +fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3); + +static void +fail_link(struct gl_shader_program *prog, const char *fmt, ...) +{ + va_list args; + va_start(args, fmt); + ralloc_vasprintf_append(&prog->InfoLog, fmt, args); + va_end(args); + + prog->LinkStatus = GL_FALSE; +} + +static int +swizzle_for_size(int size) +{ + int size_swizzles[4] = { + MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X), + MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y), + MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z), + MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W), + }; + + assert((size >= 1) && (size <= 4)); + return size_swizzles[size - 1]; +} + +glsl_to_tgsi_instruction * +glsl_to_tgsi_visitor::emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, + st_src_reg src0, st_src_reg src1, st_src_reg src2) +{ + glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction(); + int num_reladdr = 0, i; + + /* If we have to do relative addressing, we want to load the ARL + * reg directly for one of the regs, and preload the other reladdr + * sources into temps. + */ + num_reladdr += dst.reladdr != NULL; + num_reladdr += src0.reladdr != NULL; + num_reladdr += src1.reladdr != NULL; + num_reladdr += src2.reladdr != NULL; + + reladdr_to_temp(ir, &src2, &num_reladdr); + reladdr_to_temp(ir, &src1, &num_reladdr); + reladdr_to_temp(ir, &src0, &num_reladdr); + + if (dst.reladdr) { + emit(ir, OPCODE_ARL, address_reg, *dst.reladdr); + num_reladdr--; + } + assert(num_reladdr == 0); + + inst->op = op; + inst->dst = dst; + inst->src[0] = src0; + inst->src[1] = src1; + inst->src[2] = src2; + inst->ir = ir; + + inst->function = NULL; + + if (op == OPCODE_ARL) + this->num_address_regs = 1; + + /* Update indirect addressing status used by TGSI */ + if (dst.reladdr) { + switch(dst.file) { + case PROGRAM_TEMPORARY: + this->indirect_addr_temps = true; + break; + case PROGRAM_LOCAL_PARAM: + case PROGRAM_ENV_PARAM: + case PROGRAM_STATE_VAR: + case PROGRAM_NAMED_PARAM: + case PROGRAM_CONSTANT: + case PROGRAM_UNIFORM: + this->indirect_addr_consts = true; + break; + default: + break; + } + } + else { + for (i=0; i<3; i++) { + if(inst->src[i].reladdr) { + switch(dst.file) { + case PROGRAM_TEMPORARY: + this->indirect_addr_temps = true; + break; + case PROGRAM_LOCAL_PARAM: + case PROGRAM_ENV_PARAM: + case PROGRAM_STATE_VAR: + case PROGRAM_NAMED_PARAM: + case PROGRAM_CONSTANT: + case PROGRAM_UNIFORM: + this->indirect_addr_consts = true; + break; + default: + break; + } + } + } + } + + this->instructions.push_tail(inst); + + return inst; +} + + +glsl_to_tgsi_instruction * +glsl_to_tgsi_visitor::emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0, st_src_reg src1) +{ + return emit(ir, op, dst, src0, src1, undef_src); +} + +glsl_to_tgsi_instruction * +glsl_to_tgsi_visitor::emit(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0) +{ + assert(dst.writemask != 0); + return emit(ir, op, dst, src0, undef_src, undef_src); +} + +glsl_to_tgsi_instruction * +glsl_to_tgsi_visitor::emit(ir_instruction *ir, enum prog_opcode op) +{ + return emit(ir, op, undef_dst, undef_src, undef_src, undef_src); +} + +void +glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir, + st_dst_reg dst, st_src_reg src0, st_src_reg src1, + unsigned elements) +{ + static const gl_inst_opcode dot_opcodes[] = { + OPCODE_DP2, OPCODE_DP3, OPCODE_DP4 + }; + + emit(ir, dot_opcodes[elements - 2], dst, src0, src1); +} + +/** + * Emits Mesa scalar opcodes to produce unique answers across channels. + * + * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X + * channel determines the result across all channels. So to do a vec4 + * of this operation, we want to emit a scalar per source channel used + * to produce dest channels. + */ +void +glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, + st_src_reg orig_src0, st_src_reg orig_src1) +{ + int i, j; + int done_mask = ~dst.writemask; + + /* Mesa RCP is a scalar operation splatting results to all channels, + * like ARB_fp/vp. So emit as many RCPs as necessary to cover our + * dst channels. + */ + for (i = 0; i < 4; i++) { + GLuint this_mask = (1 << i); + glsl_to_tgsi_instruction *inst; + st_src_reg src0 = orig_src0; + st_src_reg src1 = orig_src1; + + if (done_mask & this_mask) + continue; + + GLuint src0_swiz = GET_SWZ(src0.swizzle, i); + GLuint src1_swiz = GET_SWZ(src1.swizzle, i); + for (j = i + 1; j < 4; j++) { + /* If there is another enabled component in the destination that is + * derived from the same inputs, generate its value on this pass as + * well. + */ + if (!(done_mask & (1 << j)) && + GET_SWZ(src0.swizzle, j) == src0_swiz && + GET_SWZ(src1.swizzle, j) == src1_swiz) { + this_mask |= (1 << j); + } + } + src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz, + src0_swiz, src0_swiz); + src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz, + src1_swiz, src1_swiz); + + inst = emit(ir, op, dst, src0, src1); + inst->dst.writemask = this_mask; + done_mask |= this_mask; + } +} + +void +glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, st_src_reg src0) +{ + st_src_reg undef = undef_src; + + undef.swizzle = SWIZZLE_XXXX; + + emit_scalar(ir, op, dst, src0, undef); +} + +/** + * Emit an OPCODE_SCS instruction + * + * The \c SCS opcode functions a bit differently than the other Mesa (or + * ARB_fragment_program) opcodes. Instead of splatting its result across all + * four components of the destination, it writes one value to the \c x + * component and another value to the \c y component. + * + * \param ir IR instruction being processed + * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which + * value is desired. + * \param dst Destination register + * \param src Source register + */ +void +glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op, + st_dst_reg dst, + const st_src_reg &src) +{ + /* Vertex programs cannot use the SCS opcode. + */ + if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) { + emit_scalar(ir, op, dst, src); + return; + } + + const unsigned component = (op == OPCODE_SIN) ? 0 : 1; + const unsigned scs_mask = (1U << component); + int done_mask = ~dst.writemask; + st_src_reg tmp; + + assert(op == OPCODE_SIN || op == OPCODE_COS); + + /* If there are compnents in the destination that differ from the component + * that will be written by the SCS instrution, we'll need a temporary. + */ + if (scs_mask != unsigned(dst.writemask)) { + tmp = get_temp(glsl_type::vec4_type); + } + + for (unsigned i = 0; i < 4; i++) { + unsigned this_mask = (1U << i); + st_src_reg src0 = src; + + if ((done_mask & this_mask) != 0) + continue; + + /* The source swizzle specified which component of the source generates + * sine / cosine for the current component in the destination. The SCS + * instruction requires that this value be swizzle to the X component. + * Replace the current swizzle with a swizzle that puts the source in + * the X component. + */ + unsigned src0_swiz = GET_SWZ(src.swizzle, i); + + src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz, + src0_swiz, src0_swiz); + for (unsigned j = i + 1; j < 4; j++) { + /* If there is another enabled component in the destination that is + * derived from the same inputs, generate its value on this pass as + * well. + */ + if (!(done_mask & (1 << j)) && + GET_SWZ(src0.swizzle, j) == src0_swiz) { + this_mask |= (1 << j); + } + } + + if (this_mask != scs_mask) { + glsl_to_tgsi_instruction *inst; + st_dst_reg tmp_dst = st_dst_reg(tmp); + + /* Emit the SCS instruction. + */ + inst = emit(ir, OPCODE_SCS, tmp_dst, src0); + inst->dst.writemask = scs_mask; + + /* Move the result of the SCS instruction to the desired location in + * the destination. + */ + tmp.swizzle = MAKE_SWIZZLE4(component, component, + component, component); + inst = emit(ir, OPCODE_SCS, dst, tmp); + inst->dst.writemask = this_mask; + } else { + /* Emit the SCS instruction to write directly to the destination. + */ + glsl_to_tgsi_instruction *inst = emit(ir, OPCODE_SCS, dst, src0); + inst->dst.writemask = scs_mask; + } + + done_mask |= this_mask; + } +} + +struct st_src_reg +glsl_to_tgsi_visitor::st_src_reg_for_float(float val) +{ + st_src_reg src(PROGRAM_CONSTANT, -1, NULL); + + src.index = _mesa_add_unnamed_constant(this->prog->Parameters, + &val, 1, &src.swizzle); + + return src; +} + +static int +type_size(const struct glsl_type *type) +{ + unsigned int i; + int size; + + switch (type->base_type) { + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + case GLSL_TYPE_FLOAT: + case GLSL_TYPE_BOOL: + if (type->is_matrix()) { + return type->matrix_columns; + } else { + /* Regardless of size of vector, it gets a vec4. This is bad + * packing for things like floats, but otherwise arrays become a + * mess. Hopefully a later pass over the code can pack scalars + * down if appropriate. + */ + return 1; + } + case GLSL_TYPE_ARRAY: + assert(type->length > 0); + return type_size(type->fields.array) * type->length; + case GLSL_TYPE_STRUCT: + size = 0; + for (i = 0; i < type->length; i++) { + size += type_size(type->fields.structure[i].type); + } + return size; + case GLSL_TYPE_SAMPLER: + /* Samplers take up one slot in UNIFORMS[], but they're baked in + * at link time. + */ + return 1; + default: + assert(0); + return 0; + } +} + +/** + * In the initial pass of codegen, we assign temporary numbers to + * intermediate results. (not SSA -- variable assignments will reuse + * storage). Actual register allocation for the Mesa VM occurs in a + * pass over the Mesa IR later. + */ +st_src_reg +glsl_to_tgsi_visitor::get_temp(const glsl_type *type) +{ + st_src_reg src; + int swizzle[4]; + int i; + + src.file = PROGRAM_TEMPORARY; + src.index = next_temp; + src.reladdr = NULL; + next_temp += type_size(type); + + if (type->is_array() || type->is_record()) { + src.swizzle = SWIZZLE_NOOP; + } else { + for (i = 0; i < type->vector_elements; i++) + swizzle[i] = i; + for (; i < 4; i++) + swizzle[i] = type->vector_elements - 1; + src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], + swizzle[2], swizzle[3]); + } + src.negate = 0; + + return src; +} + +variable_storage * +glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var) +{ + + variable_storage *entry; + + foreach_iter(exec_list_iterator, iter, this->variables) { + entry = (variable_storage *)iter.get(); + + if (entry->var == var) + return entry; + } + + return NULL; +} + +void +glsl_to_tgsi_visitor::visit(ir_variable *ir) +{ + if (strcmp(ir->name, "gl_FragCoord") == 0) { + struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; + + fp->OriginUpperLeft = ir->origin_upper_left; + fp->PixelCenterInteger = ir->pixel_center_integer; + + } else if (strcmp(ir->name, "gl_FragDepth") == 0) { + struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; + switch (ir->depth_layout) { + case ir_depth_layout_none: + fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; + break; + case ir_depth_layout_any: + fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; + break; + case ir_depth_layout_greater: + fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; + break; + case ir_depth_layout_less: + fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; + break; + case ir_depth_layout_unchanged: + fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; + break; + default: + assert(0); + break; + } + } + + if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) { + unsigned int i; + const ir_state_slot *const slots = ir->state_slots; + assert(ir->state_slots != NULL); + + /* Check if this statevar's setup in the STATE file exactly + * matches how we'll want to reference it as a + * struct/array/whatever. If not, then we need to move it into + * temporary storage and hope that it'll get copy-propagated + * out. + */ + for (i = 0; i < ir->num_state_slots; i++) { + if (slots[i].swizzle != SWIZZLE_XYZW) { + break; + } + } + + struct variable_storage *storage; + st_dst_reg dst; + if (i == ir->num_state_slots) { + /* We'll set the index later. */ + storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1); + this->variables.push_tail(storage); + + dst = undef_dst; + } else { + /* The variable_storage constructor allocates slots based on the size + * of the type. However, this had better match the number of state + * elements that we're going to copy into the new temporary. + */ + assert((int) ir->num_state_slots == type_size(ir->type)); + + storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY, + this->next_temp); + this->variables.push_tail(storage); + this->next_temp += type_size(ir->type); + + dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index, NULL)); + } + + + for (unsigned int i = 0; i < ir->num_state_slots; i++) { + int index = _mesa_add_state_reference(this->prog->Parameters, + (gl_state_index *)slots[i].tokens); + + if (storage->file == PROGRAM_STATE_VAR) { + if (storage->index == -1) { + storage->index = index; + } else { + assert(index == storage->index + (int)i); + } + } else { + st_src_reg src(PROGRAM_STATE_VAR, index, NULL); + src.swizzle = slots[i].swizzle; + emit(ir, OPCODE_MOV, dst, src); + /* even a float takes up a whole vec4 reg in a struct/array. */ + dst.index++; + } + } + + if (storage->file == PROGRAM_TEMPORARY && + dst.index != storage->index + (int) ir->num_state_slots) { + fail_link(this->shader_program, + "failed to load builtin uniform `%s' (%d/%d regs loaded)\n", + ir->name, dst.index - storage->index, + type_size(ir->type)); + } + } +} + +void +glsl_to_tgsi_visitor::visit(ir_loop *ir) +{ + ir_dereference_variable *counter = NULL; + + if (ir->counter != NULL) + counter = new(ir) ir_dereference_variable(ir->counter); + + if (ir->from != NULL) { + assert(ir->counter != NULL); + + ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL); + + a->accept(this); + delete a; + } + + emit(NULL, OPCODE_BGNLOOP); + + if (ir->to) { + ir_expression *e = + new(ir) ir_expression(ir->cmp, glsl_type::bool_type, + counter, ir->to); + ir_if *if_stmt = new(ir) ir_if(e); + + ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break); + + if_stmt->then_instructions.push_tail(brk); + + if_stmt->accept(this); + + delete if_stmt; + delete e; + delete brk; + } + + visit_exec_list(&ir->body_instructions, this); + + if (ir->increment) { + ir_expression *e = + new(ir) ir_expression(ir_binop_add, counter->type, + counter, ir->increment); + + ir_assignment *a = new(ir) ir_assignment(counter, e, NULL); + + a->accept(this); + delete a; + delete e; + } + + emit(NULL, OPCODE_ENDLOOP); +} + +void +glsl_to_tgsi_visitor::visit(ir_loop_jump *ir) +{ + switch (ir->mode) { + case ir_loop_jump::jump_break: + emit(NULL, OPCODE_BRK); + break; + case ir_loop_jump::jump_continue: + emit(NULL, OPCODE_CONT); + break; + } +} + + +void +glsl_to_tgsi_visitor::visit(ir_function_signature *ir) +{ + assert(0); + (void)ir; +} + +void +glsl_to_tgsi_visitor::visit(ir_function *ir) +{ + /* Ignore function bodies other than main() -- we shouldn't see calls to + * them since they should all be inlined before we get to glsl_to_tgsi. + */ + if (strcmp(ir->name, "main") == 0) { + const ir_function_signature *sig; + exec_list empty; + + sig = ir->matching_signature(&empty); + + assert(sig); + + foreach_iter(exec_list_iterator, iter, sig->body) { + ir_instruction *ir = (ir_instruction *)iter.get(); + + ir->accept(this); + } + } +} + +GLboolean +glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand) +{ + int nonmul_operand = 1 - mul_operand; + st_src_reg a, b, c; + + ir_expression *expr = ir->operands[mul_operand]->as_expression(); + if (!expr || expr->operation != ir_binop_mul) + return false; + + expr->operands[0]->accept(this); + a = this->result; + expr->operands[1]->accept(this); + b = this->result; + ir->operands[nonmul_operand]->accept(this); + c = this->result; + + this->result = get_temp(ir->type); + emit(ir, OPCODE_MAD, st_dst_reg(this->result), a, b, c); + + return true; +} + +GLboolean +glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir) +{ + /* Saturates were only introduced to vertex programs in + * NV_vertex_program3, so don't give them to drivers in the VP. + */ + if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) + return false; + + ir_rvalue *sat_src = ir->as_rvalue_to_saturate(); + if (!sat_src) + return false; + + sat_src->accept(this); + st_src_reg src = this->result; + + this->result = get_temp(ir->type); + glsl_to_tgsi_instruction *inst; + inst = emit(ir, OPCODE_MOV, st_dst_reg(this->result), src); + inst->saturate = true; + + return true; +} + +void +glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir, + st_src_reg *reg, int *num_reladdr) +{ + if (!reg->reladdr) + return; + + emit(ir, OPCODE_ARL, address_reg, *reg->reladdr); + + if (*num_reladdr != 1) { + st_src_reg temp = get_temp(glsl_type::vec4_type); + + emit(ir, OPCODE_MOV, st_dst_reg(temp), *reg); + *reg = temp; + } + + (*num_reladdr)--; +} + +void +glsl_to_tgsi_visitor::emit_swz(ir_expression *ir) +{ + /* Assume that the vector operator is in a form compatible with OPCODE_SWZ. + * This means that each of the operands is either an immediate value of -1, + * 0, or 1, or is a component from one source register (possibly with + * negation). + */ + uint8_t components[4] = { 0 }; + bool negate[4] = { false }; + ir_variable *var = NULL; + + for (unsigned i = 0; i < ir->type->vector_elements; i++) { + ir_rvalue *op = ir->operands[i]; + + assert(op->type->is_scalar()); + + while (op != NULL) { + switch (op->ir_type) { + case ir_type_constant: { + + assert(op->type->is_scalar()); + + const ir_constant *const c = op->as_constant(); + if (c->is_one()) { + components[i] = SWIZZLE_ONE; + } else if (c->is_zero()) { + components[i] = SWIZZLE_ZERO; + } else if (c->is_negative_one()) { + components[i] = SWIZZLE_ONE; + negate[i] = true; + } else { + assert(!"SWZ constant must be 0.0 or 1.0."); + } + + op = NULL; + break; + } + + case ir_type_dereference_variable: { + ir_dereference_variable *const deref = + (ir_dereference_variable *) op; + + assert((var == NULL) || (deref->var == var)); + components[i] = SWIZZLE_X; + var = deref->var; + op = NULL; + break; + } + + case ir_type_expression: { + ir_expression *const expr = (ir_expression *) op; + + assert(expr->operation == ir_unop_neg); + negate[i] = true; + + op = expr->operands[0]; + break; + } + + case ir_type_swizzle: { + ir_swizzle *const swiz = (ir_swizzle *) op; + + components[i] = swiz->mask.x; + op = swiz->val; + break; + } + + default: + assert(!"Should not get here."); + return; + } + } + } + + assert(var != NULL); + + ir_dereference_variable *const deref = + new(mem_ctx) ir_dereference_variable(var); + + this->result.file = PROGRAM_UNDEFINED; + deref->accept(this); + if (this->result.file == PROGRAM_UNDEFINED) { + ir_print_visitor v; + printf("Failed to get tree for expression operand:\n"); + deref->accept(&v); + exit(1); + } + + st_src_reg src; + + src = this->result; + src.swizzle = MAKE_SWIZZLE4(components[0], + components[1], + components[2], + components[3]); + src.negate = ((unsigned(negate[0]) << 0) + | (unsigned(negate[1]) << 1) + | (unsigned(negate[2]) << 2) + | (unsigned(negate[3]) << 3)); + + /* Storage for our result. Ideally for an assignment we'd be using the + * actual storage for the result here, instead. + */ + const st_src_reg result_src = get_temp(ir->type); + st_dst_reg result_dst = st_dst_reg(result_src); + + /* Limit writes to the channels that will be used by result_src later. + * This does limit this temp's use as a temporary for multi-instruction + * sequences. + */ + result_dst.writemask = (1 << ir->type->vector_elements) - 1; + + emit(ir, OPCODE_SWZ, result_dst, src); + this->result = result_src; +} + +void +glsl_to_tgsi_visitor::visit(ir_expression *ir) +{ + unsigned int operand; + st_src_reg op[Elements(ir->operands)]; + st_src_reg result_src; + st_dst_reg result_dst; + + /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c) + */ + if (ir->operation == ir_binop_add) { + if (try_emit_mad(ir, 1)) + return; + if (try_emit_mad(ir, 0)) + return; + } + if (try_emit_sat(ir)) + return; + + if (ir->operation == ir_quadop_vector) { + this->emit_swz(ir); + return; + } + + for (operand = 0; operand < ir->get_num_operands(); operand++) { + this->result.file = PROGRAM_UNDEFINED; + ir->operands[operand]->accept(this); + if (this->result.file == PROGRAM_UNDEFINED) { + ir_print_visitor v; + printf("Failed to get tree for expression operand:\n"); + ir->operands[operand]->accept(&v); + exit(1); + } + op[operand] = this->result; + + /* Matrix expression operands should have been broken down to vector + * operations already. + */ + assert(!ir->operands[operand]->type->is_matrix()); + } + + int vector_elements = ir->operands[0]->type->vector_elements; + if (ir->operands[1]) { + vector_elements = MAX2(vector_elements, + ir->operands[1]->type->vector_elements); + } + + this->result.file = PROGRAM_UNDEFINED; + + /* Storage for our result. Ideally for an assignment we'd be using + * the actual storage for the result here, instead. + */ + result_src = get_temp(ir->type); + /* convenience for the emit functions below. */ + result_dst = st_dst_reg(result_src); + /* Limit writes to the channels that will be used by result_src later. + * This does limit this temp's use as a temporary for multi-instruction + * sequences. + */ + result_dst.writemask = (1 << ir->type->vector_elements) - 1; + + switch (ir->operation) { + case ir_unop_logic_not: + emit(ir, OPCODE_SEQ, result_dst, op[0], st_src_reg_for_float(0.0)); + break; + case ir_unop_neg: + op[0].negate = ~op[0].negate; + result_src = op[0]; + break; + case ir_unop_abs: + emit(ir, OPCODE_ABS, result_dst, op[0]); + break; + case ir_unop_sign: + emit(ir, OPCODE_SSG, result_dst, op[0]); + break; + case ir_unop_rcp: + emit_scalar(ir, OPCODE_RCP, result_dst, op[0]); + break; + + case ir_unop_exp2: + emit_scalar(ir, OPCODE_EX2, result_dst, op[0]); + break; + case ir_unop_exp: + case ir_unop_log: + assert(!"not reached: should be handled by ir_explog_to_explog2"); + break; + case ir_unop_log2: + emit_scalar(ir, OPCODE_LG2, result_dst, op[0]); + break; + case ir_unop_sin: + emit_scalar(ir, OPCODE_SIN, result_dst, op[0]); + break; + case ir_unop_cos: + emit_scalar(ir, OPCODE_COS, result_dst, op[0]); + break; + case ir_unop_sin_reduced: + emit_scs(ir, OPCODE_SIN, result_dst, op[0]); + break; + case ir_unop_cos_reduced: + emit_scs(ir, OPCODE_COS, result_dst, op[0]); + break; + + case ir_unop_dFdx: + emit(ir, OPCODE_DDX, result_dst, op[0]); + break; + case ir_unop_dFdy: + emit(ir, OPCODE_DDY, result_dst, op[0]); + break; + + case ir_unop_noise: { + const enum prog_opcode opcode = + prog_opcode(OPCODE_NOISE1 + + (ir->operands[0]->type->vector_elements) - 1); + assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4)); + + emit(ir, opcode, result_dst, op[0]); + break; + } + + case ir_binop_add: + emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); + break; + case ir_binop_sub: + emit(ir, OPCODE_SUB, result_dst, op[0], op[1]); + break; + + case ir_binop_mul: + emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); + break; + case ir_binop_div: + assert(!"not reached: should be handled by ir_div_to_mul_rcp"); + case ir_binop_mod: + assert(!"ir_binop_mod should have been converted to b * fract(a/b)"); + break; + + case ir_binop_less: + emit(ir, OPCODE_SLT, result_dst, op[0], op[1]); + break; + case ir_binop_greater: + emit(ir, OPCODE_SGT, result_dst, op[0], op[1]); + break; + case ir_binop_lequal: + emit(ir, OPCODE_SLE, result_dst, op[0], op[1]); + break; + case ir_binop_gequal: + emit(ir, OPCODE_SGE, result_dst, op[0], op[1]); + break; + case ir_binop_equal: + emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]); + break; + case ir_binop_nequal: + emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); + break; + case ir_binop_all_equal: + /* "==" operator producing a scalar boolean. */ + if (ir->operands[0]->type->is_vector() || + ir->operands[1]->type->is_vector()) { + st_src_reg temp = get_temp(glsl_type::vec4_type); + emit(ir, OPCODE_SNE, st_dst_reg(temp), op[0], op[1]); + emit_dp(ir, result_dst, temp, temp, vector_elements); + emit(ir, OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0)); + } else { + emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]); + } + break; + case ir_binop_any_nequal: + /* "!=" operator producing a scalar boolean. */ + if (ir->operands[0]->type->is_vector() || + ir->operands[1]->type->is_vector()) { + st_src_reg temp = get_temp(glsl_type::vec4_type); + emit(ir, OPCODE_SNE, st_dst_reg(temp), op[0], op[1]); + emit_dp(ir, result_dst, temp, temp, vector_elements); + emit(ir, OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0)); + } else { + emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); + } + break; + + case ir_unop_any: + assert(ir->operands[0]->type->is_vector()); + emit_dp(ir, result_dst, op[0], op[0], + ir->operands[0]->type->vector_elements); + emit(ir, OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0)); + break; + + case ir_binop_logic_xor: + emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); + break; + + case ir_binop_logic_or: + /* This could be a saturated add and skip the SNE. */ + emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); + emit(ir, OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0)); + break; + + case ir_binop_logic_and: + /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */ + emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); + break; + + case ir_binop_dot: + assert(ir->operands[0]->type->is_vector()); + assert(ir->operands[0]->type == ir->operands[1]->type); + emit_dp(ir, result_dst, op[0], op[1], + ir->operands[0]->type->vector_elements); + break; + + case ir_unop_sqrt: + /* sqrt(x) = x * rsq(x). */ + emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); + emit(ir, OPCODE_MUL, result_dst, result_src, op[0]); + /* For incoming channels <= 0, set the result to 0. */ + op[0].negate = ~op[0].negate; + emit(ir, OPCODE_CMP, result_dst, + op[0], result_src, st_src_reg_for_float(0.0)); + break; + case ir_unop_rsq: + emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); + break; + case ir_unop_i2f: + case ir_unop_b2f: + case ir_unop_b2i: + /* Mesa IR lacks types, ints are stored as truncated floats. */ + result_src = op[0]; + break; + case ir_unop_f2i: + emit(ir, OPCODE_TRUNC, result_dst, op[0]); + break; + case ir_unop_f2b: + case ir_unop_i2b: + emit(ir, OPCODE_SNE, result_dst, + op[0], st_src_reg_for_float(0.0)); + break; + case ir_unop_trunc: + emit(ir, OPCODE_TRUNC, result_dst, op[0]); + break; + case ir_unop_ceil: + op[0].negate = ~op[0].negate; + emit(ir, OPCODE_FLR, result_dst, op[0]); + result_src.negate = ~result_src.negate; + break; + case ir_unop_floor: + emit(ir, OPCODE_FLR, result_dst, op[0]); + break; + case ir_unop_fract: + emit(ir, OPCODE_FRC, result_dst, op[0]); + break; + + case ir_binop_min: + emit(ir, OPCODE_MIN, result_dst, op[0], op[1]); + break; + case ir_binop_max: + emit(ir, OPCODE_MAX, result_dst, op[0], op[1]); + break; + case ir_binop_pow: + emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]); + break; + + case ir_unop_bit_not: + case ir_unop_u2f: + case ir_binop_lshift: + case ir_binop_rshift: + case ir_binop_bit_and: + case ir_binop_bit_xor: + case ir_binop_bit_or: + case ir_unop_round_even: + assert(!"GLSL 1.30 features unsupported"); + break; + + case ir_quadop_vector: + /* This operation should have already been handled. + */ + assert(!"Should not get here."); + break; + } + + this->result = result_src; +} + + +void +glsl_to_tgsi_visitor::visit(ir_swizzle *ir) +{ + st_src_reg src; + int i; + int swizzle[4]; + + /* Note that this is only swizzles in expressions, not those on the left + * hand side of an assignment, which do write masking. See ir_assignment + * for that. + */ + + ir->val->accept(this); + src = this->result; + assert(src.file != PROGRAM_UNDEFINED); + + for (i = 0; i < 4; i++) { + if (i < ir->type->vector_elements) { + switch (i) { + case 0: + swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x); + break; + case 1: + swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y); + break; + case 2: + swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z); + break; + case 3: + swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w); + break; + } + } else { + /* If the type is smaller than a vec4, replicate the last + * channel out. + */ + swizzle[i] = swizzle[ir->type->vector_elements - 1]; + } + } + + src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); + + this->result = src; +} + +void +glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir) +{ + variable_storage *entry = find_variable_storage(ir->var); + ir_variable *var = ir->var; + + if (!entry) { + switch (var->mode) { + case ir_var_uniform: + entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM, + var->location); + this->variables.push_tail(entry); + break; + case ir_var_in: + case ir_var_inout: + /* The linker assigns locations for varyings and attributes, + * including deprecated builtins (like gl_Color), user-assign + * generic attributes (glBindVertexLocation), and + * user-defined varyings. + * + * FINISHME: We would hit this path for function arguments. Fix! + */ + assert(var->location != -1); + entry = new(mem_ctx) variable_storage(var, + PROGRAM_INPUT, + var->location); + if (this->prog->Target == GL_VERTEX_PROGRAM_ARB && + var->location >= VERT_ATTRIB_GENERIC0) { + _mesa_add_attribute(this->prog->Attributes, + var->name, + _mesa_sizeof_glsl_type(var->type->gl_type), + var->type->gl_type, + var->location - VERT_ATTRIB_GENERIC0); + } + break; + case ir_var_out: + assert(var->location != -1); + entry = new(mem_ctx) variable_storage(var, + PROGRAM_OUTPUT, + var->location); + break; + case ir_var_system_value: + entry = new(mem_ctx) variable_storage(var, + PROGRAM_SYSTEM_VALUE, + var->location); + break; + case ir_var_auto: + case ir_var_temporary: + entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY, + this->next_temp); + this->variables.push_tail(entry); + + next_temp += type_size(var->type); + break; + } + + if (!entry) { + printf("Failed to make storage for %s\n", var->name); + exit(1); + } + } + + this->result = st_src_reg(entry->file, entry->index, var->type); +} + +void +glsl_to_tgsi_visitor::visit(ir_dereference_array *ir) +{ + ir_constant *index; + st_src_reg src; + int element_size = type_size(ir->type); + + index = ir->array_index->constant_expression_value(); + + ir->array->accept(this); + src = this->result; + + if (index) { + src.index += index->value.i[0] * element_size; + } else { + st_src_reg array_base = this->result; + /* Variable index array dereference. It eats the "vec4" of the + * base of the array and an index that offsets the Mesa register + * index. + */ + ir->array_index->accept(this); + + st_src_reg index_reg; + + if (element_size == 1) { + index_reg = this->result; + } else { + index_reg = get_temp(glsl_type::float_type); + + emit(ir, OPCODE_MUL, st_dst_reg(index_reg), + this->result, st_src_reg_for_float(element_size)); + } + + src.reladdr = ralloc(mem_ctx, st_src_reg); + memcpy(src.reladdr, &index_reg, sizeof(index_reg)); + } + + /* If the type is smaller than a vec4, replicate the last channel out. */ + if (ir->type->is_scalar() || ir->type->is_vector()) + src.swizzle = swizzle_for_size(ir->type->vector_elements); + else + src.swizzle = SWIZZLE_NOOP; + + this->result = src; +} + +void +glsl_to_tgsi_visitor::visit(ir_dereference_record *ir) +{ + unsigned int i; + const glsl_type *struct_type = ir->record->type; + int offset = 0; + + ir->record->accept(this); + + for (i = 0; i < struct_type->length; i++) { + if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0) + break; + offset += type_size(struct_type->fields.structure[i].type); + } + + /* If the type is smaller than a vec4, replicate the last channel out. */ + if (ir->type->is_scalar() || ir->type->is_vector()) + this->result.swizzle = swizzle_for_size(ir->type->vector_elements); + else + this->result.swizzle = SWIZZLE_NOOP; + + this->result.index += offset; +} + +/** + * We want to be careful in assignment setup to hit the actual storage + * instead of potentially using a temporary like we might with the + * ir_dereference handler. + */ +static st_dst_reg +get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v) +{ + /* The LHS must be a dereference. If the LHS is a variable indexed array + * access of a vector, it must be separated into a series conditional moves + * before reaching this point (see ir_vec_index_to_cond_assign). + */ + assert(ir->as_dereference()); + ir_dereference_array *deref_array = ir->as_dereference_array(); + if (deref_array) { + assert(!deref_array->array->type->is_vector()); + } + + /* Use the rvalue deref handler for the most part. We'll ignore + * swizzles in it and write swizzles using writemask, though. + */ + ir->accept(v); + return st_dst_reg(v->result); +} + +/** + * Process the condition of a conditional assignment + * + * Examines the condition of a conditional assignment to generate the optimal + * first operand of a \c CMP instruction. If the condition is a relational + * operator with 0 (e.g., \c ir_binop_less), the value being compared will be + * used as the source for the \c CMP instruction. Otherwise the comparison + * is processed to a boolean result, and the boolean result is used as the + * operand to the CMP instruction. + */ +bool +glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir) +{ + ir_rvalue *src_ir = ir; + bool negate = true; + bool switch_order = false; + + ir_expression *const expr = ir->as_expression(); + if ((expr != NULL) && (expr->get_num_operands() == 2)) { + bool zero_on_left = false; + + if (expr->operands[0]->is_zero()) { + src_ir = expr->operands[1]; + zero_on_left = true; + } else if (expr->operands[1]->is_zero()) { + src_ir = expr->operands[0]; + zero_on_left = false; + } + + /* a is - 0 + - 0 + + * (a < 0) T F F ( a < 0) T F F + * (0 < a) F F T (-a < 0) F F T + * (a <= 0) T T F (-a < 0) F F T (swap order of other operands) + * (0 <= a) F T T ( a < 0) T F F (swap order of other operands) + * (a > 0) F F T (-a < 0) F F T + * (0 > a) T F F ( a < 0) T F F + * (a >= 0) F T T ( a < 0) T F F (swap order of other operands) + * (0 >= a) T T F (-a < 0) F F T (swap order of other operands) + * + * Note that exchanging the order of 0 and 'a' in the comparison simply + * means that the value of 'a' should be negated. + */ + if (src_ir != ir) { + switch (expr->operation) { + case ir_binop_less: + switch_order = false; + negate = zero_on_left; + break; + + case ir_binop_greater: + switch_order = false; + negate = !zero_on_left; + break; + + case ir_binop_lequal: + switch_order = true; + negate = !zero_on_left; + break; + + case ir_binop_gequal: + switch_order = true; + negate = zero_on_left; + break; + + default: + /* This isn't the right kind of comparison afterall, so make sure + * the whole condition is visited. + */ + src_ir = ir; + break; + } + } + } + + src_ir->accept(this); + + /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the + * condition we produced is 0.0 or 1.0. By flipping the sign, we can + * choose which value OPCODE_CMP produces without an extra instruction + * computing the condition. + */ + if (negate) + this->result.negate = ~this->result.negate; + + return switch_order; +} + +void +glsl_to_tgsi_visitor::visit(ir_assignment *ir) +{ + st_dst_reg l; + st_src_reg r; + int i; + + ir->rhs->accept(this); + r = this->result; + + l = get_assignment_lhs(ir->lhs, this); + + /* FINISHME: This should really set to the correct maximal writemask for each + * FINISHME: component written (in the loops below). This case can only + * FINISHME: occur for matrices, arrays, and structures. + */ + if (ir->write_mask == 0) { + assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector()); + l.writemask = WRITEMASK_XYZW; + } else if (ir->lhs->type->is_scalar()) { + /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the + * FINISHME: W component of fragment shader output zero, work correctly. + */ + l.writemask = WRITEMASK_XYZW; + } else { + int swizzles[4]; + int first_enabled_chan = 0; + int rhs_chan = 0; + + assert(ir->lhs->type->is_vector()); + l.writemask = ir->write_mask; + + for (int i = 0; i < 4; i++) { + if (l.writemask & (1 << i)) { + first_enabled_chan = GET_SWZ(r.swizzle, i); + break; + } + } + + /* Swizzle a small RHS vector into the channels being written. + * + * glsl ir treats write_mask as dictating how many channels are + * present on the RHS while Mesa IR treats write_mask as just + * showing which channels of the vec4 RHS get written. + */ + for (int i = 0; i < 4; i++) { + if (l.writemask & (1 << i)) + swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++); + else + swizzles[i] = first_enabled_chan; + } + r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1], + swizzles[2], swizzles[3]); + } + + assert(l.file != PROGRAM_UNDEFINED); + assert(r.file != PROGRAM_UNDEFINED); + + if (ir->condition) { + const bool switch_order = this->process_move_condition(ir->condition); + st_src_reg condition = this->result; + + for (i = 0; i < type_size(ir->lhs->type); i++) { + if (switch_order) { + emit(ir, OPCODE_CMP, l, condition, st_src_reg(l), r); + } else { + emit(ir, OPCODE_CMP, l, condition, r, st_src_reg(l)); + } + + l.index++; + r.index++; + } + } else { + for (i = 0; i < type_size(ir->lhs->type); i++) { + emit(ir, OPCODE_MOV, l, r); + l.index++; + r.index++; + } + } +} + + +void +glsl_to_tgsi_visitor::visit(ir_constant *ir) +{ + st_src_reg src; + GLfloat stack_vals[4] = { 0 }; + GLfloat *values = stack_vals; + unsigned int i; + + /* Unfortunately, 4 floats is all we can get into + * _mesa_add_unnamed_constant. So, make a temp to store an + * aggregate constant and move each constant value into it. If we + * get lucky, copy propagation will eliminate the extra moves. + */ + + if (ir->type->base_type == GLSL_TYPE_STRUCT) { + st_src_reg temp_base = get_temp(ir->type); + st_dst_reg temp = st_dst_reg(temp_base); + + foreach_iter(exec_list_iterator, iter, ir->components) { + ir_constant *field_value = (ir_constant *)iter.get(); + int size = type_size(field_value->type); + + assert(size > 0); + + field_value->accept(this); + src = this->result; + + for (i = 0; i < (unsigned int)size; i++) { + emit(ir, OPCODE_MOV, temp, src); + + src.index++; + temp.index++; + } + } + this->result = temp_base; + return; + } + + if (ir->type->is_array()) { + st_src_reg temp_base = get_temp(ir->type); + st_dst_reg temp = st_dst_reg(temp_base); + int size = type_size(ir->type->fields.array); + + assert(size > 0); + + for (i = 0; i < ir->type->length; i++) { + ir->array_elements[i]->accept(this); + src = this->result; + for (int j = 0; j < size; j++) { + emit(ir, OPCODE_MOV, temp, src); + + src.index++; + temp.index++; + } + } + this->result = temp_base; + return; + } + + if (ir->type->is_matrix()) { + st_src_reg mat = get_temp(ir->type); + st_dst_reg mat_column = st_dst_reg(mat); + + for (i = 0; i < ir->type->matrix_columns; i++) { + assert(ir->type->base_type == GLSL_TYPE_FLOAT); + values = &ir->value.f[i * ir->type->vector_elements]; + + src = st_src_reg(PROGRAM_CONSTANT, -1, NULL); + src.index = _mesa_add_unnamed_constant(this->prog->Parameters, + values, + ir->type->vector_elements, + &src.swizzle); + emit(ir, OPCODE_MOV, mat_column, src); + + mat_column.index++; + } + + this->result = mat; + return; + } + + src.file = PROGRAM_CONSTANT; + switch (ir->type->base_type) { + case GLSL_TYPE_FLOAT: + values = &ir->value.f[0]; + break; + case GLSL_TYPE_UINT: + for (i = 0; i < ir->type->vector_elements; i++) { + values[i] = ir->value.u[i]; + } + break; + case GLSL_TYPE_INT: + for (i = 0; i < ir->type->vector_elements; i++) { + values[i] = ir->value.i[i]; + } + break; + case GLSL_TYPE_BOOL: + for (i = 0; i < ir->type->vector_elements; i++) { + values[i] = ir->value.b[i]; + } + break; + default: + assert(!"Non-float/uint/int/bool constant"); + } + + this->result = st_src_reg(PROGRAM_CONSTANT, -1, ir->type); + this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters, + values, + ir->type->vector_elements, + &this->result.swizzle); +} + +function_entry * +glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig) +{ + function_entry *entry; + + foreach_iter(exec_list_iterator, iter, this->function_signatures) { + entry = (function_entry *)iter.get(); + + if (entry->sig == sig) + return entry; + } + + entry = ralloc(mem_ctx, function_entry); + entry->sig = sig; + entry->sig_id = this->next_signature_id++; + entry->bgn_inst = NULL; + + /* Allocate storage for all the parameters. */ + foreach_iter(exec_list_iterator, iter, sig->parameters) { + ir_variable *param = (ir_variable *)iter.get(); + variable_storage *storage; + + storage = find_variable_storage(param); + assert(!storage); + + storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY, + this->next_temp); + this->variables.push_tail(storage); + + this->next_temp += type_size(param->type); + } + + if (!sig->return_type->is_void()) { + entry->return_reg = get_temp(sig->return_type); + } else { + entry->return_reg = undef_src; + } + + this->function_signatures.push_tail(entry); + return entry; +} + +void +glsl_to_tgsi_visitor::visit(ir_call *ir) +{ + glsl_to_tgsi_instruction *call_inst; + ir_function_signature *sig = ir->get_callee(); + function_entry *entry = get_function_signature(sig); + int i; + + /* Process in parameters. */ + exec_list_iterator sig_iter = sig->parameters.iterator(); + foreach_iter(exec_list_iterator, iter, *ir) { + ir_rvalue *param_rval = (ir_rvalue *)iter.get(); + ir_variable *param = (ir_variable *)sig_iter.get(); + + if (param->mode == ir_var_in || + param->mode == ir_var_inout) { + variable_storage *storage = find_variable_storage(param); + assert(storage); + + param_rval->accept(this); + st_src_reg r = this->result; + + st_dst_reg l; + l.file = storage->file; + l.index = storage->index; + l.reladdr = NULL; + l.writemask = WRITEMASK_XYZW; + l.cond_mask = COND_TR; + + for (i = 0; i < type_size(param->type); i++) { + emit(ir, OPCODE_MOV, l, r); + l.index++; + r.index++; + } + } + + sig_iter.next(); + } + assert(!sig_iter.has_next()); + + /* Emit call instruction */ + call_inst = emit(ir, OPCODE_CAL); + call_inst->function = entry; + + /* Process out parameters. */ + sig_iter = sig->parameters.iterator(); + foreach_iter(exec_list_iterator, iter, *ir) { + ir_rvalue *param_rval = (ir_rvalue *)iter.get(); + ir_variable *param = (ir_variable *)sig_iter.get(); + + if (param->mode == ir_var_out || + param->mode == ir_var_inout) { + variable_storage *storage = find_variable_storage(param); + assert(storage); + + st_src_reg r; + r.file = storage->file; + r.index = storage->index; + r.reladdr = NULL; + r.swizzle = SWIZZLE_NOOP; + r.negate = 0; + + param_rval->accept(this); + st_dst_reg l = st_dst_reg(this->result); + + for (i = 0; i < type_size(param->type); i++) { + emit(ir, OPCODE_MOV, l, r); + l.index++; + r.index++; + } + } + + sig_iter.next(); + } + assert(!sig_iter.has_next()); + + /* Process return value. */ + this->result = entry->return_reg; +} + +void +glsl_to_tgsi_visitor::visit(ir_texture *ir) +{ + st_src_reg result_src, coord, lod_info, projector, dx, dy; + st_dst_reg result_dst, coord_dst; + glsl_to_tgsi_instruction *inst = NULL; + prog_opcode opcode = OPCODE_NOP; + + ir->coordinate->accept(this); + + /* Put our coords in a temp. We'll need to modify them for shadow, + * projection, or LOD, so the only case we'd use it as is is if + * we're doing plain old texturing. Mesa IR optimization should + * handle cleaning up our mess in that case. + */ + coord = get_temp(glsl_type::vec4_type); + coord_dst = st_dst_reg(coord); + emit(ir, OPCODE_MOV, coord_dst, this->result); + + if (ir->projector) { + ir->projector->accept(this); + projector = this->result; + } + + /* Storage for our result. Ideally for an assignment we'd be using + * the actual storage for the result here, instead. + */ + result_src = get_temp(glsl_type::vec4_type); + result_dst = st_dst_reg(result_src); + + switch (ir->op) { + case ir_tex: + opcode = OPCODE_TEX; + break; + case ir_txb: + opcode = OPCODE_TXB; + ir->lod_info.bias->accept(this); + lod_info = this->result; + break; + case ir_txl: + opcode = OPCODE_TXL; + ir->lod_info.lod->accept(this); + lod_info = this->result; + break; + case ir_txd: + opcode = OPCODE_TXD; + ir->lod_info.grad.dPdx->accept(this); + dx = this->result; + ir->lod_info.grad.dPdy->accept(this); + dy = this->result; + break; + case ir_txf: // TODO: use TGSI_OPCODE_TXF here + assert(!"GLSL 1.30 features unsupported"); + break; + } + + if (ir->projector) { + if (opcode == OPCODE_TEX) { + /* Slot the projector in as the last component of the coord. */ + coord_dst.writemask = WRITEMASK_W; + emit(ir, OPCODE_MOV, coord_dst, projector); + coord_dst.writemask = WRITEMASK_XYZW; + opcode = OPCODE_TXP; + } else { + st_src_reg coord_w = coord; + coord_w.swizzle = SWIZZLE_WWWW; + + /* For the other TEX opcodes there's no projective version + * since the last slot is taken up by lod info. Do the + * projective divide now. + */ + coord_dst.writemask = WRITEMASK_W; + emit(ir, OPCODE_RCP, coord_dst, projector); + + /* In the case where we have to project the coordinates "by hand," + * the shadow comparitor value must also be projected. + */ + st_src_reg tmp_src = coord; + if (ir->shadow_comparitor) { + /* Slot the shadow value in as the second to last component of the + * coord. + */ + ir->shadow_comparitor->accept(this); + + tmp_src = get_temp(glsl_type::vec4_type); + st_dst_reg tmp_dst = st_dst_reg(tmp_src); + + tmp_dst.writemask = WRITEMASK_Z; + emit(ir, OPCODE_MOV, tmp_dst, this->result); + + tmp_dst.writemask = WRITEMASK_XY; + emit(ir, OPCODE_MOV, tmp_dst, coord); + } + + coord_dst.writemask = WRITEMASK_XYZ; + emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w); + + coord_dst.writemask = WRITEMASK_XYZW; + coord.swizzle = SWIZZLE_XYZW; + } + } + + /* If projection is done and the opcode is not OPCODE_TXP, then the shadow + * comparitor was put in the correct place (and projected) by the code, + * above, that handles by-hand projection. + */ + if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) { + /* Slot the shadow value in as the second to last component of the + * coord. + */ + ir->shadow_comparitor->accept(this); + coord_dst.writemask = WRITEMASK_Z; + emit(ir, OPCODE_MOV, coord_dst, this->result); + coord_dst.writemask = WRITEMASK_XYZW; + } + + if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) { + /* Mesa IR stores lod or lod bias in the last channel of the coords. */ + coord_dst.writemask = WRITEMASK_W; + emit(ir, OPCODE_MOV, coord_dst, lod_info); + coord_dst.writemask = WRITEMASK_XYZW; + } + + if (opcode == OPCODE_TXD) + inst = emit(ir, opcode, result_dst, coord, dx, dy); + else + inst = emit(ir, opcode, result_dst, coord); + + if (ir->shadow_comparitor) + inst->tex_shadow = GL_TRUE; + + inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler, + this->shader_program, + this->prog); + + const glsl_type *sampler_type = ir->sampler->type; + + switch (sampler_type->sampler_dimensionality) { + case GLSL_SAMPLER_DIM_1D: + inst->tex_target = (sampler_type->sampler_array) + ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX; + break; + case GLSL_SAMPLER_DIM_2D: + inst->tex_target = (sampler_type->sampler_array) + ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX; + break; + case GLSL_SAMPLER_DIM_3D: + inst->tex_target = TEXTURE_3D_INDEX; + break; + case GLSL_SAMPLER_DIM_CUBE: + inst->tex_target = TEXTURE_CUBE_INDEX; + break; + case GLSL_SAMPLER_DIM_RECT: + inst->tex_target = TEXTURE_RECT_INDEX; + break; + case GLSL_SAMPLER_DIM_BUF: + assert(!"FINISHME: Implement ARB_texture_buffer_object"); + break; + default: + assert(!"Should not get here."); + } + + this->result = result_src; +} + +void +glsl_to_tgsi_visitor::visit(ir_return *ir) +{ + if (ir->get_value()) { + st_dst_reg l; + int i; + + assert(current_function); + + ir->get_value()->accept(this); + st_src_reg r = this->result; + + l = st_dst_reg(current_function->return_reg); + + for (i = 0; i < type_size(current_function->sig->return_type); i++) { + emit(ir, OPCODE_MOV, l, r); + l.index++; + r.index++; + } + } + + emit(ir, OPCODE_RET); +} + +void +glsl_to_tgsi_visitor::visit(ir_discard *ir) +{ + struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; + + if (ir->condition) { + ir->condition->accept(this); + this->result.negate = ~this->result.negate; + emit(ir, OPCODE_KIL, undef_dst, this->result); + } else { + emit(ir, OPCODE_KIL_NV); + } + + fp->UsesKill = GL_TRUE; +} + +void +glsl_to_tgsi_visitor::visit(ir_if *ir) +{ + glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL; + glsl_to_tgsi_instruction *prev_inst; + + prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail(); + + ir->condition->accept(this); + assert(this->result.file != PROGRAM_UNDEFINED); + + if (this->options->EmitCondCodes) { + cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail(); + + /* See if we actually generated any instruction for generating + * the condition. If not, then cook up a move to a temp so we + * have something to set cond_update on. + */ + if (cond_inst == prev_inst) { + st_src_reg temp = get_temp(glsl_type::bool_type); + cond_inst = emit(ir->condition, OPCODE_MOV, st_dst_reg(temp), result); + } + cond_inst->cond_update = GL_TRUE; + + if_inst = emit(ir->condition, OPCODE_IF); + if_inst->dst.cond_mask = COND_NE; + } else { + if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result); + } + + this->instructions.push_tail(if_inst); + + visit_exec_list(&ir->then_instructions, this); + + if (!ir->else_instructions.is_empty()) { + else_inst = emit(ir->condition, OPCODE_ELSE); + visit_exec_list(&ir->else_instructions, this); + } + + if_inst = emit(ir->condition, OPCODE_ENDIF); +} + +glsl_to_tgsi_visitor::glsl_to_tgsi_visitor() +{ + result.file = PROGRAM_UNDEFINED; + next_temp = 1; + next_signature_id = 1; + current_function = NULL; + num_address_regs = 0; + indirect_addr_temps = false; + indirect_addr_consts = false; + mem_ctx = ralloc_context(NULL); +} + +glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor() +{ + ralloc_free(mem_ctx); +} + +extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v) +{ + delete v; +} + +static struct prog_src_register +mesa_st_src_reg_from_ir_st_src_reg(st_src_reg reg) +{ + struct prog_src_register mesa_reg; + + mesa_reg.File = reg.file; + assert(reg.index < (1 << INST_INDEX_BITS)); + mesa_reg.Index = reg.index; + mesa_reg.Swizzle = reg.swizzle; + mesa_reg.RelAddr = reg.reladdr != NULL; + mesa_reg.Negate = reg.negate; + mesa_reg.Abs = 0; + mesa_reg.HasIndex2 = GL_FALSE; + mesa_reg.RelAddr2 = 0; + mesa_reg.Index2 = 0; + + return mesa_reg; +} + +static void +set_branchtargets(glsl_to_tgsi_visitor *v, + struct prog_instruction *mesa_instructions, + int num_instructions) +{ + int if_count = 0, loop_count = 0; + int *if_stack, *loop_stack; + int if_stack_pos = 0, loop_stack_pos = 0; + int i, j; + + for (i = 0; i < num_instructions; i++) { + switch (mesa_instructions[i].Opcode) { + case OPCODE_IF: + if_count++; + break; + case OPCODE_BGNLOOP: + loop_count++; + break; + case OPCODE_BRK: + case OPCODE_CONT: + mesa_instructions[i].BranchTarget = -1; + break; + default: + break; + } + } + + if_stack = rzalloc_array(v->mem_ctx, int, if_count); + loop_stack = rzalloc_array(v->mem_ctx, int, loop_count); + + for (i = 0; i < num_instructions; i++) { + switch (mesa_instructions[i].Opcode) { + case OPCODE_IF: + if_stack[if_stack_pos] = i; + if_stack_pos++; + break; + case OPCODE_ELSE: + mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; + if_stack[if_stack_pos - 1] = i; + break; + case OPCODE_ENDIF: + mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; + if_stack_pos--; + break; + case OPCODE_BGNLOOP: + loop_stack[loop_stack_pos] = i; + loop_stack_pos++; + break; + case OPCODE_ENDLOOP: + loop_stack_pos--; + /* Rewrite any breaks/conts at this nesting level (haven't + * already had a BranchTarget assigned) to point to the end + * of the loop. + */ + for (j = loop_stack[loop_stack_pos]; j < i; j++) { + if (mesa_instructions[j].Opcode == OPCODE_BRK || + mesa_instructions[j].Opcode == OPCODE_CONT) { + if (mesa_instructions[j].BranchTarget == -1) { + mesa_instructions[j].BranchTarget = i; + } + } + } + /* The loop ends point at each other. */ + mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos]; + mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i; + break; + case OPCODE_CAL: + foreach_iter(exec_list_iterator, iter, v->function_signatures) { + function_entry *entry = (function_entry *)iter.get(); + + if (entry->sig_id == mesa_instructions[i].BranchTarget) { + mesa_instructions[i].BranchTarget = entry->inst; + break; + } + } + break; + default: + break; + } + } +} + +static void +print_program(struct prog_instruction *mesa_instructions, + ir_instruction **mesa_instruction_annotation, + int num_instructions) +{ + /*ir_instruction *last_ir = NULL;*/ + int i; + int indent = 0; + + for (i = 0; i < num_instructions; i++) { + struct prog_instruction *mesa_inst = mesa_instructions + i; + + fprintf(stdout, "%3d: ", i); + +#if 0 +/* Disable this for now, since printing GLSL IR along with its corresponding + * Mesa IR makes the Mesa IR unreadable. */ + ir_instruction *ir = mesa_instruction_annotation[i]; + if (last_ir != ir && ir) { + int j; + + for (j = 0; j < indent; j++) { + fprintf(stdout, " "); + } + ir->print(); + printf("\n"); + last_ir = ir; + + fprintf(stdout, " "); /* line number spacing. */ + } +#endif + + indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent, + PROG_PRINT_DEBUG, NULL); + } +} + + +/** + * Count resources used by the given gpu program (number of texture + * samplers, etc). + */ +static void +count_resources(struct gl_program *prog) +{ + unsigned int i; + + prog->SamplersUsed = 0; + + for (i = 0; i < prog->NumInstructions; i++) { + struct prog_instruction *inst = &prog->Instructions[i]; + + if (_mesa_is_tex_instruction(inst->Opcode)) { + prog->SamplerTargets[inst->TexSrcUnit] = + (gl_texture_index)inst->TexSrcTarget; + prog->SamplersUsed |= 1 << inst->TexSrcUnit; + if (inst->TexShadow) { + prog->ShadowSamplers |= 1 << inst->TexSrcUnit; + } + } + } + + _mesa_update_shader_textures_used(prog); +} + + +/** + * Check if the given vertex/fragment/shader program is within the + * resource limits of the context (number of texture units, etc). + * If any of those checks fail, record a linker error. + * + * XXX more checks are needed... + */ +static void +check_resources(const struct gl_context *ctx, + struct gl_shader_program *shader_program, + struct gl_program *prog) +{ + switch (prog->Target) { + case GL_VERTEX_PROGRAM_ARB: + if (_mesa_bitcount(prog->SamplersUsed) > + ctx->Const.MaxVertexTextureImageUnits) { + fail_link(shader_program, "Too many vertex shader texture samplers"); + } + if (prog->Parameters->NumParameters > MAX_UNIFORMS) { + fail_link(shader_program, "Too many vertex shader constants"); + } + break; + case MESA_GEOMETRY_PROGRAM: + if (_mesa_bitcount(prog->SamplersUsed) > + ctx->Const.MaxGeometryTextureImageUnits) { + fail_link(shader_program, "Too many geometry shader texture samplers"); + } + if (prog->Parameters->NumParameters > + MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) { + fail_link(shader_program, "Too many geometry shader constants"); + } + break; + case GL_FRAGMENT_PROGRAM_ARB: + if (_mesa_bitcount(prog->SamplersUsed) > + ctx->Const.MaxTextureImageUnits) { + fail_link(shader_program, "Too many fragment shader texture samplers"); + } + if (prog->Parameters->NumParameters > MAX_UNIFORMS) { + fail_link(shader_program, "Too many fragment shader constants"); + } + break; + default: + _mesa_problem(ctx, "unexpected program type in check_resources()"); + } +} + + + +struct uniform_sort { + struct gl_uniform *u; + int pos; +}; + +/* The shader_program->Uniforms list is almost sorted in increasing + * uniform->{Frag,Vert}Pos locations, but not quite when there are + * uniforms shared between targets. We need to add parameters in + * increasing order for the targets. + */ +static int +sort_uniforms(const void *a, const void *b) +{ + struct uniform_sort *u1 = (struct uniform_sort *)a; + struct uniform_sort *u2 = (struct uniform_sort *)b; + + return u1->pos - u2->pos; +} + +/* Add the uniforms to the parameters. The linker chose locations + * in our parameters lists (which weren't created yet), which the + * uniforms code will use to poke values into our parameters list + * when uniforms are updated. + */ +static void +add_uniforms_to_parameters_list(struct gl_shader_program *shader_program, + struct gl_shader *shader, + struct gl_program *prog) +{ + unsigned int i; + unsigned int next_sampler = 0, num_uniforms = 0; + struct uniform_sort *sorted_uniforms; + + sorted_uniforms = ralloc_array(NULL, struct uniform_sort, + shader_program->Uniforms->NumUniforms); + + for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) { + struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i; + int parameter_index = -1; + + switch (shader->Type) { + case GL_VERTEX_SHADER: + parameter_index = uniform->VertPos; + break; + case GL_FRAGMENT_SHADER: + parameter_index = uniform->FragPos; + break; + case GL_GEOMETRY_SHADER: + parameter_index = uniform->GeomPos; + break; + } + + /* Only add uniforms used in our target. */ + if (parameter_index != -1) { + sorted_uniforms[num_uniforms].pos = parameter_index; + sorted_uniforms[num_uniforms].u = uniform; + num_uniforms++; + } + } + + qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort), + sort_uniforms); + + for (i = 0; i < num_uniforms; i++) { + struct gl_uniform *uniform = sorted_uniforms[i].u; + int parameter_index = sorted_uniforms[i].pos; + const glsl_type *type = uniform->Type; + unsigned int size; + + if (type->is_vector() || + type->is_scalar()) { + size = type->vector_elements; + } else { + size = type_size(type) * 4; + } + + gl_register_file file; + if (type->is_sampler() || + (type->is_array() && type->fields.array->is_sampler())) { + file = PROGRAM_SAMPLER; + } else { + file = PROGRAM_UNIFORM; + } + + GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1, + uniform->Name); + + if (index < 0) { + index = _mesa_add_parameter(prog->Parameters, file, + uniform->Name, size, type->gl_type, + NULL, NULL, 0x0); + + /* Sampler uniform values are stored in prog->SamplerUnits, + * and the entry in that array is selected by this index we + * store in ParameterValues[]. + */ + if (file == PROGRAM_SAMPLER) { + for (unsigned int j = 0; j < size / 4; j++) + prog->Parameters->ParameterValues[index + j][0] = next_sampler++; + } + + /* The location chosen in the Parameters list here (returned + * from _mesa_add_uniform) has to match what the linker chose. + */ + if (index != parameter_index) { + fail_link(shader_program, "Allocation of uniform `%s' to target " + "failed (%d vs %d)\n", + uniform->Name, index, parameter_index); + } + } + } + + ralloc_free(sorted_uniforms); +} + +static void +set_uniform_initializer(struct gl_context *ctx, void *mem_ctx, + struct gl_shader_program *shader_program, + const char *name, const glsl_type *type, + ir_constant *val) +{ + if (type->is_record()) { + ir_constant *field_constant; + + field_constant = (ir_constant *)val->components.get_head(); + + for (unsigned int i = 0; i < type->length; i++) { + const glsl_type *field_type = type->fields.structure[i].type; + const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name, + type->fields.structure[i].name); + set_uniform_initializer(ctx, mem_ctx, shader_program, field_name, + field_type, field_constant); + field_constant = (ir_constant *)field_constant->next; + } + return; + } + + int loc = _mesa_get_uniform_location(ctx, shader_program, name); + + if (loc == -1) { + fail_link(shader_program, + "Couldn't find uniform for initializer %s\n", name); + return; + } + + for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) { + ir_constant *element; + const glsl_type *element_type; + if (type->is_array()) { + element = val->array_elements[i]; + element_type = type->fields.array; + } else { + element = val; + element_type = type; + } + + void *values; + + if (element_type->base_type == GLSL_TYPE_BOOL) { + int *conv = ralloc_array(mem_ctx, int, element_type->components()); + for (unsigned int j = 0; j < element_type->components(); j++) { + conv[j] = element->value.b[j]; + } + values = (void *)conv; + element_type = glsl_type::get_instance(GLSL_TYPE_INT, + element_type->vector_elements, + 1); + } else { + values = &element->value; + } + + if (element_type->is_matrix()) { + _mesa_uniform_matrix(ctx, shader_program, + element_type->matrix_columns, + element_type->vector_elements, + loc, 1, GL_FALSE, (GLfloat *)values); + loc += element_type->matrix_columns; + } else { + _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns, + values, element_type->gl_type); + loc += type_size(element_type); + } + } +} + +static void +set_uniform_initializers(struct gl_context *ctx, + struct gl_shader_program *shader_program) +{ + void *mem_ctx = NULL; + + for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) { + struct gl_shader *shader = shader_program->_LinkedShaders[i]; + + if (shader == NULL) + continue; + + foreach_iter(exec_list_iterator, iter, *shader->ir) { + ir_instruction *ir = (ir_instruction *)iter.get(); + ir_variable *var = ir->as_variable(); + + if (!var || var->mode != ir_var_uniform || !var->constant_value) + continue; + + if (!mem_ctx) + mem_ctx = ralloc_context(NULL); + + set_uniform_initializer(ctx, mem_ctx, shader_program, var->name, + var->type, var->constant_value); + } + } + + ralloc_free(mem_ctx); +} + +/* Replaces all references to a temporary register index with another index. */ +void +glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index) +{ + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + unsigned j; + + for (j=0; j < _mesa_num_inst_src_regs(inst->op); j++) { + if (inst->src[j].file == PROGRAM_TEMPORARY && + inst->src[j].index == index) { + inst->src[j].index = new_index; + } + } + + if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) { + inst->dst.index = new_index; + } + } +} + +int +glsl_to_tgsi_visitor::get_first_temp_read(int index) +{ + int depth = 0; /* loop depth */ + int loop_start = -1; /* index of the first active BGNLOOP (if any) */ + unsigned i = 0, j; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + for (j=0; j < _mesa_num_inst_src_regs(inst->op); j++) { + if (inst->src[j].file == PROGRAM_TEMPORARY && + inst->src[j].index == index) { + return (depth == 0) ? i : loop_start; + } + } + + if (inst->op == OPCODE_BGNLOOP) { + if(depth++ == 0) + loop_start = i; + } else if (inst->op == OPCODE_ENDLOOP) { + if (--depth == 0) + loop_start = -1; + } + assert(depth >= 0); + + i++; + } + + return -1; +} + +int +glsl_to_tgsi_visitor::get_first_temp_write(int index) +{ + int depth = 0; /* loop depth */ + int loop_start = -1; /* index of the first active BGNLOOP (if any) */ + int i = 0; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) { + return (depth == 0) ? i : loop_start; + } + + if (inst->op == OPCODE_BGNLOOP) { + if(depth++ == 0) + loop_start = i; + } else if (inst->op == OPCODE_ENDLOOP) { + if (--depth == 0) + loop_start = -1; + } + assert(depth >= 0); + + i++; + } + + return -1; +} + +int +glsl_to_tgsi_visitor::get_last_temp_read(int index) +{ + int depth = 0; /* loop depth */ + int last = -1; /* index of last instruction that reads the temporary */ + unsigned i = 0, j; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + for (j=0; j < _mesa_num_inst_src_regs(inst->op); j++) { + if (inst->src[j].file == PROGRAM_TEMPORARY && + inst->src[j].index == index) { + last = (depth == 0) ? i : -2; + } + } + + if (inst->op == OPCODE_BGNLOOP) + depth++; + else if (inst->op == OPCODE_ENDLOOP) + if (--depth == 0 && last == -2) + last = i; + assert(depth >= 0); + + i++; + } + + assert(last >= -1); + return last; +} + +int +glsl_to_tgsi_visitor::get_last_temp_write(int index) +{ + int depth = 0; /* loop depth */ + int last = -1; /* index of last instruction that writes to the temporary */ + int i = 0; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) + last = (depth == 0) ? i : -2; + + if (inst->op == OPCODE_BGNLOOP) + depth++; + else if (inst->op == OPCODE_ENDLOOP) + if (--depth == 0 && last == -2) + last = i; + assert(depth >= 0); + + i++; + } + + assert(last >= -1); + return last; +} + +/* + * On a basic block basis, tracks available PROGRAM_TEMPORARY register + * channels for copy propagation and updates following instructions to + * use the original versions. + * + * The glsl_to_tgsi_visitor lazily produces code assuming that this pass + * will occur. As an example, a TXP production before this pass: + * + * 0: MOV TEMP[1], INPUT[4].xyyy; + * 1: MOV TEMP[1].w, INPUT[4].wwww; + * 2: TXP TEMP[2], TEMP[1], texture[0], 2D; + * + * and after: + * + * 0: MOV TEMP[1], INPUT[4].xyyy; + * 1: MOV TEMP[1].w, INPUT[4].wwww; + * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D; + * + * which allows for dead code elimination on TEMP[1]'s writes. + */ +void +glsl_to_tgsi_visitor::copy_propagate(void) +{ + glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx, + glsl_to_tgsi_instruction *, + this->next_temp * 4); + int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4); + int level = 0; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + assert(inst->dst.file != PROGRAM_TEMPORARY + || inst->dst.index < this->next_temp); + + /* First, do any copy propagation possible into the src regs. */ + for (int r = 0; r < 3; r++) { + glsl_to_tgsi_instruction *first = NULL; + bool good = true; + int acp_base = inst->src[r].index * 4; + + if (inst->src[r].file != PROGRAM_TEMPORARY || + inst->src[r].reladdr) + continue; + + /* See if we can find entries in the ACP consisting of MOVs + * from the same src register for all the swizzled channels + * of this src register reference. + */ + for (int i = 0; i < 4; i++) { + int src_chan = GET_SWZ(inst->src[r].swizzle, i); + glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan]; + + if (!copy_chan) { + good = false; + break; + } + + assert(acp_level[acp_base + src_chan] <= level); + + if (!first) { + first = copy_chan; + } else { + if (first->src[0].file != copy_chan->src[0].file || + first->src[0].index != copy_chan->src[0].index) { + good = false; + break; + } + } + } + + if (good) { + /* We've now validated that we can copy-propagate to + * replace this src register reference. Do it. + */ + inst->src[r].file = first->src[0].file; + inst->src[r].index = first->src[0].index; + + int swizzle = 0; + for (int i = 0; i < 4; i++) { + int src_chan = GET_SWZ(inst->src[r].swizzle, i); + glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan]; + swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << + (3 * i)); + } + inst->src[r].swizzle = swizzle; + } + } + + switch (inst->op) { + case OPCODE_BGNLOOP: + case OPCODE_ENDLOOP: + /* End of a basic block, clear the ACP entirely. */ + memset(acp, 0, sizeof(*acp) * this->next_temp * 4); + break; + + case OPCODE_IF: + ++level; + break; + + case OPCODE_ENDIF: + case OPCODE_ELSE: + /* Clear all channels written inside the block from the ACP, but + * leaving those that were not touched. + */ + for (int r = 0; r < this->next_temp; r++) { + for (int c = 0; c < 4; c++) { + if (!acp[4 * r + c]) + continue; + + if (acp_level[4 * r + c] >= level) + acp[4 * r + c] = NULL; + } + } + if (inst->op == OPCODE_ENDIF) + --level; + break; + + default: + /* Continuing the block, clear any written channels from + * the ACP. + */ + if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) { + /* Any temporary might be written, so no copy propagation + * across this instruction. + */ + memset(acp, 0, sizeof(*acp) * this->next_temp * 4); + } else if (inst->dst.file == PROGRAM_OUTPUT && + inst->dst.reladdr) { + /* Any output might be written, so no copy propagation + * from outputs across this instruction. + */ + for (int r = 0; r < this->next_temp; r++) { + for (int c = 0; c < 4; c++) { + if (!acp[4 * r + c]) + continue; + + if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT) + acp[4 * r + c] = NULL; + } + } + } else if (inst->dst.file == PROGRAM_TEMPORARY || + inst->dst.file == PROGRAM_OUTPUT) { + /* Clear where it's used as dst. */ + if (inst->dst.file == PROGRAM_TEMPORARY) { + for (int c = 0; c < 4; c++) { + if (inst->dst.writemask & (1 << c)) { + acp[4 * inst->dst.index + c] = NULL; + } + } + } + + /* Clear where it's used as src. */ + for (int r = 0; r < this->next_temp; r++) { + for (int c = 0; c < 4; c++) { + if (!acp[4 * r + c]) + continue; + + int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c); + + if (acp[4 * r + c]->src[0].file == inst->dst.file && + acp[4 * r + c]->src[0].index == inst->dst.index && + inst->dst.writemask & (1 << src_chan)) + { + acp[4 * r + c] = NULL; + } + } + } + } + break; + } + + /* If this is a copy, add it to the ACP. */ + if (inst->op == OPCODE_MOV && + inst->dst.file == PROGRAM_TEMPORARY && + !inst->dst.reladdr && + !inst->saturate && + !inst->src[0].reladdr && + !inst->src[0].negate) { + for (int i = 0; i < 4; i++) { + if (inst->dst.writemask & (1 << i)) { + acp[4 * inst->dst.index + i] = inst; + acp_level[4 * inst->dst.index + i] = level; + } + } + } + } + + ralloc_free(acp_level); + ralloc_free(acp); +} + +/* + * Tracks available PROGRAM_TEMPORARY registers for dead code elimination. + * + * The glsl_to_tgsi_visitor lazily produces code assuming that this pass + * will occur. As an example, a TXP production after copy propagation but + * before this pass: + * + * 0: MOV TEMP[1], INPUT[4].xyyy; + * 1: MOV TEMP[1].w, INPUT[4].wwww; + * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D; + * + * and after this pass: + * + * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D; + * + * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB) + * FIXME: doesn't eliminate all dead code inside of loops; it steps around them + */ +void +glsl_to_tgsi_visitor::eliminate_dead_code(void) +{ + int i; + + for (i=0; i < this->next_temp; i++) { + int last_read = get_last_temp_read(i); + int j = 0; + + foreach_iter(exec_list_iterator, iter, this->instructions) { + glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i && + j > last_read) + { + iter.remove(); + delete inst; + } + + j++; + } + } +} + +/* Merges temporary registers together where possible to reduce the number of + * registers needed to run a program. + * + * Produces optimal code only after copy propagation and dead code elimination + * have been run. */ +void +glsl_to_tgsi_visitor::merge_registers(void) +{ + int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp); + int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp); + int i, j; + + /* Read the indices of the last read and first write to each temp register + * into an array so that we don't have to traverse the instruction list as + * much. */ + for (i=0; i < this->next_temp; i++) { + last_reads[i] = get_last_temp_read(i); + first_writes[i] = get_first_temp_write(i); + } + + /* Start looking for registers with non-overlapping usages that can be + * merged together. */ + for (i=0; i < this->next_temp - 1; i++) { + /* Don't touch unused registers. */ + if (last_reads[i] < 0 || first_writes[i] < 0) continue; + + for (j=i+1; j < this->next_temp; j++) { + /* Don't touch unused registers. */ + if (last_reads[j] < 0 || first_writes[j] < 0) continue; + + /* We can merge the two registers if the first write to j is after or + * in the same instruction as the last read from i. Note that the + * register at index i will always be used earlier or at the same time + * as the register at index j. */ + assert(first_writes[i] <= first_writes[j]); + if (last_reads[i] <= first_writes[j]) { + rename_temp_register(j, i); /* Replace all references to j with i.*/ + + /* Update the first_writes and last_reads arrays with the new + * values for the merged register index, and mark the newly unused + * register index as such. */ + last_reads[i] = last_reads[j]; + first_writes[j] = -1; + last_reads[j] = -1; + } + } + } + + ralloc_free(last_reads); + ralloc_free(first_writes); +} + +/* Reassign indices to temporary registers by reusing unused indices created + * by optimization passes. */ +void +glsl_to_tgsi_visitor::renumber_registers(void) +{ + int i = 0; + int new_index = 0; + + for (i=0; i < this->next_temp; i++) { + if (get_first_temp_read(i) < 0) continue; + if (i != new_index) + rename_temp_register(i, new_index); + new_index++; + } + + this->next_temp = new_index; +} + +/* ------------------------- TGSI conversion stuff -------------------------- */ +struct label { + unsigned branch_target; + unsigned token; +}; + +/** + * Intermediate state used during shader translation. + */ +struct st_translate { + struct ureg_program *ureg; + + struct ureg_dst temps[MAX_PROGRAM_TEMPS]; + struct ureg_src *constants; + struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS]; + struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS]; + struct ureg_dst address[1]; + struct ureg_src samplers[PIPE_MAX_SAMPLERS]; + struct ureg_src systemValues[SYSTEM_VALUE_MAX]; + + /* Extra info for handling point size clamping in vertex shader */ + struct ureg_dst pointSizeResult; /**< Actual point size output register */ + struct ureg_src pointSizeConst; /**< Point size range constant register */ + GLint pointSizeOutIndex; /**< Temp point size output register */ + GLboolean prevInstWrotePointSize; + + const GLuint *inputMapping; + const GLuint *outputMapping; + + /* For every instruction that contains a label (eg CALL), keep + * details so that we can go back afterwards and emit the correct + * tgsi instruction number for each label. + */ + struct label *labels; + unsigned labels_size; + unsigned labels_count; + + /* Keep a record of the tgsi instruction number that each mesa + * instruction starts at, will be used to fix up labels after + * translation. + */ + unsigned *insn; + unsigned insn_size; + unsigned insn_count; + + unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */ + + boolean error; +}; + +/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */ +static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = { + TGSI_SEMANTIC_FACE, + TGSI_SEMANTIC_INSTANCEID +}; + +/** + * Make note of a branch to a label in the TGSI code. + * After we've emitted all instructions, we'll go over the list + * of labels built here and patch the TGSI code with the actual + * location of each label. + */ +static unsigned *get_label( struct st_translate *t, + unsigned branch_target ) +{ + unsigned i; + + if (t->labels_count + 1 >= t->labels_size) { + t->labels_size = 1 << (util_logbase2(t->labels_size) + 1); + t->labels = (struct label *)realloc(t->labels, + t->labels_size * sizeof t->labels[0]); + if (t->labels == NULL) { + static unsigned dummy; + t->error = TRUE; + return &dummy; + } + } + + i = t->labels_count++; + t->labels[i].branch_target = branch_target; + return &t->labels[i].token; +} + +/** + * Called prior to emitting the TGSI code for each Mesa instruction. + * Allocate additional space for instructions if needed. + * Update the insn[] array so the next Mesa instruction points to + * the next TGSI instruction. + */ +static void set_insn_start( struct st_translate *t, + unsigned start ) +{ + if (t->insn_count + 1 >= t->insn_size) { + t->insn_size = 1 << (util_logbase2(t->insn_size) + 1); + t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof t->insn[0]); + if (t->insn == NULL) { + t->error = TRUE; + return; + } + } + + t->insn[t->insn_count++] = start; +} + +/** + * Map a Mesa dst register to a TGSI ureg_dst register. + */ +static struct ureg_dst +dst_register( struct st_translate *t, + gl_register_file file, + GLuint index ) +{ + switch( file ) { + case PROGRAM_UNDEFINED: + return ureg_dst_undef(); + + case PROGRAM_TEMPORARY: + if (ureg_dst_is_undef(t->temps[index])) + t->temps[index] = ureg_DECL_temporary( t->ureg ); + + return t->temps[index]; + + case PROGRAM_OUTPUT: + if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ) + t->prevInstWrotePointSize = GL_TRUE; + + if (t->procType == TGSI_PROCESSOR_VERTEX) + assert(index < VERT_RESULT_MAX); + else if (t->procType == TGSI_PROCESSOR_FRAGMENT) + assert(index < FRAG_RESULT_MAX); + else + assert(index < GEOM_RESULT_MAX); + + assert(t->outputMapping[index] < Elements(t->outputs)); + + return t->outputs[t->outputMapping[index]]; + + case PROGRAM_ADDRESS: + return t->address[index]; + + default: + debug_assert( 0 ); + return ureg_dst_undef(); + } +} + +/** + * Map a Mesa src register to a TGSI ureg_src register. + */ +static struct ureg_src +src_register( struct st_translate *t, + gl_register_file file, + GLuint index ) +{ + switch( file ) { + case PROGRAM_UNDEFINED: + return ureg_src_undef(); + + case PROGRAM_TEMPORARY: + assert(index >= 0); + assert(index < Elements(t->temps)); + if (ureg_dst_is_undef(t->temps[index])) + t->temps[index] = ureg_DECL_temporary( t->ureg ); + return ureg_src(t->temps[index]); + + case PROGRAM_NAMED_PARAM: + case PROGRAM_ENV_PARAM: + case PROGRAM_LOCAL_PARAM: + case PROGRAM_UNIFORM: + assert(index >= 0); + return t->constants[index]; + case PROGRAM_STATE_VAR: + case PROGRAM_CONSTANT: /* ie, immediate */ + if (index < 0) + return ureg_DECL_constant( t->ureg, 0 ); + else + return t->constants[index]; + + case PROGRAM_INPUT: + assert(t->inputMapping[index] < Elements(t->inputs)); + return t->inputs[t->inputMapping[index]]; + + case PROGRAM_OUTPUT: + assert(t->outputMapping[index] < Elements(t->outputs)); + return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */ + + case PROGRAM_ADDRESS: + return ureg_src(t->address[index]); + + case PROGRAM_SYSTEM_VALUE: + assert(index < Elements(t->systemValues)); + return t->systemValues[index]; + + default: + debug_assert( 0 ); + return ureg_src_undef(); + } +} + +/** + * Create a TGSI ureg_dst register from a Mesa dest register. + */ +static struct ureg_dst +translate_dst( struct st_translate *t, + const st_dst_reg *dst_reg, //const struct prog_dst_register *DstReg, + boolean saturate ) +{ + struct ureg_dst dst = dst_register( t, + dst_reg->file, + dst_reg->index ); + + dst = ureg_writemask( dst, + dst_reg->writemask ); + + if (saturate) + dst = ureg_saturate( dst ); + + if (dst_reg->reladdr != NULL) + dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) ); + + return dst; +} + +/** + * Create a TGSI ureg_src register from a Mesa src register. + */ +static struct ureg_src +translate_src( struct st_translate *t, + const st_src_reg *src_reg ) +{ + struct ureg_src src = src_register( t, src_reg->file, src_reg->index ); + + src = ureg_swizzle( src, + GET_SWZ( src_reg->swizzle, 0 ) & 0x3, + GET_SWZ( src_reg->swizzle, 1 ) & 0x3, + GET_SWZ( src_reg->swizzle, 2 ) & 0x3, + GET_SWZ( src_reg->swizzle, 3 ) & 0x3); + + if ((src_reg->negate & 0xf) == NEGATE_XYZW) + src = ureg_negate(src); + +#if 0 + // src_reg currently does not have an equivalent to SrcReg->Abs in Mesa IR + if (src_reg->abs) + src = ureg_abs(src); +#endif + + if (src_reg->reladdr != NULL) { + /* Normally ureg_src_indirect() would be used here, but a stupid compiler + * bug in g++ makes ureg_src_indirect (an inline C function) erroneously + * set the bit for src.Negate. So we have to do the operation manually + * here to work around the compiler's problems. */ + /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/ + struct ureg_src addr = ureg_src(t->address[0]); + src.Indirect = 1; + src.IndirectFile = addr.File; + src.IndirectIndex = addr.Index; + src.IndirectSwizzle = addr.SwizzleX; + + if (src_reg->file != PROGRAM_INPUT && + src_reg->file != PROGRAM_OUTPUT) { + /* If src_reg->index was negative, it was set to zero in + * src_register(). Reassign it now. But don't do this + * for input/output regs since they get remapped while + * const buffers don't. + */ + src.Index = src_reg->index; + } + } + + return src; +} + +static void +compile_tgsi_instruction(struct st_translate *t, + const struct glsl_to_tgsi_instruction *inst) +{ + struct ureg_program *ureg = t->ureg; + GLuint i; + struct ureg_dst dst[1]; + struct ureg_src src[4]; + unsigned num_dst; + unsigned num_src; + + num_dst = _mesa_num_inst_dst_regs( inst->op ); + num_src = _mesa_num_inst_src_regs( inst->op ); + + if (num_dst) + dst[0] = translate_dst( t, + &inst->dst, + inst->saturate); // inst->SaturateMode + + for (i = 0; i < num_src; i++) + src[i] = translate_src( t, &inst->src[i] ); + + switch( inst->op ) { + case OPCODE_SWZ: + // TODO: copy emit_swz function from st_mesa_to_tgsi.c + //emit_swz( t, dst[0], &inst->src[0] ); + assert(!"OPCODE_SWZ"); + return; + + case OPCODE_BGNLOOP: + case OPCODE_CAL: + case OPCODE_ELSE: + case OPCODE_ENDLOOP: + case OPCODE_IF: + debug_assert(num_dst == 0); + ureg_label_insn( ureg, + translate_opcode( inst->op ), + src, num_src, + get_label( t, + inst->op == OPCODE_CAL ? inst->function->sig_id : 0 )); + return; + + case OPCODE_TEX: + case OPCODE_TXB: + case OPCODE_TXD: + case OPCODE_TXL: + case OPCODE_TXP: + src[num_src++] = t->samplers[inst->sampler]; + ureg_tex_insn( ureg, + translate_opcode( inst->op ), + dst, num_dst, + translate_texture_target( inst->tex_target, + inst->tex_shadow ), + src, num_src ); + return; + + case OPCODE_SCS: + dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY ); + ureg_insn( ureg, + translate_opcode( inst->op ), + dst, num_dst, + src, num_src ); + break; + + case OPCODE_XPD: + dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ ); + ureg_insn( ureg, + translate_opcode( inst->op ), + dst, num_dst, + src, num_src ); + break; + + case OPCODE_NOISE1: + case OPCODE_NOISE2: + case OPCODE_NOISE3: + case OPCODE_NOISE4: + /* At some point, a motivated person could add a better + * implementation of noise. Currently not even the nvidia + * binary drivers do anything more than this. In any case, the + * place to do this is in the GL state tracker, not the poor + * driver. + */ + ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) ); + break; + + case OPCODE_DDY: + // TODO: copy emit_ddy() function from st_mesa_to_tgsi.c + assert(!"OPCODE_DDY"); + //emit_ddy( t, dst[0], &inst->src[0] ); + break; + + default: + ureg_insn( ureg, + translate_opcode( inst->op ), + dst, num_dst, + src, num_src ); + break; + } +} + +/** + * Emit the TGSI instructions to adjust the WPOS pixel center convention + * Basically, add (adjX, adjY) to the fragment position. + */ +static void +emit_adjusted_wpos( struct st_translate *t, + const struct gl_program *program, + GLfloat adjX, GLfloat adjY) +{ + struct ureg_program *ureg = t->ureg; + struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg); + struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]]; + + /* Note that we bias X and Y and pass Z and W through unchanged. + * The shader might also use gl_FragCoord.w and .z. + */ + ureg_ADD(ureg, wpos_temp, wpos_input, + ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f)); + + t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp); +} + + +/** + * Emit the TGSI instructions for inverting the WPOS y coordinate. + * This code is unavoidable because it also depends on whether + * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM). + */ +static void +emit_wpos_inversion( struct st_translate *t, + const struct gl_program *program, + boolean invert) +{ + struct ureg_program *ureg = t->ureg; + + /* Fragment program uses fragment position input. + * Need to replace instances of INPUT[WPOS] with temp T + * where T = INPUT[WPOS] by y is inverted. + */ + static const gl_state_index wposTransformState[STATE_LENGTH] + = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, + (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 }; + + /* XXX: note we are modifying the incoming shader here! Need to + * do this before emitting the constant decls below, or this + * will be missed: + */ + unsigned wposTransConst = _mesa_add_state_reference(program->Parameters, + wposTransformState); + + struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst ); + struct ureg_dst wpos_temp; + struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]]; + + /* MOV wpos_temp, input[wpos] + */ + if (wpos_input.File == TGSI_FILE_TEMPORARY) + wpos_temp = ureg_dst(wpos_input); + else { + wpos_temp = ureg_DECL_temporary( ureg ); + ureg_MOV( ureg, wpos_temp, wpos_input ); + } + + if (invert) { + /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy + */ + ureg_MAD( ureg, + ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ), + wpos_input, + ureg_scalar(wpostrans, 0), + ureg_scalar(wpostrans, 1)); + } else { + /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww + */ + ureg_MAD( ureg, + ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ), + wpos_input, + ureg_scalar(wpostrans, 2), + ureg_scalar(wpostrans, 3)); + } + + /* Use wpos_temp as position input from here on: + */ + t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp); +} + + +/** + * Emit fragment position/ooordinate code. + */ +static void +emit_wpos(struct st_context *st, + struct st_translate *t, + const struct gl_program *program, + struct ureg_program *ureg) +{ + const struct gl_fragment_program *fp = + (const struct gl_fragment_program *) program; + struct pipe_screen *pscreen = st->pipe->screen; + boolean invert = FALSE; + + if (fp->OriginUpperLeft) { + /* Fragment shader wants origin in upper-left */ + if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) { + /* the driver supports upper-left origin */ + } + else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) { + /* the driver supports lower-left origin, need to invert Y */ + ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT); + invert = TRUE; + } + else + assert(0); + } + else { + /* Fragment shader wants origin in lower-left */ + if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) + /* the driver supports lower-left origin */ + ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT); + else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) + /* the driver supports upper-left origin, need to invert Y */ + invert = TRUE; + else + assert(0); + } + + if (fp->PixelCenterInteger) { + /* Fragment shader wants pixel center integer */ + if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) + /* the driver supports pixel center integer */ + ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER); + else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) + /* the driver supports pixel center half integer, need to bias X,Y */ + emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f); + else + assert(0); + } + else { + /* Fragment shader wants pixel center half integer */ + if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) { + /* the driver supports pixel center half integer */ + } + else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) { + /* the driver supports pixel center integer, need to bias X,Y */ + ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER); + emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f); + } + else + assert(0); + } + + /* we invert after adjustment so that we avoid the MOV to temporary, + * and reuse the adjustment ADD instead */ + emit_wpos_inversion(t, program, invert); +} + +/** + * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format. + * \param program the program to translate + * \param numInputs number of input registers used + * \param inputMapping maps Mesa fragment program inputs to TGSI generic + * input indexes + * \param inputSemanticName the TGSI_SEMANTIC flag for each input + * \param inputSemanticIndex the semantic index (ex: which texcoord) for + * each input + * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input + * \param numOutputs number of output registers used + * \param outputMapping maps Mesa fragment program outputs to TGSI + * generic outputs + * \param outputSemanticName the TGSI_SEMANTIC flag for each output + * \param outputSemanticIndex the semantic index (ex: which texcoord) for + * each output + * + * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY + */ +extern "C" enum pipe_error +st_translate_program( + struct gl_context *ctx, + uint procType, + struct ureg_program *ureg, + glsl_to_tgsi_visitor *program, + const struct gl_program *proginfo, + GLuint numInputs, + const GLuint inputMapping[], + const ubyte inputSemanticName[], + const ubyte inputSemanticIndex[], + const GLuint interpMode[], + GLuint numOutputs, + const GLuint outputMapping[], + const ubyte outputSemanticName[], + const ubyte outputSemanticIndex[], + boolean passthrough_edgeflags ) +{ + struct st_translate translate, *t; + unsigned i; + enum pipe_error ret = PIPE_OK; + + assert(numInputs <= Elements(t->inputs)); + assert(numOutputs <= Elements(t->outputs)); + + t = &translate; + memset(t, 0, sizeof *t); + + t->procType = procType; + t->inputMapping = inputMapping; + t->outputMapping = outputMapping; + t->ureg = ureg; + t->pointSizeOutIndex = -1; + t->prevInstWrotePointSize = GL_FALSE; + + /*_mesa_print_program(program);*/ + + /* + * Declare input attributes. + */ + if (procType == TGSI_PROCESSOR_FRAGMENT) { + for (i = 0; i < numInputs; i++) { + t->inputs[i] = ureg_DECL_fs_input(ureg, + inputSemanticName[i], + inputSemanticIndex[i], + interpMode[i]); + } + + if (proginfo->InputsRead & FRAG_BIT_WPOS) { + /* Must do this after setting up t->inputs, and before + * emitting constant references, below: + */ + printf("FRAG_BIT_WPOS\n"); + emit_wpos(st_context(ctx), t, proginfo, ureg); + } + + if (proginfo->InputsRead & FRAG_BIT_FACE) { + // TODO: uncomment + printf("FRAG_BIT_FACE\n"); + //emit_face_var( t, program ); + } + + /* + * Declare output attributes. + */ + for (i = 0; i < numOutputs; i++) { + switch (outputSemanticName[i]) { + case TGSI_SEMANTIC_POSITION: + t->outputs[i] = ureg_DECL_output( ureg, + TGSI_SEMANTIC_POSITION, /* Z / Depth */ + outputSemanticIndex[i] ); + + t->outputs[i] = ureg_writemask( t->outputs[i], + TGSI_WRITEMASK_Z ); + break; + case TGSI_SEMANTIC_STENCIL: + t->outputs[i] = ureg_DECL_output( ureg, + TGSI_SEMANTIC_STENCIL, /* Stencil */ + outputSemanticIndex[i] ); + t->outputs[i] = ureg_writemask( t->outputs[i], + TGSI_WRITEMASK_Y ); + break; + case TGSI_SEMANTIC_COLOR: + t->outputs[i] = ureg_DECL_output( ureg, + TGSI_SEMANTIC_COLOR, + outputSemanticIndex[i] ); + break; + default: + debug_assert(0); + return PIPE_ERROR_BAD_INPUT; + } + } + } + else if (procType == TGSI_PROCESSOR_GEOMETRY) { + for (i = 0; i < numInputs; i++) { + t->inputs[i] = ureg_DECL_gs_input(ureg, + i, + inputSemanticName[i], + inputSemanticIndex[i]); + } + + for (i = 0; i < numOutputs; i++) { + t->outputs[i] = ureg_DECL_output( ureg, + outputSemanticName[i], + outputSemanticIndex[i] ); + } + } + else { + assert(procType == TGSI_PROCESSOR_VERTEX); + + for (i = 0; i < numInputs; i++) { + t->inputs[i] = ureg_DECL_vs_input(ureg, i); + } + + for (i = 0; i < numOutputs; i++) { + t->outputs[i] = ureg_DECL_output( ureg, + outputSemanticName[i], + outputSemanticIndex[i] ); + if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) { + /* Writing to the point size result register requires special + * handling to implement clamping. + */ + static const gl_state_index pointSizeClampState[STATE_LENGTH] + = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 }; + /* XXX: note we are modifying the incoming shader here! Need to + * do this before emitting the constant decls below, or this + * will be missed. + * XXX: depends on "Parameters" field specific to Mesa IR + */ + unsigned pointSizeClampConst = + _mesa_add_state_reference(proginfo->Parameters, + pointSizeClampState); + struct ureg_dst psizregtemp = ureg_DECL_temporary( ureg ); + t->pointSizeConst = ureg_DECL_constant( ureg, pointSizeClampConst ); + t->pointSizeResult = t->outputs[i]; + t->pointSizeOutIndex = i; + t->outputs[i] = psizregtemp; + } + } + /*if (passthrough_edgeflags) + emit_edgeflags( t, program ); */ // TODO: uncomment + } + + /* Declare address register. + */ + if (program->num_address_regs > 0) { + debug_assert( program->num_address_regs == 1 ); + t->address[0] = ureg_DECL_address( ureg ); + } + + /* Declare misc input registers + */ + { + GLbitfield sysInputs = proginfo->SystemValuesRead; + unsigned numSys = 0; + for (i = 0; sysInputs; i++) { + if (sysInputs & (1 << i)) { + unsigned semName = mesa_sysval_to_semantic[i]; + t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0); + numSys++; + sysInputs &= ~(1 << i); + } + } + } + + if (program->indirect_addr_temps) { + /* If temps are accessed with indirect addressing, declare temporaries + * in sequential order. Else, we declare them on demand elsewhere. + * (Note: the number of temporaries is equal to program->next_temp) + */ + for (i = 0; i < (unsigned)program->next_temp; i++) { + /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */ + t->temps[i] = ureg_DECL_temporary( t->ureg ); + } + } + + /* Emit constants and immediates. Mesa uses a single index space + * for these, so we put all the translated regs in t->constants. + * XXX: this entire if block depends on proginfo->Parameters from Mesa IR + */ + if (proginfo->Parameters) { + t->constants = (struct ureg_src *)CALLOC( proginfo->Parameters->NumParameters * sizeof t->constants[0] ); + if (t->constants == NULL) { + ret = PIPE_ERROR_OUT_OF_MEMORY; + goto out; + } + + for (i = 0; i < proginfo->Parameters->NumParameters; i++) { + switch (proginfo->Parameters->Parameters[i].Type) { + case PROGRAM_ENV_PARAM: + case PROGRAM_LOCAL_PARAM: + case PROGRAM_STATE_VAR: + case PROGRAM_NAMED_PARAM: + case PROGRAM_UNIFORM: + t->constants[i] = ureg_DECL_constant( ureg, i ); + break; + + /* Emit immediates only when there's no indirect addressing of + * the const buffer. + * FIXME: Be smarter and recognize param arrays: + * indirect addressing is only valid within the referenced + * array. + */ + case PROGRAM_CONSTANT: + if (program->indirect_addr_consts) + t->constants[i] = ureg_DECL_constant( ureg, i ); + else + t->constants[i] = + ureg_DECL_immediate( ureg, + proginfo->Parameters->ParameterValues[i], + 4 ); + break; + default: + break; + } + } + } + + /* texture samplers */ + for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) { + // XXX: depends on SamplersUsed property generated by conversion to Mesa IR + if (proginfo->SamplersUsed & (1 << i)) { + t->samplers[i] = ureg_DECL_sampler( ureg, i ); + } + } + + /* Emit each instruction in turn: + */ + foreach_iter(exec_list_iterator, iter, program->instructions) { + set_insn_start( t, ureg_get_instruction_number( ureg )); + compile_tgsi_instruction( t, (glsl_to_tgsi_instruction *)iter.get() ); + + if (t->prevInstWrotePointSize && proginfo->Id) { + /* The previous instruction wrote to the (fake) vertex point size + * result register. Now we need to clamp that value to the min/max + * point size range, putting the result into the real point size + * register. + * Note that we can't do this easily at the end of program due to + * possible early return. + */ + set_insn_start( t, ureg_get_instruction_number( ureg )); + ureg_MAX( t->ureg, + ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X), + ureg_src(t->outputs[t->pointSizeOutIndex]), + ureg_swizzle(t->pointSizeConst, 1,1,1,1)); + ureg_MIN( t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X), + ureg_src(t->outputs[t->pointSizeOutIndex]), + ureg_swizzle(t->pointSizeConst, 2,2,2,2)); + } + t->prevInstWrotePointSize = GL_FALSE; + } + + /* Fix up all emitted labels: + */ + for (i = 0; i < t->labels_count; i++) { + ureg_fixup_label( ureg, + t->labels[i].token, + t->insn[t->labels[i].branch_target] ); + } + +out: + FREE(t->insn); + FREE(t->labels); + FREE(t->constants); + + if (t->error) { + debug_printf("%s: translate error flag set\n", __FUNCTION__); + } + + return ret; +} +/* ----------------------------- End TGSI code ------------------------------ */ + +/** + * Convert a shader's GLSL IR into both a Mesa gl_program and a TGSI shader. + */ +static struct gl_program * +get_mesa_program(struct gl_context *ctx, + struct gl_shader_program *shader_program, + struct gl_shader *shader) +{ + glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor(); + struct prog_instruction *mesa_instructions, *mesa_inst; + ir_instruction **mesa_instruction_annotation; + int i; + struct gl_program *prog; + GLenum target; + const char *target_string; + GLboolean progress; + struct gl_shader_compiler_options *options = + &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)]; + + switch (shader->Type) { + case GL_VERTEX_SHADER: + target = GL_VERTEX_PROGRAM_ARB; + target_string = "vertex"; + break; + case GL_FRAGMENT_SHADER: + target = GL_FRAGMENT_PROGRAM_ARB; + target_string = "fragment"; + break; + case GL_GEOMETRY_SHADER: + target = GL_GEOMETRY_PROGRAM_NV; + target_string = "geometry"; + break; + default: + assert(!"should not be reached"); + return NULL; + } + + validate_ir_tree(shader->ir); + + prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name); + if (!prog) + return NULL; + prog->Parameters = _mesa_new_parameter_list(); + prog->Varying = _mesa_new_parameter_list(); + prog->Attributes = _mesa_new_parameter_list(); + v->ctx = ctx; + v->prog = prog; + v->shader_program = shader_program; + v->options = options; + + add_uniforms_to_parameters_list(shader_program, shader, prog); + + /* Emit Mesa IR for main(). */ + visit_exec_list(shader->ir, v); + v->emit(NULL, OPCODE_END); + + /* Now emit bodies for any functions that were used. */ + do { + progress = GL_FALSE; + + foreach_iter(exec_list_iterator, iter, v->function_signatures) { + function_entry *entry = (function_entry *)iter.get(); + + if (!entry->bgn_inst) { + v->current_function = entry; + + entry->bgn_inst = v->emit(NULL, OPCODE_BGNSUB); + entry->bgn_inst->function = entry; + + visit_exec_list(&entry->sig->body, v); + + glsl_to_tgsi_instruction *last; + last = (glsl_to_tgsi_instruction *)v->instructions.get_tail(); + if (last->op != OPCODE_RET) + v->emit(NULL, OPCODE_RET); + + glsl_to_tgsi_instruction *end; + end = v->emit(NULL, OPCODE_ENDSUB); + end->function = entry; + + progress = GL_TRUE; + } + } + } while (progress); + +#if 0 + /* Print out some information (for debugging purposes) used by the + * optimization passes. */ + for (i=0; i < v->next_temp; i++) { + int fr = v->get_first_temp_read(i); + int fw = v->get_first_temp_write(i); + int lr = v->get_last_temp_read(i); + int lw = v->get_last_temp_write(i); + + printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw); + assert(fw <= fr); + } +#endif + + /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */ + v->copy_propagate(); + v->eliminate_dead_code(); + v->merge_registers(); + v->renumber_registers(); + + prog->NumTemporaries = v->next_temp; + + int num_instructions = 0; + foreach_iter(exec_list_iterator, iter, v->instructions) { + num_instructions++; + } + + mesa_instructions = + (struct prog_instruction *)calloc(num_instructions, + sizeof(*mesa_instructions)); + mesa_instruction_annotation = ralloc_array(v->mem_ctx, ir_instruction *, + num_instructions); + + /* Convert glsl_to_tgsi_instructions into Mesa IR prog_instructions. + * TODO: remove + */ + mesa_inst = mesa_instructions; + i = 0; + foreach_iter(exec_list_iterator, iter, v->instructions) { + const glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get(); + + mesa_inst->Opcode = inst->op; + mesa_inst->CondUpdate = inst->cond_update; + if (inst->saturate) + mesa_inst->SaturateMode = SATURATE_ZERO_ONE; + mesa_inst->DstReg.File = inst->dst.file; + mesa_inst->DstReg.Index = inst->dst.index; + mesa_inst->DstReg.CondMask = inst->dst.cond_mask; + mesa_inst->DstReg.WriteMask = inst->dst.writemask; + mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL; + mesa_inst->SrcReg[0] = mesa_st_src_reg_from_ir_st_src_reg(inst->src[0]); + mesa_inst->SrcReg[1] = mesa_st_src_reg_from_ir_st_src_reg(inst->src[1]); + mesa_inst->SrcReg[2] = mesa_st_src_reg_from_ir_st_src_reg(inst->src[2]); + mesa_inst->TexSrcUnit = inst->sampler; + mesa_inst->TexSrcTarget = inst->tex_target; + mesa_inst->TexShadow = inst->tex_shadow; + mesa_instruction_annotation[i] = inst->ir; + + /* Set IndirectRegisterFiles. */ + if (mesa_inst->DstReg.RelAddr) + prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File; + + /* Update program's bitmask of indirectly accessed register files */ + for (unsigned src = 0; src < 3; src++) + if (mesa_inst->SrcReg[src].RelAddr) + prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File; + + if (options->EmitNoIfs && mesa_inst->Opcode == OPCODE_IF) { + fail_link(shader_program, "Couldn't flatten if statement\n"); + } + + switch (mesa_inst->Opcode) { + case OPCODE_BGNSUB: + inst->function->inst = i; + mesa_inst->Comment = strdup(inst->function->sig->function_name()); + break; + case OPCODE_ENDSUB: + mesa_inst->Comment = strdup(inst->function->sig->function_name()); + break; + case OPCODE_CAL: + mesa_inst->BranchTarget = inst->function->sig_id; /* rewritten later */ + break; + case OPCODE_ARL: + prog->NumAddressRegs = 1; + break; + default: + break; + } + + mesa_inst++; + i++; + + if (!shader_program->LinkStatus) + break; + } + + if (!shader_program->LinkStatus) { + free(mesa_instructions); + _mesa_reference_program(ctx, &shader->Program, NULL); + return NULL; + } + + set_branchtargets(v, mesa_instructions, num_instructions); + + if (ctx->Shader.Flags & GLSL_DUMP) { + printf("\n"); + printf("GLSL IR for linked %s program %d:\n", target_string, + shader_program->Name); + _mesa_print_ir(shader->ir, NULL); + printf("\n"); + printf("\n"); + printf("Mesa IR for linked %s program %d:\n", target_string, + shader_program->Name); + print_program(mesa_instructions, mesa_instruction_annotation, + num_instructions); + } + + prog->Instructions = mesa_instructions; + prog->NumInstructions = num_instructions; + + do_set_program_inouts(shader->ir, prog); + count_resources(prog); + + check_resources(ctx, shader_program, prog); + + _mesa_reference_program(ctx, &shader->Program, prog); + + if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) { + _mesa_optimize_program(ctx, prog); + } + + struct st_vertex_program *stvp; + struct st_fragment_program *stfp; + struct st_geometry_program *stgp; + + switch (shader->Type) { + case GL_VERTEX_SHADER: + stvp = (struct st_vertex_program *)prog; + stvp->glsl_to_tgsi = v; + break; + case GL_FRAGMENT_SHADER: + stfp = (struct st_fragment_program *)prog; + stfp->glsl_to_tgsi = v; + break; + case GL_GEOMETRY_SHADER: + stgp = (struct st_geometry_program *)prog; + stgp->glsl_to_tgsi = v; + break; + default: + assert(!"should not be reached"); + return NULL; + } + + return prog; +} + +extern "C" { + +struct gl_shader * +st_new_shader(struct gl_context *ctx, GLuint name, GLuint type) +{ + struct gl_shader *shader; + assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER || + type == GL_GEOMETRY_SHADER_ARB); + shader = rzalloc(NULL, struct gl_shader); + if (shader) { + shader->Type = type; + shader->Name = name; + _mesa_init_shader(ctx, shader); + } + return shader; +} + +struct gl_shader_program * +st_new_shader_program(struct gl_context *ctx, GLuint name) +{ + struct gl_shader_program *shProg; + shProg = rzalloc(NULL, struct gl_shader_program); + if (shProg) { + shProg->Name = name; + _mesa_init_shader_program(ctx, shProg); + } + return shProg; +} + +/** + * Link a shader. + * Called via ctx->Driver.LinkShader() + * This actually involves converting GLSL IR into Mesa gl_programs with + * code lowering and other optimizations. + */ +GLboolean +st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) +{ + assert(prog->LinkStatus); + + for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { + if (prog->_LinkedShaders[i] == NULL) + continue; + + bool progress; + exec_list *ir = prog->_LinkedShaders[i]->ir; + const struct gl_shader_compiler_options *options = + &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)]; + + do { + progress = false; + + /* Lowering */ + do_mat_op_to_vec(ir); + lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2 + | LOG_TO_LOG2 + | ((options->EmitNoPow) ? POW_TO_EXP2 : 0))); + + progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress; + + progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress; + + progress = lower_quadop_vector(ir, true) || progress; + + if (options->EmitNoIfs) { + progress = lower_discard(ir) || progress; + progress = lower_if_to_cond_assign(ir) || progress; + } + + if (options->EmitNoNoise) + progress = lower_noise(ir) || progress; + + /* If there are forms of indirect addressing that the driver + * cannot handle, perform the lowering pass. + */ + if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput + || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) + progress = + lower_variable_index_to_cond_assign(ir, + options->EmitNoIndirectInput, + options->EmitNoIndirectOutput, + options->EmitNoIndirectTemp, + options->EmitNoIndirectUniform) + || progress; + + progress = do_vec_index_to_cond_assign(ir) || progress; + } while (progress); + + validate_ir_tree(ir); + } + + for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { + struct gl_program *linked_prog; + + if (prog->_LinkedShaders[i] == NULL) + continue; + + linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]); + + if (linked_prog) { + bool ok = true; + + switch (prog->_LinkedShaders[i]->Type) { + case GL_VERTEX_SHADER: + _mesa_reference_vertprog(ctx, &prog->VertexProgram, + (struct gl_vertex_program *)linked_prog); + ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, + linked_prog); + break; + case GL_FRAGMENT_SHADER: + _mesa_reference_fragprog(ctx, &prog->FragmentProgram, + (struct gl_fragment_program *)linked_prog); + ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB, + linked_prog); + break; + case GL_GEOMETRY_SHADER: + _mesa_reference_geomprog(ctx, &prog->GeometryProgram, + (struct gl_geometry_program *)linked_prog); + ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV, + linked_prog); + break; + } + if (!ok) { + return GL_FALSE; + } + } + + _mesa_reference_program(ctx, &linked_prog, NULL); + } + + return GL_TRUE; +} + + +/** + * Link a GLSL shader program. Called via glLinkProgram(). + */ +void +st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) +{ + unsigned int i; + + _mesa_clear_shader_program_data(ctx, prog); + + prog->LinkStatus = GL_TRUE; + + for (i = 0; i < prog->NumShaders; i++) { + if (!prog->Shaders[i]->CompileStatus) { + fail_link(prog, "linking with uncompiled shader"); + prog->LinkStatus = GL_FALSE; + } + } + + prog->Varying = _mesa_new_parameter_list(); + _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL); + _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL); + _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL); + + if (prog->LinkStatus) { + link_shaders(ctx, prog); + } + + if (prog->LinkStatus) { + if (!ctx->Driver.LinkShader(ctx, prog)) { + prog->LinkStatus = GL_FALSE; + } + } + + set_uniform_initializers(ctx, prog); + + if (ctx->Shader.Flags & GLSL_DUMP) { + if (!prog->LinkStatus) { + printf("GLSL shader program %d failed to link\n", prog->Name); + } + + if (prog->InfoLog && prog->InfoLog[0] != 0) { + printf("GLSL shader program %d info log:\n", prog->Name); + printf("%s\n", prog->InfoLog); + } + } +} + +} /* extern "C" */ diff --git a/src/mesa/state_tracker/st_glsl_to_tgsi.h b/src/mesa/state_tracker/st_glsl_to_tgsi.h new file mode 100644 index 00000000000..e21c0d1e0af --- /dev/null +++ b/src/mesa/state_tracker/st_glsl_to_tgsi.h @@ -0,0 +1,66 @@ +/* + * Copyright © 2010 Intel Corporation + * Copyright © 2011 Bryan Cain + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "main/glheader.h" +#include "tgsi/tgsi_ureg.h" + +struct gl_context; +struct gl_shader; +struct gl_shader_program; +struct glsl_to_tgsi_visitor; + +enum pipe_error st_translate_program( + struct gl_context *ctx, + uint procType, + struct ureg_program *ureg, + struct glsl_to_tgsi_visitor *program, + const struct gl_program *proginfo, + GLuint numInputs, + const GLuint inputMapping[], + const ubyte inputSemanticName[], + const ubyte inputSemanticIndex[], + const GLuint interpMode[], + GLuint numOutputs, + const GLuint outputMapping[], + const ubyte outputSemanticName[], + const ubyte outputSemanticIndex[], + boolean passthrough_edgeflags); + +void free_glsl_to_tgsi_visitor(struct glsl_to_tgsi_visitor *v); + +struct gl_shader *st_new_shader(struct gl_context *ctx, GLuint name, GLuint type); + +struct gl_shader_program * +st_new_shader_program(struct gl_context *ctx, GLuint name); + +void st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog); +GLboolean st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog); + +#ifdef __cplusplus +} +#endif diff --git a/src/mesa/state_tracker/st_mesa_to_tgsi.c b/src/mesa/state_tracker/st_mesa_to_tgsi.c index a41e5b16a85..75842286ba8 100644 --- a/src/mesa/state_tracker/st_mesa_to_tgsi.c +++ b/src/mesa/state_tracker/st_mesa_to_tgsi.c @@ -267,7 +267,7 @@ src_register( struct st_translate *t, /** * Map mesa texture target to TGSI texture target. */ -static unsigned +unsigned translate_texture_target( GLuint textarget, GLboolean shadow ) { @@ -511,7 +511,7 @@ static void emit_ddy( struct st_translate *t, -static unsigned +unsigned translate_opcode( unsigned op ) { switch( op ) { diff --git a/src/mesa/state_tracker/st_mesa_to_tgsi.h b/src/mesa/state_tracker/st_mesa_to_tgsi.h index 0615e52ef62..0dbdf5f6159 100644 --- a/src/mesa/state_tracker/st_mesa_to_tgsi.h +++ b/src/mesa/state_tracker/st_mesa_to_tgsi.h @@ -64,6 +64,12 @@ st_translate_mesa_program( void st_free_tokens(const struct tgsi_token *tokens); +unsigned +translate_opcode(unsigned op); + +unsigned +translate_texture_target(GLuint textarget, GLboolean shadow); + #if defined __cplusplus } /* extern "C" */ diff --git a/src/mesa/state_tracker/st_program.c b/src/mesa/state_tracker/st_program.c index 7a6d33d3fea..dd618424d66 100644 --- a/src/mesa/state_tracker/st_program.c +++ b/src/mesa/state_tracker/st_program.c @@ -174,8 +174,8 @@ st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp) * \param tokensOut destination for TGSI tokens * \return pointer to cached pipe_shader object. */ -static void -st_prepare_vertex_program(struct st_context *st, +void +st_prepare_vertex_program(struct gl_context *ctx, struct st_vertex_program *stvp) { GLuint attr; @@ -184,7 +184,7 @@ st_prepare_vertex_program(struct st_context *st, stvp->num_outputs = 0; if (stvp->Base.IsPositionInvariant) - _mesa_insert_mvp_code(st->ctx, &stvp->Base); + _mesa_insert_mvp_code(ctx, &stvp->Base); assert(stvp->Base.Base.NumInstructions > 1); @@ -292,7 +292,7 @@ st_translate_vertex_program(struct st_context *st, enum pipe_error error; unsigned num_outputs; - st_prepare_vertex_program( st, stvp ); + st_prepare_vertex_program(st->ctx, stvp); _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT); _mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_VARYING); @@ -318,22 +318,41 @@ st_translate_vertex_program(struct st_context *st, debug_printf("\n"); } - error = st_translate_mesa_program(st->ctx, - TGSI_PROCESSOR_VERTEX, - ureg, - &stvp->Base.Base, - /* inputs */ - vpv->num_inputs, - stvp->input_to_index, - NULL, /* input semantic name */ - NULL, /* input semantic index */ - NULL, - /* outputs */ - num_outputs, - stvp->result_to_output, - stvp->output_semantic_name, - stvp->output_semantic_index, - key->passthrough_edgeflags ); + if (stvp->glsl_to_tgsi) + error = st_translate_program(st->ctx, + TGSI_PROCESSOR_VERTEX, + ureg, + stvp->glsl_to_tgsi, + &stvp->Base.Base, + /* inputs */ + stvp->num_inputs, + stvp->input_to_index, + NULL, /* input semantic name */ + NULL, /* input semantic index */ + NULL, /* interp mode */ + /* outputs */ + stvp->num_outputs, + stvp->result_to_output, + stvp->output_semantic_name, + stvp->output_semantic_index, + key->passthrough_edgeflags ); + else + error = st_translate_mesa_program(st->ctx, + TGSI_PROCESSOR_VERTEX, + ureg, + &stvp->Base.Base, + /* inputs */ + vpv->num_inputs, + stvp->input_to_index, + NULL, /* input semantic name */ + NULL, /* input semantic index */ + NULL, + /* outputs */ + num_outputs, + stvp->result_to_output, + stvp->output_semantic_name, + stvp->output_semantic_index, + key->passthrough_edgeflags ); if (error) goto fail; @@ -393,6 +412,151 @@ st_get_vp_variant(struct st_context *st, return vpv; } +/** + * Translate Mesa fragment shader attributes to TGSI attributes. + * \return GL_TRUE if color output should be written to all render targets, + * GL_FALSE if not + */ +GLboolean +st_prepare_fragment_program(struct gl_context *ctx, + struct st_fragment_program *stfp) +{ + GLuint attr; + const GLbitfield inputsRead = stfp->Base.Base.InputsRead; + GLboolean write_all = GL_FALSE; + + /* + * Convert Mesa program inputs to TGSI input register semantics. + */ + for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) { + if (inputsRead & (1 << attr)) { + const GLuint slot = stfp->num_inputs++; + + stfp->input_to_index[attr] = slot; + + switch (attr) { + case FRAG_ATTRIB_WPOS: + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; + stfp->input_semantic_index[slot] = 0; + stfp->interp_mode[slot] = TGSI_INTERPOLATE_LINEAR; + break; + case FRAG_ATTRIB_COL0: + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; + stfp->input_semantic_index[slot] = 0; + stfp->interp_mode[slot] = TGSI_INTERPOLATE_LINEAR; + break; + case FRAG_ATTRIB_COL1: + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; + stfp->input_semantic_index[slot] = 1; + stfp->interp_mode[slot] = TGSI_INTERPOLATE_LINEAR; + break; + case FRAG_ATTRIB_FOGC: + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG; + stfp->input_semantic_index[slot] = 0; + stfp->interp_mode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; + break; + case FRAG_ATTRIB_FACE: + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_FACE; + stfp->input_semantic_index[slot] = 0; + stfp->interp_mode[slot] = TGSI_INTERPOLATE_CONSTANT; + break; + /* In most cases, there is nothing special about these + * inputs, so adopt a convention to use the generic + * semantic name and the mesa FRAG_ATTRIB_ number as the + * index. + * + * All that is required is that the vertex shader labels + * its own outputs similarly, and that the vertex shader + * generates at least every output required by the + * fragment shader plus fixed-function hardware (such as + * BFC). + * + * There is no requirement that semantic indexes start at + * zero or be restricted to a particular range -- nobody + * should be building tables based on semantic index. + */ + case FRAG_ATTRIB_PNTC: + case FRAG_ATTRIB_TEX0: + case FRAG_ATTRIB_TEX1: + case FRAG_ATTRIB_TEX2: + case FRAG_ATTRIB_TEX3: + case FRAG_ATTRIB_TEX4: + case FRAG_ATTRIB_TEX5: + case FRAG_ATTRIB_TEX6: + case FRAG_ATTRIB_TEX7: + case FRAG_ATTRIB_VAR0: + default: + /* Actually, let's try and zero-base this just for + * readability of the generated TGSI. + */ + assert(attr >= FRAG_ATTRIB_TEX0); + stfp->input_semantic_index[slot] = (attr - FRAG_ATTRIB_TEX0); + stfp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; + if (attr == FRAG_ATTRIB_PNTC) + stfp->interp_mode[slot] = TGSI_INTERPOLATE_LINEAR; + else + stfp->interp_mode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; + break; + } + } + else { + stfp->input_to_index[attr] = -1; + } + } + + /* + * Semantics and mapping for outputs + */ + { + uint numColors = 0; + GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten; + + /* if z is written, emit that first */ + if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { + stfp->output_semantic_name[stfp->num_outputs] = TGSI_SEMANTIC_POSITION; + stfp->output_semantic_index[stfp->num_outputs] = 0; + stfp->result_to_output[FRAG_RESULT_DEPTH] = stfp->num_outputs; + stfp->num_outputs++; + outputsWritten &= ~(1 << FRAG_RESULT_DEPTH); + } + + if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) { + stfp->output_semantic_name[stfp->num_outputs] = TGSI_SEMANTIC_STENCIL; + stfp->output_semantic_index[stfp->num_outputs] = 0; + stfp->result_to_output[FRAG_RESULT_STENCIL] = stfp->num_outputs; + stfp->num_outputs++; + outputsWritten &= ~(1 << FRAG_RESULT_STENCIL); + } + + /* handle remaning outputs (color) */ + for (attr = 0; attr < FRAG_RESULT_MAX; attr++) { + if (outputsWritten & BITFIELD64_BIT(attr)) { + switch (attr) { + case FRAG_RESULT_DEPTH: + case FRAG_RESULT_STENCIL: + /* handled above */ + assert(0); + break; + case FRAG_RESULT_COLOR: + write_all = GL_TRUE; /* fallthrough */ + default: + assert(attr == FRAG_RESULT_COLOR || + (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX)); + stfp->output_semantic_name[stfp->num_outputs] = TGSI_SEMANTIC_COLOR; + stfp->output_semantic_index[stfp->num_outputs] = numColors; + stfp->result_to_output[attr] = stfp->num_outputs; + numColors++; + break; + } + + stfp->num_outputs++; + } + } + } + + return write_all; +} + /** * Translate a Mesa fragment shader into a TGSI shader using extra info in @@ -445,155 +609,12 @@ st_translate_fragment_program(struct st_context *st, if (!stfp->tgsi.tokens) { /* need to translate Mesa instructions to TGSI now */ - GLuint outputMapping[FRAG_RESULT_MAX]; - GLuint inputMapping[FRAG_ATTRIB_MAX]; - GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */ - GLuint attr; enum pipe_error error; - const GLbitfield inputsRead = stfp->Base.Base.InputsRead; struct ureg_program *ureg; - GLboolean write_all = GL_FALSE; - - ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS]; - ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS]; - uint fs_num_inputs = 0; - - ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS]; - ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS]; - uint fs_num_outputs = 0; - - + GLboolean write_all = st_prepare_fragment_program(st->ctx, stfp); + _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT); - /* - * Convert Mesa program inputs to TGSI input register semantics. - */ - for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) { - if (inputsRead & (1 << attr)) { - const GLuint slot = fs_num_inputs++; - - inputMapping[attr] = slot; - - switch (attr) { - case FRAG_ATTRIB_WPOS: - input_semantic_name[slot] = TGSI_SEMANTIC_POSITION; - input_semantic_index[slot] = 0; - interpMode[slot] = TGSI_INTERPOLATE_LINEAR; - break; - case FRAG_ATTRIB_COL0: - input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; - input_semantic_index[slot] = 0; - interpMode[slot] = TGSI_INTERPOLATE_LINEAR; - break; - case FRAG_ATTRIB_COL1: - input_semantic_name[slot] = TGSI_SEMANTIC_COLOR; - input_semantic_index[slot] = 1; - interpMode[slot] = TGSI_INTERPOLATE_LINEAR; - break; - case FRAG_ATTRIB_FOGC: - input_semantic_name[slot] = TGSI_SEMANTIC_FOG; - input_semantic_index[slot] = 0; - interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; - break; - case FRAG_ATTRIB_FACE: - input_semantic_name[slot] = TGSI_SEMANTIC_FACE; - input_semantic_index[slot] = 0; - interpMode[slot] = TGSI_INTERPOLATE_CONSTANT; - break; - /* In most cases, there is nothing special about these - * inputs, so adopt a convention to use the generic - * semantic name and the mesa FRAG_ATTRIB_ number as the - * index. - * - * All that is required is that the vertex shader labels - * its own outputs similarly, and that the vertex shader - * generates at least every output required by the - * fragment shader plus fixed-function hardware (such as - * BFC). - * - * There is no requirement that semantic indexes start at - * zero or be restricted to a particular range -- nobody - * should be building tables based on semantic index. - */ - case FRAG_ATTRIB_PNTC: - case FRAG_ATTRIB_TEX0: - case FRAG_ATTRIB_TEX1: - case FRAG_ATTRIB_TEX2: - case FRAG_ATTRIB_TEX3: - case FRAG_ATTRIB_TEX4: - case FRAG_ATTRIB_TEX5: - case FRAG_ATTRIB_TEX6: - case FRAG_ATTRIB_TEX7: - case FRAG_ATTRIB_VAR0: - default: - /* Actually, let's try and zero-base this just for - * readability of the generated TGSI. - */ - assert(attr >= FRAG_ATTRIB_TEX0); - input_semantic_index[slot] = (attr - FRAG_ATTRIB_TEX0); - input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC; - if (attr == FRAG_ATTRIB_PNTC) - interpMode[slot] = TGSI_INTERPOLATE_LINEAR; - else - interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE; - break; - } - } - else { - inputMapping[attr] = -1; - } - } - - /* - * Semantics and mapping for outputs - */ - { - uint numColors = 0; - GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten; - - /* if z is written, emit that first */ - if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { - fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION; - fs_output_semantic_index[fs_num_outputs] = 0; - outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs; - fs_num_outputs++; - outputsWritten &= ~(1 << FRAG_RESULT_DEPTH); - } - - if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) { - fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL; - fs_output_semantic_index[fs_num_outputs] = 0; - outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs; - fs_num_outputs++; - outputsWritten &= ~(1 << FRAG_RESULT_STENCIL); - } - - /* handle remaning outputs (color) */ - for (attr = 0; attr < FRAG_RESULT_MAX; attr++) { - if (outputsWritten & BITFIELD64_BIT(attr)) { - switch (attr) { - case FRAG_RESULT_DEPTH: - case FRAG_RESULT_STENCIL: - /* handled above */ - assert(0); - break; - case FRAG_RESULT_COLOR: - write_all = GL_TRUE; /* fallthrough */ - default: - assert(attr == FRAG_RESULT_COLOR || - (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX)); - fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR; - fs_output_semantic_index[fs_num_outputs] = numColors; - outputMapping[attr] = fs_num_outputs; - numColors++; - break; - } - - fs_num_outputs++; - } - } - } - ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT ); if (ureg == NULL) return NULL; @@ -606,21 +627,39 @@ st_translate_fragment_program(struct st_context *st, if (write_all == GL_TRUE) ureg_property_fs_color0_writes_all_cbufs(ureg, 1); - error = st_translate_mesa_program(st->ctx, - TGSI_PROCESSOR_FRAGMENT, - ureg, - &stfp->Base.Base, - /* inputs */ - fs_num_inputs, - inputMapping, - input_semantic_name, - input_semantic_index, - interpMode, - /* outputs */ - fs_num_outputs, - outputMapping, - fs_output_semantic_name, - fs_output_semantic_index, FALSE ); + if (stfp->glsl_to_tgsi) + error = st_translate_program(st->ctx, + TGSI_PROCESSOR_FRAGMENT, + ureg, + stfp->glsl_to_tgsi, + &stfp->Base.Base, + /* inputs */ + stfp->num_inputs, + stfp->input_to_index, + stfp->input_semantic_name, + stfp->input_semantic_index, + stfp->interp_mode, + /* outputs */ + stfp->num_outputs, + stfp->result_to_output, + stfp->output_semantic_name, + stfp->output_semantic_index, FALSE ); + else + error = st_translate_mesa_program(st->ctx, + TGSI_PROCESSOR_FRAGMENT, + ureg, + &stfp->Base.Base, + /* inputs */ + stfp->num_inputs, + stfp->input_to_index, + stfp->input_semantic_name, + stfp->input_semantic_index, + stfp->interp_mode, + /* outputs */ + stfp->num_outputs, + stfp->result_to_output, + stfp->output_semantic_name, + stfp->output_semantic_index, FALSE ); stfp->tgsi.tokens = ureg_get_tokens( ureg, NULL ); ureg_destroy( ureg ); diff --git a/src/mesa/state_tracker/st_program.h b/src/mesa/state_tracker/st_program.h index c4244df939e..67723de6d53 100644 --- a/src/mesa/state_tracker/st_program.h +++ b/src/mesa/state_tracker/st_program.h @@ -38,6 +38,7 @@ #include "program/program.h" #include "pipe/p_state.h" #include "st_context.h" +#include "st_glsl_to_tgsi.h" /** Fragment program variant key */ @@ -83,6 +84,22 @@ struct st_fp_variant struct st_fragment_program { struct gl_fragment_program Base; + struct glsl_to_tgsi_visitor* glsl_to_tgsi; + + /** maps a Mesa FRAG_ATTRIB_x to a packed TGSI input index */ + GLuint input_to_index[FRAG_ATTRIB_MAX]; + /** maps a TGSI input index back to a Mesa FRAG_ATTRIB_x */ + GLuint index_to_input[PIPE_MAX_SHADER_INPUTS]; + ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS]; + ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS]; + GLuint num_inputs; + GLuint interp_mode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */ + + /** Maps FRAG_RESULT_x to slot */ + GLuint result_to_output[FRAG_RESULT_MAX]; + ubyte output_semantic_name[FRAG_RESULT_MAX]; + ubyte output_semantic_index[FRAG_RESULT_MAX]; + GLuint num_outputs; struct pipe_shader_state tgsi; @@ -136,6 +153,7 @@ struct st_vp_variant struct st_vertex_program { struct gl_vertex_program Base; /**< The Mesa vertex program */ + struct glsl_to_tgsi_visitor* glsl_to_tgsi; /** maps a Mesa VERT_ATTRIB_x to a packed TGSI input index */ GLuint input_to_index[VERT_ATTRIB_MAX]; @@ -184,6 +202,7 @@ struct st_gp_variant struct st_geometry_program { struct gl_geometry_program Base; /**< The Mesa geometry program */ + struct glsl_to_tgsi_visitor* glsl_to_tgsi; /** map GP input back to VP output */ GLuint input_map[PIPE_MAX_SHADER_INPUTS]; @@ -276,6 +295,14 @@ st_get_gp_variant(struct st_context *st, const struct st_gp_variant_key *key); +extern void +st_prepare_vertex_program(struct gl_context *ctx, + struct st_vertex_program *stvp); + +extern GLboolean +st_prepare_fragment_program(struct gl_context *ctx, + struct st_fragment_program *stfp); + extern void st_release_vp_variants( struct st_context *st, |