diff options
author | Michal Krol <[email protected]> | 2005-05-25 13:43:32 +0000 |
---|---|---|
committer | Michal Krol <[email protected]> | 2005-05-25 13:43:32 +0000 |
commit | 1008f57f6f47920071107df8abafda57cc679930 (patch) | |
tree | d96468a50bc43b1737c9334497d75461c6b9bdce /src/mesa | |
parent | 2b73e5aaafc9bc3e495fa2da059644bed75c4278 (diff) |
remove the GLSL spec wording;
reorder some elementary operators;
disable assignment "=" and equality "==" "!=" operators - they are
handled internally by the assembly generator;
fix minor typos
Diffstat (limited to 'src/mesa')
-rwxr-xr-x | src/mesa/shader/slang/library/slang_core.gc | 3304 | ||||
-rw-r--r-- | src/mesa/shader/slang/library/slang_core_gc.h | 606 | ||||
-rwxr-xr-x | src/mesa/shader/slang/library/slang_core_gc_bin.h | 1377 |
3 files changed, 2267 insertions, 3020 deletions
diff --git a/src/mesa/shader/slang/library/slang_core.gc b/src/mesa/shader/slang/library/slang_core.gc index e20b144a0d6..d1d2cb10fdf 100755 --- a/src/mesa/shader/slang/library/slang_core.gc +++ b/src/mesa/shader/slang/library/slang_core.gc @@ -1,1743 +1,1565 @@ - -// -// This file defines nearly all constructors and operators for built-in data types, using -// extended language syntax. In general, compiler treats constructors and operators as -// ordinary functions with some exceptions. For example, the language does not allow -// functions to be called in constant expressions - here the exception is made to allow it. -// -// Each implementation provides its own version of this file. Each implementation can define -// the required set of operators and constructors in its own fashion. -// -// The extended language syntax is only present when compiling this file. It is implicitly -// included at the very beginning of the compiled shader, so no built-in functions can be -// used. -// -// To communicate with the implementation, a special extended "__asm" keyword is used, followed -// by an instruction name (any valid identifier), a destination variable identifier and a -// a list of zero or more source variable identifiers. A variable identifier is a variable name -// declared earlier in the code (as a function parameter, local or global variable). -// An instruction name designates an instruction that must be exported by the implementation. +
+//
+// This file defines nearly all constructors and operators for built-in data types, using
+// extended language syntax. In general, compiler treats constructors and operators as
+// ordinary functions with some exceptions. For example, the language does not allow
+// functions to be called in constant expressions - here the exception is made to allow it.
+//
+// Each implementation provides its own version of this file. Each implementation can define
+// the required set of operators and constructors in its own fashion.
+//
+// The extended language syntax is only present when compiling this file. It is implicitly
+// included at the very beginning of the compiled shader, so no built-in functions can be
+// used.
+//
+// To communicate with the implementation, a special extended "__asm" keyword is used, followed
+// by an instruction name (any valid identifier), a destination variable identifier and a
+// a list of zero or more source variable identifiers. A variable identifier is a variable name
+// declared earlier in the code (as a function parameter, local or global variable).
+// An instruction name designates an instruction that must be exported by the implementation.
// Each instruction receives data from source variable identifiers and returns data in the
-// destination variable identifier. -// -// It is up to the implementation how to define a particular operator or constructor. If it is -// expected to being used rarely, it can be defined in terms of other operators and constructors, -// for example: -// -// ivec2 __operator + (const ivec2 x, const ivec2 y) { -// return ivec2 (x[0] + y[0], x[1] + y[1]); -// } -// -// If a particular operator or constructor is expected to be used very often or is an atomic -// operation (that is, an operation that cannot be expressed in terms of other operations or -// would create a dependency cycle) it must be defined using one or more __asm constructs. -// -// Each implementation must define constructors for all scalar types (bool, float, int). -// There are 9 scalar-to-scalar constructors (including identity constructors). However, -// since the language introduces special constructors (like matrix constructor with a single -// scalar value), implementations must also implement these cases. -// The compiler provides the following algorithm when resolving a constructor: -// - try to find a constructor with a prototype matching ours, -// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, -// - if a constructor is found, execute it and return, -// - count the size of the constructor parameter list - if it is less than the size of -// our constructor's type, raise an error, -// - for each parameter in the list do a recursive constructor matching for appropriate -// scalar fields in the constructed variable, -// -// Each implementation must also define a set of operators that deal with built-in data types. -// There are four kinds of operators: -// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) -// and "?:" (selection). -// 2) Operators that are implemented by the compiler by expressing it in terms of other operators: -// - "." (field selection) - translated to subscript access, -// - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false", -// - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>", -// 3) Operators that can be defined by the implementation and if the required prototype is not -// found, standard behaviour is used: -// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; -// note that at least operators for scalar data types must be defined by the implementation -// to get it work, -// 4) All other operators not mentioned above. If no required prototype is found, an error is -// raised. An implementation must follow the language specification to provide all valid -// operator prototypes. -// - -// -// From Shader Spec, ver. 1.10, rev. 59 -// - -// -// 5.4.1 Conversion and Scalar Constructors -// - -// -// When constructors are used to convert a float to an int, the fractional part of the -// floating-point value is dropped. -// - -int __constructor (const float _f) { - int _i; - __asm float_to_int _i, _f; - return _i; -} - -// -// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to -// false, and nonzero values are converted to true. -// - -bool __constructor (const int _i) { - return _i != 0; -} - -bool __constructor (const float _f) { - return _f != 0.0; -} - -// -// When a constructor is used to convert a bool to an int or float, false is converted to 0 or -// 0.0, and true is converted to 1 or 1.0. -// - -int __constructor (const bool _b) { - return _b ? 1 : 0; -} - -float __constructor (const bool _b) { - return _b ? 1.0 : 0.0; -} - -// -// Int to float constructor. -// - -float __constructor (const int _i) { - float _f; - __asm int_to_float _f, _i; - return _f; -} - -// -// Identity constructors, like float(float) are also legal, but of little use. -// - -bool __constructor (const bool _b) { - return _b; -} - -int __constructor (const int _i) { - return _i; -} - -float __constructor (const float _f) { - return _f; -} - -// -// Scalar constructors with non-scalar parameters can be used to take the first element from -// a non-scalar. For example, the constructor float(vec3) will select the first component of the -// vec3 parameter. -// - -// [These scalar conversions will be handled internally by the compiler.] - -// -// 5.4.2 Vector and Matrix Constructors -// -// Constructors can be used to create vectors or matrices from a set of scalars, vectors, -// or matrices. This includes the ability to shorten vectors. -// - -// -// If there is a single scalar parameter to a vector constructor, it is used to initialize all -// components of the constructed vector to that scalar's value. -// -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic -// type of the object being constructed, the scalar construction rules (above) are used to convert -// the parameters. -// - -vec2 __constructor (const float _f) { - return vec2 (_f, _f); -} - -vec2 __constructor (const int _i) { - return vec2 (_i, _i); -} - -vec2 __constructor (const bool _b) { - return vec2 (_b, _b); -} - -vec3 __constructor (const float _f) { - return vec3 (_f, _f, _f); -} - -vec3 __constructor (const int _i) { - return vec3 (_i, _i, _i); -} - -vec3 __constructor (const bool _b) { - return vec3 (_b, _b, _b); -} - -vec4 __constructor (const float _f) { - return vec4 (_f, _f, _f, _f); -} - -vec4 __constructor (const int _i) { - return vec4 (_i, _i, _i, _i); -} - -vec4 __constructor (const bool _b) { - return vec4 (_b, _b, _b, _b); -} - -ivec2 __constructor (const int _i) { - return ivec2 (_i, _i); -} - -ivec2 __constructor (const float _f) { - return ivec2 (_f, _f); -} - -ivec2 __constructor (const bool _b) { - return ivec2 (_b, _b); -} - -ivec3 __constructor (const int _i) { - return ivec3 (_i, _i, _i); -} - -ivec3 __constructor (const float _f) { - return ivec3 (_f, _f, _f); -} - -ivec3 __constructor (const bool _b) { - return ivec3 (_b, _b, _b); -} - -ivec4 __constructor (const int _i) { - return ivec4 (_i, _i, _i, _i); -} - -ivec4 __constructor (const float _f) { - return ivec4 (_f, _f, _f, _f); -} - -ivec4 __constructor (const bool _b) { - return ivec4 (_b, _b, _b, _b); -} - -bvec2 __constructor (const bool _b) { - return bvec2 (_b, _b); -} - -bvec2 __constructor (const float _f) { - return bvec2 (_f, _f); -} - -bvec2 __constructor (const int _i) { - return bvec2 (_i, _i); -} - -bvec3 __constructor (const bool _b) { - return bvec3 (_b, _b, _b); -} - -bvec3 __constructor (const float _f) { - return bvec3 (_f, _f, _f); -} - -bvec3 __constructor (const int _i) { - return bvec3 (_i, _i, _i); -} - -bvec4 __constructor (const bool _b) { - return bvec4 (_b, _b, _b, _b); -} - -bvec4 __constructor (const float _f) { - return bvec4 (_f, _f, _f, _f); -} - -bvec4 __constructor (const int _i) { - return bvec4 (_i, _i, _i, _i); -} - -// -// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the -// components on the matrix's diagonal, with the remaining components initialized to 0.0. -// (...) Matrices will be constructed in column major order. It is an error to construct matrices -// from other matrices. This is reserved for future use. -// -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic -// type of the object being constructed, the scalar construction rules (above) are used to convert -// the parameters. -// - -mat2 __constructor (const float _f) { - return mat2 ( - _f, .0, - .0, _f - ); -} - -mat2 __constructor (const int _i) { - return mat2 ( - _i, .0, - .0, _i - ); -} - -mat2 __constructor (const bool _b) { - return mat2 ( - _b, .0, - .0, _b - ); -} - -mat3 __constructor (const float _f) { - return mat3 ( - _f, .0, .0, - .0, _f, .0, - .0, .0, _f - ); -} - -mat3 __constructor (const int _i) { - return mat3 ( - _i, .0, .0, - .0, _i, .0, - .0, .0, _i - ); -} - -mat3 __constructor (const bool _b) { - return mat3 ( - _b, .0, .0, - .0, _b, .0, - .0, .0, _b - ); -} - -mat4 __constructor (const float _f) { - return mat4 ( - _f, .0, .0, .0, - .0, _f, .0, .0, - .0, .0, _f, .0, - .0, .0, .0, _f - ); -} - -mat4 __constructor (const int _i) { - return mat4 ( - _i, .0, .0, .0, - .0, _i, .0, .0, - .0, .0, _i, .0, - .0, .0, .0, _i - ); -} - -mat4 __constructor (const bool _b) { - return mat4 ( - _b, .0, .0, .0, - .0, _b, .0, .0, - .0, .0, _b, .0, - .0, .0, .0, _b - ); -} - -// -// 5.8 Assignments -// -// Assignments of values to variable names are done with the assignment operator ( = ), like -// -// lvalue = expression -// -// The assignment operator stores the value of expression into lvalue. It will compile only if -// expression and lvalue have the same type. All desired type-conversions must be specified -// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, -// entire structures, structure fields, l-values with the field selector ( . ) applied to select -// components or swizzles without repeated fields, and l-values dereferenced with the array -// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, -// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot -// be l-values. -// -// Expressions on the left of an assignment are evaluated before expressions on the right of the -// assignment. -// - -void __operator = (out float a, const float b) { - __asm float_copy a, b; -} - -void __operator = (out int a, const int b) { - __asm int_copy a, b; -} - -void __operator = (out bool a, const bool b) { - __asm bool_copy a, b; -} - -void __operator = (out vec2 v, const vec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (out vec3 v, const vec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (out vec4 v, const vec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (out ivec2 v, const ivec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (out ivec3 v, const ivec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (out ivec4 v, const ivec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (out bvec2 v, const bvec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (out bvec3 v, const bvec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (out bvec4 v, const bvec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (out mat2 m, const mat2 n) { - m[0] = n[0], m[1] = n[1]; -} - -void __operator = (out mat3 m, const mat3 n) { - m[0] = n[0], m[1] = n[1], m[2] = n[2]; -} - -void __operator = (out mat4 m, const mat4 n) { - m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; -} - -// -// * The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide -// into (/=). The variable and expression must be the same floating-point or integer type, ... -// - -void __operator += (inout float a, const float b) { - __asm float_add a, a, b; -} - -void __operator -= (inout float a, const float b) { - a += -b; -} - -void __operator *= (inout float a, const float b) { - __asm float_multiply a, a, b; -} - -void __operator /= (inout float a, const float b) { - __asm float_divide a, a, b; -} - -void __operator += (inout int x, const int y) { - x = int (float (x) + float (y)); -} - -void __operator -= (inout int x, const int y) { - x += -y; -} - -void __operator *= (inout int x, const int y) { - x = int (float (x) * float (y)); -} - -void __operator /= (inout int x, const int y) { - x = int (float (x) / float (y)); -} - -void __operator += (inout vec2 v, const vec2 u) { - v.x += u.x, v.y += u.y; -} - -void __operator -= (inout vec2 v, const vec2 u) { - v.x -= u.x, v.y -= u.y; -} - -void __operator *= (inout vec2 v, const vec2 u) { - v.x *= u.x, v.y *= u.y; -} - -void __operator /= (inout vec2 v, const vec2 u) { - v.x /= u.x, v.y /= u.y; -} - -void __operator += (inout vec3 v, const vec3 u) { - v.x += u.x, v.y += u.y, v.z += u.z; -} - -void __operator -= (inout vec3 v, const vec3 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z; -} - -void __operator *= (inout vec3 v, const vec3 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z; -} - -void __operator /= (inout vec3 v, const vec3 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z; -} - -void __operator += (inout vec4 v, const vec4 u) { - v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; -} - -void __operator -= (inout vec4 v, const vec4 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; -} - -void __operator *= (inout vec4 v, const vec4 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; -} - -void __operator /= (inout vec4 v, const vec4 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; -} - -void __operator += (inout ivec2 v, const ivec2 u) { - v.x += u.x, v.y += u.y; -} - -void __operator -= (inout ivec2 v, const ivec2 u) { - v.x -= u.x, v.y -= u.y; -} - -void __operator *= (inout ivec2 v, const ivec2 u) { - v.x *= u.x, v.y *= u.y; -} - -void __operator /= (inout ivec2 v, const ivec2 u) { - v.x /= u.x, v.y /= u.y; -} - -void __operator += (inout ivec3 v, const ivec3 u) { - v.x += u.x, v.y += u.y, v.z += u.z; -} - -void __operator -= (inout ivec3 v, const ivec3 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z; -} - -void __operator *= (inout ivec3 v, const ivec3 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z; -} - -void __operator /= (inout ivec3 v, const ivec3 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z; -} - -void __operator += (inout ivec4 v, const ivec4 u) { - v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; -} - -void __operator -= (inout ivec4 v, const ivec4 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; -} - -void __operator *= (inout ivec4 v, const ivec4 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; -} - -void __operator /= (inout ivec4 v, const ivec4 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; -} - -void __operator += (inout mat2 m, const mat2 n) { - m[0] += n[0], m[1] += n[1]; -} - -void __operator -= (inout mat2 v, const mat2 n) { - m[0] -= n[0], m[1] -= n[1]; -} - -void __operator *= (inout mat2 m, const mat2 n) { - m = m * n; -} - -void __operator /= (inout mat2 m, const mat2 n) { - m[0] /= n[0], m[1] /= n[1]; -} - -void __operator += (inout mat3 m, const mat3 n) { - m[0] += n[0], m[1] += n[1], m[2] += n[2]; -} - -void __operator -= (inout mat3 m, const mat3 n) { - m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; -} - -void __operator *= (inout mat3 m, const mat3 n) { - m = m * n; -} - -void __operator /= (inout mat3 m, const mat3 n) { - m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; -} - -void __operator += (inout mat4 m, const mat4 n) { - m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; -} - -void __operator -= (inout mat4 m, const mat4 n) { - m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; -} - -void __operator *= (inout mat4 m, const mat4 n) { - m = m * n; -} - -void __operator /= (inout mat4 m, const mat4 n) { - m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; -} - -// -// ... or if the expression is a float, then the variable can be floating-point, a vector, or -// a matrix, ... -// - -void __operator += (inout vec2 v, const float a) { - v.x += a, v.y += a; -} - -void __operator -= (inout vec2 v, const float a) { - v.x -= a, v.y -= a; -} - -void __operator *= (inout vec2 v, const float a) { - v.x *= a, v.y *= a; -} - -void __operator /= (inout vec2 v, const float a) { - v.x /= a, v.y /= a; -} - -void __operator += (inout vec3 v, const float a) { - v.x += a, v.y += a, v.z += a; -} - -void __operator -= (inout vec3 v, const float a) { - v.x -= a, v.y -= a, v.z -= a; -} - -void __operator *= (inout vec3 v, const float a) { - v.x *= a, v.y *= a, v.z *= a; -} - -void __operator /= (inout vec3 v, const float a) { - v.x /= a, v.y /= a, v.z /= a; -} - -void __operator += (inout vec4 v, const float a) { - v.x += a, v.y += a, v.z += a, v.w += a; -} - -void __operator -= (inout vec4 v, const float a) { - v.x -= a, v.y -= a, v.z -= a, v.w -= a; -} - -void __operator *= (inout vec4 v, const float a) { - v.x *= a, v.y *= a, v.z *= a, v.w *= a; -} - -void __operator /= (inout vec4 v, const float a) { - v.x /= a, v.y /= a, v.z /= a, v.w /= a; -} - -void __operator += (inout mat2 m, const float a) { - m[0] += a, m[1] += a; -} - -void __operator -= (inout mat2 m, const float a) { - m[0] -= a, m[1] -= a; -} - -void __operator *= (inout mat2 m, const float a) { - m[0] *= a, m[1] *= a; -} - -void __operator /= (inout mat2 m, const float a) { - m[0] /= a, m[1] /= a; -} - -void __operator += (inout mat3 m, const float a) { - m[0] += a, m[1] += a, m[2] += a; -} - -void __operator -= (inout mat3 m, const float a) { - m[0] -= a, m[1] -= a, m[2] -= a; -} - -void __operator *= (inout mat3 m, const float a) { - m[0] *= a, m[1] *= a, m[2] *= a; -} - -void __operator /= (inout mat3 m, const float a) { - m[0] /= a, m[1] /= a, m[2] /= a; -} - -void __operator += (inout mat4 m, const float a) { - m[0] += a, m[1] += a, m[2] += a, m[3] += a; -} - -void __operator -= (inout mat4 m, const float a) { - m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; -} - -void __operator *= (inout mat4 m, const float a) { - m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; -} - -void __operator /= (inout mat4 m, const float a) { - m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; -} - -// -// ... or if the operation is multiply into (*=), then the variable can be a vector and the -// expression can be a matrix of matching size. -// - -void __operator *= (inout vec2 v, const mat2 m) { - v = v * m; -} - -void __operator *= (inout vec3 v, const mat3 m) { - v = v * m; -} - -void __operator *= (inout vec4 v, const mat4 m) { - v = v * m; -} - -// -// 5.9 Expressions -// -// Expressions in the shading language include the following: -// - -// -// * The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that -// operate on integer and floating-point typed expressions (including vectors and matrices). -// The two operands must be the same type, (...) Additionally, for multiply (*) (...) If one -// operand is scalar and the other is a vector or matrix, the scalar is applied component-wise -// to the vector or matrix, resulting in the same type as the vector or matrix. -// - -float __operator + (const float a, const float b) { - float c = a; - return c += b; -} - -float __operator - (const float a, const float b) { - return a + -b; -} - -float __operator * (const float a, const float b) { - float c = a; - return c *= b; -} - -float __operator / (const float a, const float b) { - float c = a; - return c /= b; -} - -int __operator + (const int a, const int b) { - int c = a; - return c += b; -} - -int __operator - (const int x, const int y) { - return x + -y; -} - -int __operator * (const int x, const int y) { - int z = x; - return z *= y; -} - -int __operator / (const int x, const int y) { - int z = x; - return z /= y; -} - -vec2 __operator + (const vec2 v, const vec2 u) { - return vec2 (v.x + u.x, v.y + u.y); -} - -vec2 __operator - (const vec2 v, const vec2 u) { - return vec2 (v.x - u.x, v.y - u.y); -} - -vec3 __operator + (const vec3 v, const vec3 u) { - return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); -} - -vec3 __operator - (const vec3 v, const vec3 u) { - return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); -} - -vec4 __operator + (const vec4 v, const vec4 u) { - return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); -} - -vec4 __operator - (const vec4 v, const vec4 u) { - return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); -} - -ivec2 __operator + (const ivec2 v, const ivec2 u) { - return ivec2 (v.x + u.x, v.y + u.y); -} - -ivec2 __operator - (const ivec2 v, const ivec2 u) { - return ivec2 (v.x - u.x, v.y - u.y); -} - -ivec3 __operator + (const ivec3 v, const ivec3 u) { - return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); -} - -ivec3 __operator - (const ivec3 v, const ivec3 u) { - return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); -} - -ivec4 __operator + (const ivec4 v, const ivec4 u) { - return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); -} - -ivec4 __operator - (const ivec4 v, const ivec4 u) { - return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); -} - -mat2 __operator + (const mat2 m, const mat2 n) { - return mat2 (m[0] + n[0], m[1] + n[1]); -} - -mat2 __operator - (const mat2 m, const mat2 n) { - return mat2 (m[0] - n[0], m[1] - n[1]); -} - -mat3 __operator + (const mat3 m, const mat3 n) { - return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); -} - -mat3 __operator - (const mat3 m, const mat3 n) { - return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); -} - -mat4 __operator + (const mat4 m, const mat4 n) { - return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); -} - -mat4 __operator - (const mat4 m, const mat4 n) { - return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); -} - -// -// ... or one can be a scalar float and the other a float vector or matrix, ... -// - -vec2 __operator + (const float a, const vec2 u) { - return vec2 (a + u.x, a + u.y); -} - -vec2 __operator + (const vec2 v, const float b) { - return vec2 (v.x + b, v.y + b); -} - -vec2 __operator - (const float a, const vec2 u) { - return vec2 (a - u.x, a - u.y); -} - -vec2 __operator - (const vec2 v, const float b) { - return vec2 (v.x - b, v.y - b); -} - -vec2 __operator * (const float a, const vec2 u) { - return vec2 (a * u.x, a * u.y); -} - -vec2 __operator * (const vec2 v, const float b) { - return vec2 (v.x * b, v.y * b); -} - -vec2 __operator / (const float a, const vec2 u) { - return vec2 (a / u.x, a / u.y); -} - -vec2 __operator / (const vec2 v, const float b) { - return vec2 (v.x / b, v.y / b); -} - -vec3 __operator + (const float a, const vec3 u) { - return vec3 (a + u.x, a + u.y, a + u.z); -} - -vec3 __operator + (const vec3 v, const float b) { - return vec3 (v.x + b, v.y + b, v.z + b); -} - -vec3 __operator - (const float a, const vec3 u) { - return vec3 (a - u.x, a - u.y, a - u.z); -} - -vec3 __operator - (const vec3 v, const float b) { - return vec3 (v.x - b, v.y - b, v.z - b); -} - -vec3 __operator * (const float a, const vec3 u) { - return vec3 (a * u.x, a * u.y, a * u.z); -} - -vec3 __operator * (const vec3 v, const float b) { - return vec3 (v.x * b, v.y * b, v.z * b); -} - -vec3 __operator / (const float a, const vec3 u) { - return vec3 (a / u.x, a / u.y, a / u.z); -} - -vec3 __operator / (const vec3 v, const float b) { - return vec3 (v.x / b, v.y / b, v.z / b); -} - -vec4 __operator + (const float a, const vec4 u) { - return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); -} - -vec4 __operator + (const vec4 v, const float b) { - return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); -} - -vec4 __operator - (const float a, const vec4 u) { - return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); -} - -vec4 __operator - (const vec4 v, const float b) { - return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); -} - -vec4 __operator * (const float a, const vec4 u) { - return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); -} - -vec4 __operator * (const vec4 v, const float b) { - return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); -} - -vec4 __operator / (const float a, const vec4 u) { - return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); -} - -vec4 __operator / (const vec4 v, const float b) { - return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); -} - -mat2 __operator + (const float a, const mat2 n) { - return mat2 (a + n[0], a + n[1]); -} - -mat2 __operator + (const mat2 m, const float b) { - return mat2 (m[0] + b, m[1] + b); -} - -mat2 __operator - (const float a, const mat2 n) { - return mat2 (a - n[0], a - n[1]); -} - -mat2 __operator - (const mat2 m, const float b) { - return mat2 (m[0] - b, m[1] - b); -} - -mat2 __operator * (const float a, const mat2 n) { - return mat2 (a * n[0], a * n[1]); -} - -mat2 __operator * (const mat2 m, const float b) { - return mat2 (m[0] * b, m[1] * b); -} - -mat2 __operator / (const float a, const mat2 n) { - return mat2 (a / n[0], a / n[1]); -} - -mat2 __operator / (const mat2 m, const float b) { - return mat2 (m[0] / b, m[1] / b); -} - -mat3 __operator + (const float a, const mat3 n) { - return mat3 (a + n[0], a + n[1], a + n[2]); -} - -mat3 __operator + (const mat3 m, const float b) { - return mat3 (m[0] + b, m[1] + b, m[2] + b); -} - -mat3 __operator - (const float a, const mat3 n) { - return mat3 (a - n[0], a - n[1], a - n[2]); -} - -mat3 __operator - (const mat3 m, const float b) { - return mat3 (m[0] - b, m[1] - b, m[2] - b); -} - -mat3 __operator * (const float a, const mat3 n) { - return mat3 (a * n[0], a * n[1], a * n[2]); -} - -mat3 __operator * (const mat3 m, const float b) { - return mat3 (m[0] * b, m[1] * b, m[2] * b); -} - -mat3 __operator / (const float a, const mat3 n) { - return mat3 (a / n[0], a / n[1], a / n[2]); -} - -mat3 __operator / (const mat3 m, const float b) { - return mat3 (m[0] / b, m[1] / b, m[2] / b); -} - -mat4 __operator + (const float a, const mat4 n) { - return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); -} - -mat4 __operator + (const mat4 m, const float b) { - return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); -} - -mat4 __operator - (const float a, const mat4 n) { - return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); -} - -mat4 __operator - (const mat4 m, const float b) { - return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); -} - -mat4 __operator * (const float a, const mat4 n) { - return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); -} - -mat4 __operator * (const mat4 m, const float b) { - return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); -} - -mat4 __operator / (const float a, const mat4 n) { - return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); -} - -mat4 __operator / (const mat4 m, const float b) { - return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); -} - -// -// ... or one can be a scalar integer and the other an integer vector. -// - -ivec2 __operator + (const int a, const ivec2 u) { - return ivec2 (a + u.x, a + u.y); -} - -ivec2 __operator + (const ivec2 v, const int b) { - return ivec2 (v.x + b, v.y + b); -} - -ivec2 __operator - (const int a, const ivec2 u) { - return ivec2 (a - u.x, a - u.y); -} - -ivec2 __operator - (const ivec2 v, const int b) { - return ivec2 (v.x - b, v.y - b); -} - -ivec2 __operator * (const int a, const ivec2 u) { - return ivec2 (a * u.x, a * u.y); -} - -ivec2 __operator * (const ivec2 v, const int b) { - return ivec2 (v.x * b, v.y * b); -} - -ivec2 __operator / (const int a, const ivec2 u) { - return ivec2 (a / u.x, a / u.y); -} - -ivec2 __operator / (const ivec2 v, const int b) { - return ivec2 (v.x / b, v.y / b); -} - -ivec3 __operator + (const int a, const ivec3 u) { - return ivec3 (a + u.x, a + u.y, a + u.z); -} - -ivec3 __operator + (const ivec3 v, const int b) { - return ivec3 (v.x + b, v.y + b, v.z + b); -} - -ivec3 __operator - (const int a, const ivec3 u) { - return ivec3 (a - u.x, a - u.y, a - u.z); -} - -ivec3 __operator - (const ivec3 v, const int b) { - return ivec3 (v.x - b, v.y - b, v.z - b); -} - -ivec3 __operator * (const int a, const ivec3 u) { - return ivec3 (a * u.x, a * u.y, a * u.z); -} - -ivec3 __operator * (const ivec3 v, const int b) { - return ivec3 (v.x * b, v.y * b, v.z * b); -} - -ivec3 __operator / (const int a, const ivec3 u) { - return ivec3 (a / u.x, a / u.y, a / u.z); -} - -ivec3 __operator / (const ivec3 v, const int b) { - return ivec3 (v.x / b, v.y / b, v.z / b); -} - -ivec4 __operator + (const int a, const ivec4 u) { - return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w); -} - -ivec4 __operator + (const ivec4 v, const int b) { - return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b); -} - -ivec4 __operator - (const int a, const ivec4 u) { - return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w); -} - -ivec4 __operator - (const ivec4 v, const int b) { - return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b); -} - -ivec4 __operator * (const int a, const ivec4 u) { - return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w); -} - -ivec4 __operator * (const ivec4 v, const int b) { - return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b); -} - -ivec4 __operator / (const int a, const ivec4 u) { - return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w); -} - -ivec4 __operator / (const ivec4 v, const int b) { - return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b); -} - -// -// Additionally, for multiply (*) one can be a vector and the other a matrix with the same -// dimensional size of the vector. These result in the same fundamental type (integer or float) -// as the expressions they operate on. -// -// [When:] -// * the left argument is a floating-point vector and the right is a matrix with a compatible -// dimension in which case the * operator will do a row vector matrix multiplication. -// * the left argument is a matrix and the right is a floating-point vector with a compatible -// dimension in which case the * operator will do a column vector matrix multiplication. -// - -vec2 __operator * (const mat2 m, const vec2 v) { - return vec2 ( - v.x * m[0].x + v.y * m[1].x, - v.x * m[0].y + v.y * m[1].y - ); -} - -vec2 __operator * (const vec2 v, const mat2 m) { - return vec2 ( - v.x * m[0].x + v.y * m[0].y, - v.x * m[1].x + v.y * m[1].y - ); -} - -vec3 __operator * (const mat3 m, const vec3 v) { - return vec3 ( - v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, - v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, - v.x * m[0].z + v.y * m[1].z + v.z * m[2].z - ); -} - -vec3 __operator * (const vec3 v, const mat3 m) { - return vec3 ( - v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, - v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, - v.x * m[2].x + v.y * m[2].y + v.z * m[2].z - ); -} - -vec4 __operator * (const mat4 m, const vec4 v) { - return vec4 ( - v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, - v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, - v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, - v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w - ); -} - -vec4 __operator * (const vec4 v, const mat4 m) { - return vec4 ( - v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, - v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, - v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, - v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w - ); -} - -// -// Multiply (*) applied to two vectors yields a component-wise multiply. -// - -vec2 __operator * (const vec2 v, const vec2 u) { - return vec2 (v.x * u.x, v.y * u.y); -} - -vec3 __operator * (const vec3 v, const vec3 u) { - return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); -} - -vec4 __operator * (const vec4 v, const vec4 u) { - return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); -} - -ivec2 __operator * (const ivec2 v, const ivec2 u) { - return ivec2 (v.x * u.x, v.y * u.y); -} - -ivec3 __operator * (const ivec3 v, const ivec3 u) { - return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); -} - -ivec4 __operator * (const ivec4 v, const ivec4 u) { - return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); -} - -// -// Dividing by zero does not cause an exception but does result in an unspecified value. -// - -vec2 __operator / (const vec2 v, const vec2 u) { - return vec2 (v.x / u.x, v.y / u.y); -} - -vec3 __operator / (const vec3 v, const vec3 u) { - return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); -} - -vec4 __operator / (const vec4 v, const vec4 u) { - return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); -} - -ivec2 __operator / (const ivec2 v, const ivec2 u) { - return ivec2 (v.x / u.x, v.y / u.y); -} - -ivec3 __operator / (const ivec3 v, const ivec3 u) { - return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); -} - -ivec4 __operator / (const ivec4 v, const ivec4 u) { - return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); -} - -mat2 __operator / (const mat2 m, const mat2 n) { - return mat2 (m[0] / n[0], m[1] / n[1]); -} - -mat3 __operator / (const mat3 m, const mat3 n) { - return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); -} - -mat4 __operator / (const mat4 m, const mat4 n) { - return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); -} - -// -// Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not -// a component-wise multiply. -// - -mat2 __operator * (const mat2 m, const mat2 n) { - return mat2 (m * n[0], m * n[1]); -} - -mat3 __operator * (const mat3 m, const mat3 n) { - return mat3 (m * n[0], m * n[1], m * n[2]); -} - -mat4 __operator * (const mat4 m, const mat4 n) { - return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); -} - -// -// * The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and -// ++) that operate on integer or floating-point values (including vectors and matrices). These -// result with the same type they operated on. For post- and pre-increment and decrement, the -// expression must be one that could be assigned to (an l-value). Pre-increment and predecrement -// add or subtract 1 or 1.0 to the contents of the expression they operate on, and the -// value of the pre-increment or pre-decrement expression is the resulting value of that -// modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to -// the contents of the expression they operate on, but the resulting expression has the -// expression's value before the post-increment or post-decrement was executed. -// -// [NOTE: postfix increment and decrement operators take additional dummy int parameter to -// distinguish their prototypes from prefix ones.] -// - -float __operator - (const float a) { - float c; - __asm float_negate c, a; - return c; -} - -int __operator - (const int a) { - return int (-float (a)); -} - -vec2 __operator - (const vec2 v) { - return vec2 (-v.x, -v.y); -} - -vec3 __operator - (const vec3 v) { - return vec3 (-v.x, -v.y, -v.z); -} - -vec4 __operator - (const vec4 v) { - return vec4 (-v.x, -v.y, -v.z, -v.w); -} - -ivec2 __operator - (const ivec2 v) { - return ivec2 (-v.x, -v.y); -} - -ivec3 __operator - (const ivec3 v) { - return ivec3 (-v.x, -v.y, -v.z); -} - -ivec4 __operator - (const ivec4 v) { - return ivec4 (-v.x, -v.y, -v.z, -v.w); -} - -mat2 __operator - (const mat2 m) { - return mat2 (-m[0], -m[1]); -} - -mat3 __operator - (const mat3 m) { - return mat3 (-m[0], -m[1], -m[2]); -} - -mat4 __operator - (const mat4 m) { - return mat4 (-m[0], -m[1], -m[2], -m[3]); -} - -void __operator -- (inout float a) { - a -= 1.0; -} - -void __operator -- (inout int a) { - a -= 1; -} - -void __operator -- (inout vec2 v) { - --v.x, --v.y; -} - -void __operator -- (inout vec3 v) { - --v.x, --v.y, --v.z; -} - -void __operator -- (inout vec4 v) { - --v.x, --v.y, --v.z, --v.w; -} - -void __operator -- (inout ivec2 v) { - --v.x, --v.y; -} - -void __operator -- (inout ivec3 v) { - --v.x, --v.y, --v.z; -} - -void __operator -- (inout ivec4 v) { - --v.x, --v.y, --v.z, --v.w; -} - -void __operator -- (inout mat2 m) { - --m[0], --m[1]; -} - -void __operator -- (inout mat3 m) { - --m[0], --m[1], --m[2]; -} - -void __operator -- (inout mat4 m) { - --m[0], --m[1], --m[2], --m[3]; -} - -void __operator ++ (inout float a) { - a += 1.0; -} - -void __operator ++ (inout int a) { - a += 1; -} - -void __operator ++ (inout vec2 v) { - ++v.x, ++v.y; -} - -void __operator ++ (inout vec3 v) { - ++v.x, ++v.y, ++v.z; -} - -void __operator ++ (inout vec4 v) { - ++v.x, ++v.y, ++v.z, ++v.w; -} - -void __operator ++ (inout ivec2 v) { - ++v.x, ++v.y; -} - -void __operator ++ (inout ivec3 v) { - ++v.x, ++v.y, ++v.z; -} - -void __operator ++ (inout ivec4 v) { - ++v.x, ++v.y, ++v.z, ++v.w; -} - -void __operator ++ (inout mat2 m) { - ++m[0], ++m[1]; -} - -void __operator ++ (inout mat3 m) { - ++m[0], ++m[1], ++m[2]; -} - -void __operator ++ (inout mat4 m) { - ++m[0], ++m[1], ++m[2], ++m[3]; -} - -float __operator -- (inout float a, const int) { - const float c = a; - --a; - return c; -} - -int __operator -- (inout int a, const int) { - const int c = a; - --a; - return c; -} - -vec2 __operator -- (inout vec2 v, const int) { - return vec2 (v.x--, v.y--); -} - -vec3 __operator -- (inout vec3 v, const int) { - return vec3 (v.x--, v.y--, v.z--); -} - -vec4 __operator -- (inout vec4 v, const int) { - return vec4 (v.x--, v.y--, v.z--, v.w--); -} - -ivec2 __operator -- (inout ivec2 v, const int) { - return ivec2 (v.x--, v.y--); -} - -ivec3 __operator -- (inout ivec3 v, const int) { - return ivec3 (v.x--, v.y--, v.z--); -} - -ivec4 __operator -- (inout ivec4 v, const int) { - return ivec4 (v.x--, v.y--, v.z--, v.w--); -} - -mat2 __operator -- (inout mat2 m, const int) { - return mat2 (m[0]--, m[1]--); -} - -mat3 __operator -- (inout mat3 m, const int) { - return mat3 (m[0]--, m[1]--, m[2]--); -} - -mat4 __operator -- (inout mat4 m, const int) { - return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); -} - -float __operator ++ (inout float a, const int) { - const float c = a; - ++a; - return c; -} - -int __operator ++ (inout int a, const int) { - const int c = a; - ++a; - return c; -} - -vec2 __operator ++ (inout vec2 v, const int) { - return vec2 (v.x++, v.y++); -} - -vec3 __operator ++ (inout vec3 v, const int) { - return vec3 (v.x++, v.y++, v.z++); -} - -vec4 __operator ++ (inout vec4 v, const int) { - return vec4 (v.x++, v.y++, v.z++, v.w++); -} - -ivec2 __operator ++ (inout ivec2 v, const int) { - return ivec2 (v.x++, v.y++); -} - -ivec3 __operator ++ (inout ivec3 v, const int) { - return ivec3 (v.x++, v.y++, v.z++); -} - -ivec4 __operator ++ (inout ivec4 v, const int) { - return ivec4 (v.x++, v.y++, v.z++, v.w++); -} - -mat2 __operator ++ (inout mat2 m, const int) { - return mat2 (m[0]++, m[1]++); -} - -mat3 __operator ++ (inout mat3 m, const int) { - return mat3 (m[0]++, m[1]++, m[2]++); -} - -mat4 __operator ++ (inout mat4 m, const int) { - return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); -} - -// -// * The relational operators greater than (>), less than (<), greater than or equal (>=), and less -// than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The -// result is scalar Boolean. The operands' types must match. To do component-wise -// comparisons on vectors, use the built-in functions lessThan, lessThanEqual, -// greaterThan, and greaterThanEqual. -// - -bool __operator < (const float a, const float b) { - bool c; - __asm float_less c, a, b; - return c; -} - -bool __operator < (const int a, const int b) { - return float (a) < float (b); -} - -bool __operator > (const float a, const float b) { - return b < a; -} - -bool __operator > (const int a, const int b) { - return b < a; -} - -bool __operator >= (const float a, const float b) { - return a > b || a == b; -} - -bool __operator >= (const int a, const int b) { - return a > b || a == b; -} - -bool __operator <= (const float a, const float b) { - return a < b || a == b; -} - -bool __operator <= (const int a, const int b) { - return a < b || a == b; -} - -// -// * The equality operators equal (==), and not equal (!=) operate on all types except arrays. -// They result in a scalar Boolean. For vectors, matrices, and structures, all components of the -// operands must be equal for the operands to be considered equal. To get component-wise -// equality results for vectors, use the built-in functions equal and notEqual. -// - -bool __operator == (const float a, const float b) { - bool c; - __asm float_equal c, a, b; - return c; -} - -bool __operator == (const int a, const int b) { - return float (a) == float (b); -} - -bool __operator == (const bool a, const bool b) { - return float (a) == float (b); -} - -bool __operator == (const vec2 v, const vec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const vec3 v, const vec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const vec4 v, const vec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const ivec2 v, const ivec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const ivec3 v, const ivec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const ivec4 v, const ivec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const bvec2 v, const bvec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const bvec3 v, const bvec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const bvec4 v, const bvec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const mat2 m, const mat2 n) { - return m[0] == n[0] && m[1] == n[1]; -} - -bool __operator == (const mat3 m, const mat3 n) { - return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; -} - -bool __operator == (const mat4 m, const mat4 n) { - return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; -} - -bool __operator != (const float a, const float b) { - return !(a == b); -} - -bool __operator != (const int a, const int b) { - return !(a == b); -} - -bool __operator != (const bool a, const bool b) { - return !(a == b); -} - -bool __operator != (const vec2 v, const vec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const vec3 v, const vec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const vec4 v, const vec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const ivec2 v, const ivec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const ivec3 v, const ivec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const ivec4 v, const ivec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const bvec2 v, const bvec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const bvec3 v, const bvec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const bvec4 v, const bvec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const mat2 m, const mat2 n) { - return m[0] != n[0] || m[1] != n[1]; -} - -bool __operator != (const mat3 m, const mat3 n) { - return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; -} - -bool __operator != (const mat4 m, const mat4 n) { - return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; -} - -// -// * The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only -// on two Boolean expressions and result in a Boolean expression. And (&&) will only -// evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will -// only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or -// (^^) will always evaluate both operands. -// - -bool __operator ^^ (const bool a, const bool b) { - return a != b; -} - -// -// [These operators are handled internally by the compiler:] -// -// bool __operator && (bool a, bool b) { -// return a ? b : false; -// } -// bool __operator || (bool a, bool b) { -// return a ? true : b; -// } -// - -// -// * The logical unary operator not (!). It operates only on a Boolean expression and results in a -// Boolean expression. To operate on a vector, use the built-in function not. -// - -bool __operator ! (const bool a) { - return a == false; -} +// destination variable identifier.
+//
+// It is up to the implementation how to define a particular operator or constructor. If it is
+// expected to being used rarely, it can be defined in terms of other operators and constructors,
+// for example:
+//
+// ivec2 __operator + (const ivec2 x, const ivec2 y) {
+// return ivec2 (x[0] + y[0], x[1] + y[1]);
+// }
+//
+// If a particular operator or constructor is expected to be used very often or is an atomic
+// operation (that is, an operation that cannot be expressed in terms of other operations or
+// would create a dependency cycle) it must be defined using one or more __asm constructs.
+//
+// Each implementation must define constructors for all scalar types (bool, float, int).
+// There are 9 scalar-to-scalar constructors (including identity constructors). However,
+// since the language introduces special constructors (like matrix constructor with a single
+// scalar value), implementations must also implement these cases.
+// The compiler provides the following algorithm when resolving a constructor:
+// - try to find a constructor with a prototype matching ours,
+// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error,
+// - if a constructor is found, execute it and return,
+// - count the size of the constructor parameter list - if it is less than the size of
+// our constructor's type, raise an error,
+// - for each parameter in the list do a recursive constructor matching for appropriate
+// scalar fields in the constructed variable,
+//
+// Each implementation must also define a set of operators that deal with built-in data types.
+// There are four kinds of operators:
+// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence)
+// and "?:" (selection).
+// 2) Operators that are implemented by the compiler by expressing it in terms of other operators:
+// - "." (field selection) - translated to subscript access,
+// - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false",
+// - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>",
+// 3) Operators that can be defined by the implementation and if the required prototype is not
+// found, standard behaviour is used:
+// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one;
+// note that at least operators for scalar data types must be defined by the implementation
+// to get it work,
+// 4) All other operators not mentioned above. If no required prototype is found, an error is
+// raised. An implementation must follow the language specification to provide all valid
+// operator prototypes.
+//
+
+int __constructor (const float _f) {
+ int _i;
+ __asm float_to_int _i, _f;
+ return _i;
+}
+
+bool __constructor (const int _i) {
+ return _i != 0;
+}
+
+bool __constructor (const float _f) {
+ return _f != 0.0;
+}
+
+int __constructor (const bool _b) {
+ return _b ? 1 : 0;
+}
+
+float __constructor (const bool _b) {
+ return _b ? 1.0 : 0.0;
+}
+
+float __constructor (const int _i) {
+ float _f;
+ __asm int_to_float _f, _i;
+ return _f;
+}
+
+bool __constructor (const bool _b) {
+ return _b;
+}
+
+int __constructor (const int _i) {
+ return _i;
+}
+
+float __constructor (const float _f) {
+ return _f;
+}
+
+vec2 __constructor (const float _f) {
+ return vec2 (_f, _f);
+}
+
+vec2 __constructor (const int _i) {
+ return vec2 (_i, _i);
+}
+
+vec2 __constructor (const bool _b) {
+ return vec2 (_b, _b);
+}
+
+vec3 __constructor (const float _f) {
+ return vec3 (_f, _f, _f);
+}
+
+vec3 __constructor (const int _i) {
+ return vec3 (_i, _i, _i);
+}
+
+vec3 __constructor (const bool _b) {
+ return vec3 (_b, _b, _b);
+}
+
+vec4 __constructor (const float _f) {
+ return vec4 (_f, _f, _f, _f);
+}
+
+vec4 __constructor (const int _i) {
+ return vec4 (_i, _i, _i, _i);
+}
+
+vec4 __constructor (const bool _b) {
+ return vec4 (_b, _b, _b, _b);
+}
+
+ivec2 __constructor (const int _i) {
+ return ivec2 (_i, _i);
+}
+
+ivec2 __constructor (const float _f) {
+ return ivec2 (_f, _f);
+}
+
+ivec2 __constructor (const bool _b) {
+ return ivec2 (_b, _b);
+}
+
+ivec3 __constructor (const int _i) {
+ return ivec3 (_i, _i, _i);
+}
+
+ivec3 __constructor (const float _f) {
+ return ivec3 (_f, _f, _f);
+}
+
+ivec3 __constructor (const bool _b) {
+ return ivec3 (_b, _b, _b);
+}
+
+ivec4 __constructor (const int _i) {
+ return ivec4 (_i, _i, _i, _i);
+}
+
+ivec4 __constructor (const float _f) {
+ return ivec4 (_f, _f, _f, _f);
+}
+
+ivec4 __constructor (const bool _b) {
+ return ivec4 (_b, _b, _b, _b);
+}
+
+bvec2 __constructor (const bool _b) {
+ return bvec2 (_b, _b);
+}
+
+bvec2 __constructor (const float _f) {
+ return bvec2 (_f, _f);
+}
+
+bvec2 __constructor (const int _i) {
+ return bvec2 (_i, _i);
+}
+
+bvec3 __constructor (const bool _b) {
+ return bvec3 (_b, _b, _b);
+}
+
+bvec3 __constructor (const float _f) {
+ return bvec3 (_f, _f, _f);
+}
+
+bvec3 __constructor (const int _i) {
+ return bvec3 (_i, _i, _i);
+}
+
+bvec4 __constructor (const bool _b) {
+ return bvec4 (_b, _b, _b, _b);
+}
+
+bvec4 __constructor (const float _f) {
+ return bvec4 (_f, _f, _f, _f);
+}
+
+bvec4 __constructor (const int _i) {
+ return bvec4 (_i, _i, _i, _i);
+}
+
+mat2 __constructor (const float _f) {
+ return mat2 (
+ _f, .0,
+ .0, _f
+ );
+}
+
+mat2 __constructor (const int _i) {
+ return mat2 (
+ _i, .0,
+ .0, _i
+ );
+}
+
+mat2 __constructor (const bool _b) {
+ return mat2 (
+ _b, .0,
+ .0, _b
+ );
+}
+
+mat3 __constructor (const float _f) {
+ return mat3 (
+ _f, .0, .0,
+ .0, _f, .0,
+ .0, .0, _f
+ );
+}
+
+mat3 __constructor (const int _i) {
+ return mat3 (
+ _i, .0, .0,
+ .0, _i, .0,
+ .0, .0, _i
+ );
+}
+
+mat3 __constructor (const bool _b) {
+ return mat3 (
+ _b, .0, .0,
+ .0, _b, .0,
+ .0, .0, _b
+ );
+}
+
+mat4 __constructor (const float _f) {
+ return mat4 (
+ _f, .0, .0, .0,
+ .0, _f, .0, .0,
+ .0, .0, _f, .0,
+ .0, .0, .0, _f
+ );
+}
+
+mat4 __constructor (const int _i) {
+ return mat4 (
+ _i, .0, .0, .0,
+ .0, _i, .0, .0,
+ .0, .0, _i, .0,
+ .0, .0, .0, _i
+ );
+}
+
+mat4 __constructor (const bool _b) {
+ return mat4 (
+ _b, .0, .0, .0,
+ .0, _b, .0, .0,
+ .0, .0, _b, .0,
+ .0, .0, .0, _b
+ );
+}
+
+//void __operator = (out float a, const float b) {
+// __asm float_copy a, b;
+//}
+//
+//void __operator = (out int a, const int b) {
+// __asm int_copy a, b;
+//}
+//
+//void __operator = (out bool a, const bool b) {
+// __asm bool_copy a, b;
+//}
+//
+//void __operator = (out vec2 v, const vec2 u) {
+// v.x = u.x, v.y = u.y;
+//}
+//
+//void __operator = (out vec3 v, const vec3 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z;
+//}
+//
+//void __operator = (out vec4 v, const vec4 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
+//}
+//
+//void __operator = (out ivec2 v, const ivec2 u) {
+// v.x = u.x, v.y = u.y;
+//}
+//
+//void __operator = (out ivec3 v, const ivec3 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z;
+//}
+//
+//void __operator = (out ivec4 v, const ivec4 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
+//}
+//
+//void __operator = (out bvec2 v, const bvec2 u) {
+// v.x = u.x, v.y = u.y;
+//}
+//
+//void __operator = (out bvec3 v, const bvec3 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z;
+//}
+//
+//void __operator = (out bvec4 v, const bvec4 u) {
+// v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
+//}
+//
+//void __operator = (out mat2 m, const mat2 n) {
+// m[0] = n[0], m[1] = n[1];
+//}
+//
+//void __operator = (out mat3 m, const mat3 n) {
+// m[0] = n[0], m[1] = n[1], m[2] = n[2];
+//}
+//
+//void __operator = (out mat4 m, const mat4 n) {
+// m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];
+//}
+
+void __operator += (inout float a, const float b) {
+ __asm float_add a, a, b;
+}
+
+float __operator - (const float a) {
+ float c;
+ __asm float_negate c, a;
+ return c;
+}
+
+void __operator -= (inout float a, const float b) {
+ a += -b;
+}
+
+void __operator *= (inout float a, const float b) {
+ __asm float_multiply a, a, b;
+}
+
+void __operator /= (inout float a, const float b) {
+ __asm float_divide a, a, b;
+}
+
+float __operator + (const float a, const float b) {
+ float c;
+ c = a;
+ return c += b;
+}
+
+void __operator += (inout int a, const int b) {
+ a = int (float (a) + float (b));
+}
+
+int __operator - (const int a) {
+ return int (-float (a));
+}
+
+void __operator -= (inout int a, const int b) {
+ a += -b;
+}
+
+float __operator * (const float a, const float b) {
+ float c;
+ c = a;
+ return c *= b;
+}
+
+void __operator *= (inout int a, const int b) {
+ a = int (float (a) * float (b));
+}
+
+float __operator / (const float a, const float b) {
+ float c;
+ c = a;
+ return c /= b;
+}
+
+void __operator /= (inout int a, const int b) {
+ a = int (float (a) / float (b));
+}
+
+void __operator += (inout vec2 v, const vec2 u) {
+ v.x += u.x, v.y += u.y;
+}
+
+void __operator -= (inout vec2 v, const vec2 u) {
+ v.x -= u.x, v.y -= u.y;
+}
+
+void __operator *= (inout vec2 v, const vec2 u) {
+ v.x *= u.x, v.y *= u.y;
+}
+
+void __operator /= (inout vec2 v, const vec2 u) {
+ v.x /= u.x, v.y /= u.y;
+}
+
+void __operator += (inout vec3 v, const vec3 u) {
+ v.x += u.x, v.y += u.y, v.z += u.z;
+}
+
+void __operator -= (inout vec3 v, const vec3 u) {
+ v.x -= u.x, v.y -= u.y, v.z -= u.z;
+}
+
+void __operator *= (inout vec3 v, const vec3 u) {
+ v.x *= u.x, v.y *= u.y, v.z *= u.z;
+}
+
+void __operator /= (inout vec3 v, const vec3 u) {
+ v.x /= u.x, v.y /= u.y, v.z /= u.z;
+}
+
+void __operator += (inout vec4 v, const vec4 u) {
+ v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
+}
+
+void __operator -= (inout vec4 v, const vec4 u) {
+ v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
+}
+
+void __operator *= (inout vec4 v, const vec4 u) {
+ v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
+}
+
+void __operator /= (inout vec4 v, const vec4 u) {
+ v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
+}
+
+void __operator += (inout ivec2 v, const ivec2 u) {
+ v.x += u.x, v.y += u.y;
+}
+
+void __operator -= (inout ivec2 v, const ivec2 u) {
+ v.x -= u.x, v.y -= u.y;
+}
+
+void __operator *= (inout ivec2 v, const ivec2 u) {
+ v.x *= u.x, v.y *= u.y;
+}
+
+void __operator /= (inout ivec2 v, const ivec2 u) {
+ v.x /= u.x, v.y /= u.y;
+}
+
+void __operator += (inout ivec3 v, const ivec3 u) {
+ v.x += u.x, v.y += u.y, v.z += u.z;
+}
+
+void __operator -= (inout ivec3 v, const ivec3 u) {
+ v.x -= u.x, v.y -= u.y, v.z -= u.z;
+}
+
+void __operator *= (inout ivec3 v, const ivec3 u) {
+ v.x *= u.x, v.y *= u.y, v.z *= u.z;
+}
+
+void __operator /= (inout ivec3 v, const ivec3 u) {
+ v.x /= u.x, v.y /= u.y, v.z /= u.z;
+}
+
+void __operator += (inout ivec4 v, const ivec4 u) {
+ v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
+}
+
+void __operator -= (inout ivec4 v, const ivec4 u) {
+ v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
+}
+
+void __operator *= (inout ivec4 v, const ivec4 u) {
+ v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
+}
+
+void __operator /= (inout ivec4 v, const ivec4 u) {
+ v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
+}
+
+void __operator += (inout mat2 m, const mat2 n) {
+ m[0] += n[0], m[1] += n[1];
+}
+
+void __operator -= (inout mat2 m, const mat2 n) {
+ m[0] -= n[0], m[1] -= n[1];
+}
+
+vec2 __operator * (const mat2 m, const vec2 v) {
+ return vec2 (
+ v.x * m[0].x + v.y * m[1].x,
+ v.x * m[0].y + v.y * m[1].y
+ );
+}
+
+mat2 __operator * (const mat2 m, const mat2 n) {
+ return mat2 (m * n[0], m * n[1]);
+}
+
+void __operator *= (inout mat2 m, const mat2 n) {
+ m = m * n;
+}
+
+void __operator /= (inout mat2 m, const mat2 n) {
+ m[0] /= n[0], m[1] /= n[1];
+}
+
+void __operator += (inout mat3 m, const mat3 n) {
+ m[0] += n[0], m[1] += n[1], m[2] += n[2];
+}
+
+void __operator -= (inout mat3 m, const mat3 n) {
+ m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];
+}
+
+vec3 __operator * (const mat3 m, const vec3 v) {
+ return vec3 (
+ v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,
+ v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,
+ v.x * m[0].z + v.y * m[1].z + v.z * m[2].z
+ );
+}
+
+mat3 __operator * (const mat3 m, const mat3 n) {
+ return mat3 (m * n[0], m * n[1], m * n[2]);
+}
+
+void __operator *= (inout mat3 m, const mat3 n) {
+ m = m * n;
+}
+
+void __operator /= (inout mat3 m, const mat3 n) {
+ m[0] /= n[0], m[1] /= n[1], m[2] /= n[2];
+}
+
+void __operator += (inout mat4 m, const mat4 n) {
+ m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3];
+}
+
+void __operator -= (inout mat4 m, const mat4 n) {
+ m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];
+}
+
+vec4 __operator * (const mat4 m, const vec4 v) {
+ return vec4 (
+ v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,
+ v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,
+ v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,
+ v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w
+ );
+}
+
+mat4 __operator * (const mat4 m, const mat4 n) {
+ return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);
+}
+
+void __operator *= (inout mat4 m, const mat4 n) {
+ m = m * n;
+}
+
+void __operator /= (inout mat4 m, const mat4 n) {
+ m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];
+}
+
+void __operator += (inout vec2 v, const float a) {
+ v.x += a, v.y += a;
+}
+
+void __operator -= (inout vec2 v, const float a) {
+ v.x -= a, v.y -= a;
+}
+
+void __operator *= (inout vec2 v, const float a) {
+ v.x *= a, v.y *= a;
+}
+
+void __operator /= (inout vec2 v, const float a) {
+ v.x /= a, v.y /= a;
+}
+
+void __operator += (inout vec3 v, const float a) {
+ v.x += a, v.y += a, v.z += a;
+}
+
+void __operator -= (inout vec3 v, const float a) {
+ v.x -= a, v.y -= a, v.z -= a;
+}
+
+void __operator *= (inout vec3 v, const float a) {
+ v.x *= a, v.y *= a, v.z *= a;
+}
+
+void __operator /= (inout vec3 v, const float a) {
+ v.x /= a, v.y /= a, v.z /= a;
+}
+
+void __operator += (inout vec4 v, const float a) {
+ v.x += a, v.y += a, v.z += a, v.w += a;
+}
+
+void __operator -= (inout vec4 v, const float a) {
+ v.x -= a, v.y -= a, v.z -= a, v.w -= a;
+}
+
+void __operator *= (inout vec4 v, const float a) {
+ v.x *= a, v.y *= a, v.z *= a, v.w *= a;
+}
+
+void __operator /= (inout vec4 v, const float a) {
+ v.x /= a, v.y /= a, v.z /= a, v.w /= a;
+}
+
+void __operator += (inout mat2 m, const float a) {
+ m[0] += a, m[1] += a;
+}
+
+void __operator -= (inout mat2 m, const float a) {
+ m[0] -= a, m[1] -= a;
+}
+
+void __operator *= (inout mat2 m, const float a) {
+ m[0] *= a, m[1] *= a;
+}
+
+void __operator /= (inout mat2 m, const float a) {
+ m[0] /= a, m[1] /= a;
+}
+
+void __operator += (inout mat3 m, const float a) {
+ m[0] += a, m[1] += a, m[2] += a;
+}
+
+void __operator -= (inout mat3 m, const float a) {
+ m[0] -= a, m[1] -= a, m[2] -= a;
+}
+
+void __operator *= (inout mat3 m, const float a) {
+ m[0] *= a, m[1] *= a, m[2] *= a;
+}
+
+void __operator /= (inout mat3 m, const float a) {
+ m[0] /= a, m[1] /= a, m[2] /= a;
+}
+
+void __operator += (inout mat4 m, const float a) {
+ m[0] += a, m[1] += a, m[2] += a, m[3] += a;
+}
+
+void __operator -= (inout mat4 m, const float a) {
+ m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a;
+}
+
+void __operator *= (inout mat4 m, const float a) {
+ m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a;
+}
+
+void __operator /= (inout mat4 m, const float a) {
+ m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;
+}
+
+vec2 __operator * (const vec2 v, const mat2 m) {
+ return vec2 (
+ v.x * m[0].x + v.y * m[0].y,
+ v.x * m[1].x + v.y * m[1].y
+ );
+}
+
+void __operator *= (inout vec2 v, const mat2 m) {
+ v = v * m;
+}
+
+vec3 __operator * (const vec3 v, const mat3 m) {
+ return vec3 (
+ v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,
+ v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,
+ v.x * m[2].x + v.y * m[2].y + v.z * m[2].z
+ );
+}
+
+void __operator *= (inout vec3 v, const mat3 m) {
+ v = v * m;
+}
+
+vec4 __operator * (const vec4 v, const mat4 m) {
+ return vec4 (
+ v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,
+ v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,
+ v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,
+ v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w
+ );
+}
+
+void __operator *= (inout vec4 v, const mat4 m) {
+ v = v * m;
+}
+
+float __operator - (const float a, const float b) {
+ return a + -b;
+}
+
+int __operator + (const int a, const int b) {
+ int c;
+ c = a;
+ return c += b;
+}
+
+int __operator - (const int a, const int b) {
+ return a + -b;
+}
+
+int __operator * (const int a, const int b) {
+ int c;
+ return (c = a) *= b;
+}
+
+int __operator / (const int a, const int b) {
+ int c;
+ return (c = a) /= b;
+}
+
+vec2 __operator + (const vec2 v, const vec2 u) {
+ return vec2 (v.x + u.x, v.y + u.y);
+}
+
+vec2 __operator - (const vec2 v, const vec2 u) {
+ return vec2 (v.x - u.x, v.y - u.y);
+}
+
+vec3 __operator + (const vec3 v, const vec3 u) {
+ return vec3 (v.x + u.x, v.y + u.y, v.z + u.z);
+}
+
+vec3 __operator - (const vec3 v, const vec3 u) {
+ return vec3 (v.x - u.x, v.y - u.y, v.z - u.z);
+}
+
+vec4 __operator + (const vec4 v, const vec4 u) {
+ return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
+}
+
+vec4 __operator - (const vec4 v, const vec4 u) {
+ return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
+}
+
+ivec2 __operator + (const ivec2 v, const ivec2 u) {
+ return ivec2 (v.x + u.x, v.y + u.y);
+}
+
+ivec2 __operator - (const ivec2 v, const ivec2 u) {
+ return ivec2 (v.x - u.x, v.y - u.y);
+}
+
+ivec3 __operator + (const ivec3 v, const ivec3 u) {
+ return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z);
+}
+
+ivec3 __operator - (const ivec3 v, const ivec3 u) {
+ return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z);
+}
+
+ivec4 __operator + (const ivec4 v, const ivec4 u) {
+ return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
+}
+
+ivec4 __operator - (const ivec4 v, const ivec4 u) {
+ return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
+}
+
+mat2 __operator + (const mat2 m, const mat2 n) {
+ return mat2 (m[0] + n[0], m[1] + n[1]);
+}
+
+mat2 __operator - (const mat2 m, const mat2 n) {
+ return mat2 (m[0] - n[0], m[1] - n[1]);
+}
+
+mat3 __operator + (const mat3 m, const mat3 n) {
+ return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]);
+}
+
+mat3 __operator - (const mat3 m, const mat3 n) {
+ return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]);
+}
+
+mat4 __operator + (const mat4 m, const mat4 n) {
+ return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]);
+}
+
+mat4 __operator - (const mat4 m, const mat4 n) {
+ return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);
+}
+
+vec2 __operator + (const float a, const vec2 u) {
+ return vec2 (a + u.x, a + u.y);
+}
+
+vec2 __operator + (const vec2 v, const float b) {
+ return vec2 (v.x + b, v.y + b);
+}
+
+vec2 __operator - (const float a, const vec2 u) {
+ return vec2 (a - u.x, a - u.y);
+}
+
+vec2 __operator - (const vec2 v, const float b) {
+ return vec2 (v.x - b, v.y - b);
+}
+
+vec2 __operator * (const float a, const vec2 u) {
+ return vec2 (a * u.x, a * u.y);
+}
+
+vec2 __operator * (const vec2 v, const float b) {
+ return vec2 (v.x * b, v.y * b);
+}
+
+vec2 __operator / (const float a, const vec2 u) {
+ return vec2 (a / u.x, a / u.y);
+}
+
+vec2 __operator / (const vec2 v, const float b) {
+ return vec2 (v.x / b, v.y / b);
+}
+
+vec3 __operator + (const float a, const vec3 u) {
+ return vec3 (a + u.x, a + u.y, a + u.z);
+}
+
+vec3 __operator + (const vec3 v, const float b) {
+ return vec3 (v.x + b, v.y + b, v.z + b);
+}
+
+vec3 __operator - (const float a, const vec3 u) {
+ return vec3 (a - u.x, a - u.y, a - u.z);
+}
+
+vec3 __operator - (const vec3 v, const float b) {
+ return vec3 (v.x - b, v.y - b, v.z - b);
+}
+
+vec3 __operator * (const float a, const vec3 u) {
+ return vec3 (a * u.x, a * u.y, a * u.z);
+}
+
+vec3 __operator * (const vec3 v, const float b) {
+ return vec3 (v.x * b, v.y * b, v.z * b);
+}
+
+vec3 __operator / (const float a, const vec3 u) {
+ return vec3 (a / u.x, a / u.y, a / u.z);
+}
+
+vec3 __operator / (const vec3 v, const float b) {
+ return vec3 (v.x / b, v.y / b, v.z / b);
+}
+
+vec4 __operator + (const float a, const vec4 u) {
+ return vec4 (a + u.x, a + u.y, a + u.z, a + u.w);
+}
+
+vec4 __operator + (const vec4 v, const float b) {
+ return vec4 (v.x + b, v.y + b, v.z + b, v.w + b);
+}
+
+vec4 __operator - (const float a, const vec4 u) {
+ return vec4 (a - u.x, a - u.y, a - u.z, a - u.w);
+}
+
+vec4 __operator - (const vec4 v, const float b) {
+ return vec4 (v.x - b, v.y - b, v.z - b, v.w - b);
+}
+
+vec4 __operator * (const float a, const vec4 u) {
+ return vec4 (a * u.x, a * u.y, a * u.z, a * u.w);
+}
+
+vec4 __operator * (const vec4 v, const float b) {
+ return vec4 (v.x * b, v.y * b, v.z * b, v.w * b);
+}
+
+vec4 __operator / (const float a, const vec4 u) {
+ return vec4 (a / u.x, a / u.y, a / u.z, a / u.w);
+}
+
+vec4 __operator / (const vec4 v, const float b) {
+ return vec4 (v.x / b, v.y / b, v.z / b, v.w / b);
+}
+
+mat2 __operator + (const float a, const mat2 n) {
+ return mat2 (a + n[0], a + n[1]);
+}
+
+mat2 __operator + (const mat2 m, const float b) {
+ return mat2 (m[0] + b, m[1] + b);
+}
+
+mat2 __operator - (const float a, const mat2 n) {
+ return mat2 (a - n[0], a - n[1]);
+}
+
+mat2 __operator - (const mat2 m, const float b) {
+ return mat2 (m[0] - b, m[1] - b);
+}
+
+mat2 __operator * (const float a, const mat2 n) {
+ return mat2 (a * n[0], a * n[1]);
+}
+
+mat2 __operator * (const mat2 m, const float b) {
+ return mat2 (m[0] * b, m[1] * b);
+}
+
+mat2 __operator / (const float a, const mat2 n) {
+ return mat2 (a / n[0], a / n[1]);
+}
+
+mat2 __operator / (const mat2 m, const float b) {
+ return mat2 (m[0] / b, m[1] / b);
+}
+
+mat3 __operator + (const float a, const mat3 n) {
+ return mat3 (a + n[0], a + n[1], a + n[2]);
+}
+
+mat3 __operator + (const mat3 m, const float b) {
+ return mat3 (m[0] + b, m[1] + b, m[2] + b);
+}
+
+mat3 __operator - (const float a, const mat3 n) {
+ return mat3 (a - n[0], a - n[1], a - n[2]);
+}
+
+mat3 __operator - (const mat3 m, const float b) {
+ return mat3 (m[0] - b, m[1] - b, m[2] - b);
+}
+
+mat3 __operator * (const float a, const mat3 n) {
+ return mat3 (a * n[0], a * n[1], a * n[2]);
+}
+
+mat3 __operator * (const mat3 m, const float b) {
+ return mat3 (m[0] * b, m[1] * b, m[2] * b);
+}
+
+mat3 __operator / (const float a, const mat3 n) {
+ return mat3 (a / n[0], a / n[1], a / n[2]);
+}
+
+mat3 __operator / (const mat3 m, const float b) {
+ return mat3 (m[0] / b, m[1] / b, m[2] / b);
+}
+
+mat4 __operator + (const float a, const mat4 n) {
+ return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]);
+}
+
+mat4 __operator + (const mat4 m, const float b) {
+ return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b);
+}
+
+mat4 __operator - (const float a, const mat4 n) {
+ return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]);
+}
+
+mat4 __operator - (const mat4 m, const float b) {
+ return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b);
+}
+
+mat4 __operator * (const float a, const mat4 n) {
+ return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]);
+}
+
+mat4 __operator * (const mat4 m, const float b) {
+ return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b);
+}
+
+mat4 __operator / (const float a, const mat4 n) {
+ return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]);
+}
+
+mat4 __operator / (const mat4 m, const float b) {
+ return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);
+}
+
+ivec2 __operator + (const int a, const ivec2 u) {
+ return ivec2 (a + u.x, a + u.y);
+}
+
+ivec2 __operator + (const ivec2 v, const int b) {
+ return ivec2 (v.x + b, v.y + b);
+}
+
+ivec2 __operator - (const int a, const ivec2 u) {
+ return ivec2 (a - u.x, a - u.y);
+}
+
+ivec2 __operator - (const ivec2 v, const int b) {
+ return ivec2 (v.x - b, v.y - b);
+}
+
+ivec2 __operator * (const int a, const ivec2 u) {
+ return ivec2 (a * u.x, a * u.y);
+}
+
+ivec2 __operator * (const ivec2 v, const int b) {
+ return ivec2 (v.x * b, v.y * b);
+}
+
+ivec2 __operator / (const int a, const ivec2 u) {
+ return ivec2 (a / u.x, a / u.y);
+}
+
+ivec2 __operator / (const ivec2 v, const int b) {
+ return ivec2 (v.x / b, v.y / b);
+}
+
+ivec3 __operator + (const int a, const ivec3 u) {
+ return ivec3 (a + u.x, a + u.y, a + u.z);
+}
+
+ivec3 __operator + (const ivec3 v, const int b) {
+ return ivec3 (v.x + b, v.y + b, v.z + b);
+}
+
+ivec3 __operator - (const int a, const ivec3 u) {
+ return ivec3 (a - u.x, a - u.y, a - u.z);
+}
+
+ivec3 __operator - (const ivec3 v, const int b) {
+ return ivec3 (v.x - b, v.y - b, v.z - b);
+}
+
+ivec3 __operator * (const int a, const ivec3 u) {
+ return ivec3 (a * u.x, a * u.y, a * u.z);
+}
+
+ivec3 __operator * (const ivec3 v, const int b) {
+ return ivec3 (v.x * b, v.y * b, v.z * b);
+}
+
+ivec3 __operator / (const int a, const ivec3 u) {
+ return ivec3 (a / u.x, a / u.y, a / u.z);
+}
+
+ivec3 __operator / (const ivec3 v, const int b) {
+ return ivec3 (v.x / b, v.y / b, v.z / b);
+}
+
+ivec4 __operator + (const int a, const ivec4 u) {
+ return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w);
+}
+
+ivec4 __operator + (const ivec4 v, const int b) {
+ return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b);
+}
+
+ivec4 __operator - (const int a, const ivec4 u) {
+ return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w);
+}
+
+ivec4 __operator - (const ivec4 v, const int b) {
+ return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b);
+}
+
+ivec4 __operator * (const int a, const ivec4 u) {
+ return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w);
+}
+
+ivec4 __operator * (const ivec4 v, const int b) {
+ return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b);
+}
+
+ivec4 __operator / (const int a, const ivec4 u) {
+ return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w);
+}
+
+ivec4 __operator / (const ivec4 v, const int b) {
+ return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b);
+}
+
+vec2 __operator * (const vec2 v, const vec2 u) {
+ return vec2 (v.x * u.x, v.y * u.y);
+}
+
+vec3 __operator * (const vec3 v, const vec3 u) {
+ return vec3 (v.x * u.x, v.y * u.y, v.z * u.z);
+}
+
+vec4 __operator * (const vec4 v, const vec4 u) {
+ return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
+}
+
+ivec2 __operator * (const ivec2 v, const ivec2 u) {
+ return ivec2 (v.x * u.x, v.y * u.y);
+}
+
+ivec3 __operator * (const ivec3 v, const ivec3 u) {
+ return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z);
+}
+
+ivec4 __operator * (const ivec4 v, const ivec4 u) {
+ return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
+}
+
+vec2 __operator / (const vec2 v, const vec2 u) {
+ return vec2 (v.x / u.x, v.y / u.y);
+}
+
+vec3 __operator / (const vec3 v, const vec3 u) {
+ return vec3 (v.x / u.x, v.y / u.y, v.z / u.z);
+}
+
+vec4 __operator / (const vec4 v, const vec4 u) {
+ return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
+}
+
+ivec2 __operator / (const ivec2 v, const ivec2 u) {
+ return ivec2 (v.x / u.x, v.y / u.y);
+}
+
+ivec3 __operator / (const ivec3 v, const ivec3 u) {
+ return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z);
+}
+
+ivec4 __operator / (const ivec4 v, const ivec4 u) {
+ return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
+}
+
+mat2 __operator / (const mat2 m, const mat2 n) {
+ return mat2 (m[0] / n[0], m[1] / n[1]);
+}
+
+mat3 __operator / (const mat3 m, const mat3 n) {
+ return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]);
+}
+
+mat4 __operator / (const mat4 m, const mat4 n) {
+ return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);
+}
+
+vec2 __operator - (const vec2 v) {
+ return vec2 (-v.x, -v.y);
+}
+
+vec3 __operator - (const vec3 v) {
+ return vec3 (-v.x, -v.y, -v.z);
+}
+
+vec4 __operator - (const vec4 v) {
+ return vec4 (-v.x, -v.y, -v.z, -v.w);
+}
+
+ivec2 __operator - (const ivec2 v) {
+ return ivec2 (-v.x, -v.y);
+}
+
+ivec3 __operator - (const ivec3 v) {
+ return ivec3 (-v.x, -v.y, -v.z);
+}
+
+ivec4 __operator - (const ivec4 v) {
+ return ivec4 (-v.x, -v.y, -v.z, -v.w);
+}
+
+mat2 __operator - (const mat2 m) {
+ return mat2 (-m[0], -m[1]);
+}
+
+mat3 __operator - (const mat3 m) {
+ return mat3 (-m[0], -m[1], -m[2]);
+}
+
+mat4 __operator - (const mat4 m) {
+ return mat4 (-m[0], -m[1], -m[2], -m[3]);
+}
+
+//
+// NOTE: postfix increment and decrement operators take additional dummy int parameter to
+// distinguish their prototypes from prefix ones.
+//
+
+void __operator -- (inout float a) {
+ a -= 1.0;
+}
+
+void __operator -- (inout int a) {
+ a -= 1;
+}
+
+void __operator -- (inout vec2 v) {
+ --v.x, --v.y;
+}
+
+void __operator -- (inout vec3 v) {
+ --v.x, --v.y, --v.z;
+}
+
+void __operator -- (inout vec4 v) {
+ --v.x, --v.y, --v.z, --v.w;
+}
+
+void __operator -- (inout ivec2 v) {
+ --v.x, --v.y;
+}
+
+void __operator -- (inout ivec3 v) {
+ --v.x, --v.y, --v.z;
+}
+
+void __operator -- (inout ivec4 v) {
+ --v.x, --v.y, --v.z, --v.w;
+}
+
+void __operator -- (inout mat2 m) {
+ --m[0], --m[1];
+}
+
+void __operator -- (inout mat3 m) {
+ --m[0], --m[1], --m[2];
+}
+
+void __operator -- (inout mat4 m) {
+ --m[0], --m[1], --m[2], --m[3];
+}
+
+void __operator ++ (inout float a) {
+ a += 1.0;
+}
+
+void __operator ++ (inout int a) {
+ a += 1;
+}
+
+void __operator ++ (inout vec2 v) {
+ ++v.x, ++v.y;
+}
+
+void __operator ++ (inout vec3 v) {
+ ++v.x, ++v.y, ++v.z;
+}
+
+void __operator ++ (inout vec4 v) {
+ ++v.x, ++v.y, ++v.z, ++v.w;
+}
+
+void __operator ++ (inout ivec2 v) {
+ ++v.x, ++v.y;
+}
+
+void __operator ++ (inout ivec3 v) {
+ ++v.x, ++v.y, ++v.z;
+}
+
+void __operator ++ (inout ivec4 v) {
+ ++v.x, ++v.y, ++v.z, ++v.w;
+}
+
+void __operator ++ (inout mat2 m) {
+ ++m[0], ++m[1];
+}
+
+void __operator ++ (inout mat3 m) {
+ ++m[0], ++m[1], ++m[2];
+}
+
+void __operator ++ (inout mat4 m) {
+ ++m[0], ++m[1], ++m[2], ++m[3];
+}
+
+float __operator -- (inout float a, const int) {
+ float c;
+ c = a;
+ --a;
+ return c;
+}
+
+int __operator -- (inout int a, const int) {
+ int c;
+ c = a;
+ --a;
+ return c;
+}
+
+vec2 __operator -- (inout vec2 v, const int) {
+ return vec2 (v.x--, v.y--);
+}
+
+vec3 __operator -- (inout vec3 v, const int) {
+ return vec3 (v.x--, v.y--, v.z--);
+}
+
+vec4 __operator -- (inout vec4 v, const int) {
+ return vec4 (v.x--, v.y--, v.z--, v.w--);
+}
+
+ivec2 __operator -- (inout ivec2 v, const int) {
+ return ivec2 (v.x--, v.y--);
+}
+
+ivec3 __operator -- (inout ivec3 v, const int) {
+ return ivec3 (v.x--, v.y--, v.z--);
+}
+
+ivec4 __operator -- (inout ivec4 v, const int) {
+ return ivec4 (v.x--, v.y--, v.z--, v.w--);
+}
+
+mat2 __operator -- (inout mat2 m, const int) {
+ return mat2 (m[0]--, m[1]--);
+}
+
+mat3 __operator -- (inout mat3 m, const int) {
+ return mat3 (m[0]--, m[1]--, m[2]--);
+}
+
+mat4 __operator -- (inout mat4 m, const int) {
+ return mat4 (m[0]--, m[1]--, m[2]--, m[3]--);
+}
+
+float __operator ++ (inout float a, const int) {
+ float c;
+ c = a;
+ ++a;
+ return c;
+}
+
+int __operator ++ (inout int a, const int) {
+ int c;
+ c = a;
+ ++a;
+ return c;
+}
+
+vec2 __operator ++ (inout vec2 v, const int) {
+ return vec2 (v.x++, v.y++);
+}
+
+vec3 __operator ++ (inout vec3 v, const int) {
+ return vec3 (v.x++, v.y++, v.z++);
+}
+
+vec4 __operator ++ (inout vec4 v, const int) {
+ return vec4 (v.x++, v.y++, v.z++, v.w++);
+}
+
+ivec2 __operator ++ (inout ivec2 v, const int) {
+ return ivec2 (v.x++, v.y++);
+}
+
+ivec3 __operator ++ (inout ivec3 v, const int) {
+ return ivec3 (v.x++, v.y++, v.z++);
+}
+
+ivec4 __operator ++ (inout ivec4 v, const int) {
+ return ivec4 (v.x++, v.y++, v.z++, v.w++);
+}
+
+mat2 __operator ++ (inout mat2 m, const int) {
+ return mat2 (m[0]++, m[1]++);
+}
+
+mat3 __operator ++ (inout mat3 m, const int) {
+ return mat3 (m[0]++, m[1]++, m[2]++);
+}
+
+mat4 __operator ++ (inout mat4 m, const int) {
+ return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);
+}
+
+bool __operator < (const float a, const float b) {
+ bool c;
+ __asm float_less c, a, b;
+ return c;
+}
+
+bool __operator < (const int a, const int b) {
+ return float (a) < float (b);
+}
+
+bool __operator > (const float a, const float b) {
+ return b < a;
+}
+
+bool __operator > (const int a, const int b) {
+ return b < a;
+}
+
+bool __operator >= (const float a, const float b) {
+ return a > b || a == b;
+}
+
+bool __operator >= (const int a, const int b) {
+ return a > b || a == b;
+}
+
+bool __operator <= (const float a, const float b) {
+ return a < b || a == b;
+}
+
+bool __operator <= (const int a, const int b) {
+ return a < b || a == b;
+}
+
+//bool __operator == (const float a, const float b) {
+// bool c;
+// __asm float_equal c, a, b;
+// return c;
+//}
+//
+//bool __operator == (const int a, const int b) {
+// return float (a) == float (b);
+//}
+//
+//bool __operator == (const bool a, const bool b) {
+// return float (a) == float (b);
+//}
+//
+//bool __operator == (const vec2 v, const vec2 u) {
+// return v.x == u.x && v.y == u.y;
+//}
+//
+//bool __operator == (const vec3 v, const vec3 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z;
+//}
+//
+//bool __operator == (const vec4 v, const vec4 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
+//}
+//
+//bool __operator == (const ivec2 v, const ivec2 u) {
+// return v.x == u.x && v.y == u.y;
+//}
+//
+//bool __operator == (const ivec3 v, const ivec3 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z;
+//}
+//
+//bool __operator == (const ivec4 v, const ivec4 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
+//}
+//
+//bool __operator == (const bvec2 v, const bvec2 u) {
+// return v.x == u.x && v.y == u.y;
+//}
+//
+//bool __operator == (const bvec3 v, const bvec3 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z;
+//}
+//
+//bool __operator == (const bvec4 v, const bvec4 u) {
+// return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
+//}
+//
+//bool __operator == (const mat2 m, const mat2 n) {
+// return m[0] == n[0] && m[1] == n[1];
+//}
+//
+//bool __operator == (const mat3 m, const mat3 n) {
+// return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];
+//}
+//
+//bool __operator == (const mat4 m, const mat4 n) {
+// return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];
+//}
+//
+//bool __operator != (const float a, const float b) {
+// return !(a == b);
+//}
+//
+//bool __operator != (const int a, const int b) {
+// return !(a == b);
+//}
+//
+//bool __operator != (const bool a, const bool b) {
+// return !(a == b);
+//}
+//
+//bool __operator != (const vec2 v, const vec2 u) {
+// return v.x != u.x || v.y != u.y;
+//}
+//
+//bool __operator != (const vec3 v, const vec3 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z;
+//}
+//
+//bool __operator != (const vec4 v, const vec4 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
+//}
+//
+//bool __operator != (const ivec2 v, const ivec2 u) {
+// return v.x != u.x || v.y != u.y;
+//}
+//
+//bool __operator != (const ivec3 v, const ivec3 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z;
+//}
+//
+//bool __operator != (const ivec4 v, const ivec4 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
+//}
+//
+//bool __operator != (const bvec2 v, const bvec2 u) {
+// return v.x != u.x || v.y != u.y;
+//}
+//
+//bool __operator != (const bvec3 v, const bvec3 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z;
+//}
+//
+//bool __operator != (const bvec4 v, const bvec4 u) {
+// return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
+//}
+//
+//bool __operator != (const mat2 m, const mat2 n) {
+// return m[0] != n[0] || m[1] != n[1];
+//}
+//
+//bool __operator != (const mat3 m, const mat3 n) {
+// return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];
+//}
+//
+//bool __operator != (const mat4 m, const mat4 n) {
+// return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];
+//}
+
+bool __operator ^^ (const bool a, const bool b) {
+ return a != b;
+}
+
+//
+// These operators are handled internally by the compiler:
+//
+// bool __operator && (bool a, bool b) {
+// return a ? b : false;
+// }
+// bool __operator || (bool a, bool b) {
+// return a ? true : b;
+// }
+//
+
+bool __operator ! (const bool a) {
+ return a == false;
+}
diff --git a/src/mesa/shader/slang/library/slang_core_gc.h b/src/mesa/shader/slang/library/slang_core_gc.h index feed97b1f73..c7f3d368a52 100644 --- a/src/mesa/shader/slang/library/slang_core_gc.h +++ b/src/mesa/shader/slang/library/slang_core_gc.h @@ -63,30 +63,12 @@ "\n"
"\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"int __constructor (const float _f) {\n"
" int _i;\n"
" __asm float_to_int _i, _f;\n"
" return _i;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"bool __constructor (const int _i) {\n"
" return _i != 0;\n"
"}\n"
@@ -95,11 +77,6 @@ " return _f != 0.0;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"int __constructor (const bool _b) {\n"
" return _b ? 1 : 0;\n"
"}\n"
@@ -108,20 +85,12 @@ " return _b ? 1.0 : 0.0;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"float __constructor (const int _i) {\n"
" float _f;\n"
" __asm int_to_float _f, _i;\n"
" return _f;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"bool __constructor (const bool _b) {\n"
" return _b;\n"
"}\n"
@@ -134,30 +103,6 @@ " return _f;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"vec2 __constructor (const float _f) {\n"
" return vec2 (_f, _f);\n"
"}\n"
@@ -266,17 +211,6 @@ " return bvec4 (_i, _i, _i, _i);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"mat2 __constructor (const float _f) {\n"
" return mat2 (\n"
" _f, .0,\n"
@@ -369,65 +303,40 @@ "\n"
"\n"
"\n"
-"void __operator = (out float a, const float b) {\n"
-" __asm float_copy a, b;\n"
-"}\n"
"\n"
-"void __operator = (out int a, const int b) {\n"
-" __asm int_copy a, b;\n"
-"}\n"
"\n"
-"void __operator = (out bool a, const bool b) {\n"
-" __asm bool_copy a, b;\n"
-"}\n"
"\n"
-"void __operator = (out vec2 v, const vec2 u) {\n"
-" v.x = u.x, v.y = u.y;\n"
-"}\n"
"\n"
-"void __operator = (out vec3 v, const vec3 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z;\n"
-"}\n"
"\n"
-"void __operator = (out vec4 v, const vec4 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"
-"}\n"
"\n"
-"void __operator = (out ivec2 v, const ivec2 u) {\n"
-" v.x = u.x, v.y = u.y;\n"
-"}\n"
"\n"
-"void __operator = (out ivec3 v, const ivec3 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z;\n"
-"}\n"
"\n"
-"void __operator = (out ivec4 v, const ivec4 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"
-"}\n"
"\n"
-"void __operator = (out bvec2 v, const bvec2 u) {\n"
-" v.x = u.x, v.y = u.y;\n"
-"}\n"
"\n"
-"void __operator = (out bvec3 v, const bvec3 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z;\n"
-"}\n"
"\n"
-"void __operator = (out bvec4 v, const bvec4 u) {\n"
-" v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"
-"}\n"
"\n"
-"void __operator = (out mat2 m, const mat2 n) {\n"
-" m[0] = n[0], m[1] = n[1];\n"
-"}\n"
"\n"
-"void __operator = (out mat3 m, const mat3 n) {\n"
-" m[0] = n[0], m[1] = n[1], m[2] = n[2];\n"
-"}\n"
"\n"
-"void __operator = (out mat4 m, const mat4 n) {\n"
-" m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];\n"
-"}\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
"\n"
"\n"
"\n"
@@ -438,6 +347,12 @@ " __asm float_add a, a, b;\n"
"}\n"
"\n"
+"float __operator - (const float a) {\n"
+" float c;\n"
+" __asm float_negate c, a;\n"
+" return c;\n"
+"}\n"
+"\n"
"void __operator -= (inout float a, const float b) {\n"
" a += -b;\n"
"}\n"
@@ -450,20 +365,42 @@ " __asm float_divide a, a, b;\n"
"}\n"
"\n"
-"void __operator += (inout int x, const int y) {\n"
-" x = int (float (x) + float (y));\n"
+"float __operator + (const float a, const float b) {\n"
+" float c;\n"
+" c = a;\n"
+" return c += b;\n"
"}\n"
"\n"
-"void __operator -= (inout int x, const int y) {\n"
-" x += -y;\n"
+"void __operator += (inout int a, const int b) {\n"
+" a = int (float (a) + float (b));\n"
"}\n"
"\n"
-"void __operator *= (inout int x, const int y) {\n"
-" x = int (float (x) * float (y));\n"
+"int __operator - (const int a) {\n"
+" return int (-float (a));\n"
"}\n"
"\n"
-"void __operator /= (inout int x, const int y) {\n"
-" x = int (float (x) / float (y));\n"
+"void __operator -= (inout int a, const int b) {\n"
+" a += -b;\n"
+"}\n"
+"\n"
+"float __operator * (const float a, const float b) {\n"
+" float c;\n"
+" c = a;\n"
+" return c *= b;\n"
+"}\n"
+"\n"
+"void __operator *= (inout int a, const int b) {\n"
+" a = int (float (a) * float (b));\n"
+"}\n"
+"\n"
+"float __operator / (const float a, const float b) {\n"
+" float c;\n"
+" c = a;\n"
+" return c /= b;\n"
+"}\n"
+"\n"
+"void __operator /= (inout int a, const int b) {\n"
+" a = int (float (a) / float (b));\n"
"}\n"
"\n"
"void __operator += (inout vec2 v, const vec2 u) {\n"
@@ -566,10 +503,21 @@ " m[0] += n[0], m[1] += n[1];\n"
"}\n"
"\n"
-"void __operator -= (inout mat2 v, const mat2 n) {\n"
+"void __operator -= (inout mat2 m, const mat2 n) {\n"
" m[0] -= n[0], m[1] -= n[1];\n"
"}\n"
"\n"
+"vec2 __operator * (const mat2 m, const vec2 v) {\n"
+" return vec2 (\n"
+" v.x * m[0].x + v.y * m[1].x,\n"
+" v.x * m[0].y + v.y * m[1].y\n"
+" );\n"
+"}\n"
+"\n"
+"mat2 __operator * (const mat2 m, const mat2 n) {\n"
+" return mat2 (m * n[0], m * n[1]);\n"
+"}\n"
+"\n"
"void __operator *= (inout mat2 m, const mat2 n) {\n"
" m = m * n;\n"
"}\n"
@@ -586,6 +534,18 @@ " m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];\n"
"}\n"
"\n"
+"vec3 __operator * (const mat3 m, const vec3 v) {\n"
+" return vec3 (\n"
+" v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,\n"
+" v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,\n"
+" v.x * m[0].z + v.y * m[1].z + v.z * m[2].z\n"
+" );\n"
+"}\n"
+"\n"
+"mat3 __operator * (const mat3 m, const mat3 n) {\n"
+" return mat3 (m * n[0], m * n[1], m * n[2]);\n"
+"}\n"
+"\n"
"void __operator *= (inout mat3 m, const mat3 n) {\n"
" m = m * n;\n"
"}\n"
@@ -602,6 +562,19 @@ " m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];\n"
"}\n"
"\n"
+"vec4 __operator * (const mat4 m, const vec4 v) {\n"
+" return vec4 (\n"
+" v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,\n"
+" v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,\n"
+" v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,\n"
+" v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w\n"
+" );\n"
+"}\n"
+"\n"
+"mat4 __operator * (const mat4 m, const mat4 n) {\n"
+" return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);\n"
+"}\n"
+"\n"
"void __operator *= (inout mat4 m, const mat4 n) {\n"
" m = m * n;\n"
"}\n"
@@ -610,11 +583,6 @@ " m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"void __operator += (inout vec2 v, const float a) {\n"
" v.x += a, v.y += a;\n"
"}\n"
@@ -711,73 +679,64 @@ " m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
+"vec2 __operator * (const vec2 v, const mat2 m) {\n"
+" return vec2 (\n"
+" v.x * m[0].x + v.y * m[0].y,\n"
+" v.x * m[1].x + v.y * m[1].y\n"
+" );\n"
+"}\n"
"\n"
"void __operator *= (inout vec2 v, const mat2 m) {\n"
" v = v * m;\n"
"}\n"
"\n"
-"void __operator *= (inout vec3 v, const mat3 m) {\n"
-" v = v * m;\n"
+"vec3 __operator * (const vec3 v, const mat3 m) {\n"
+" return vec3 (\n"
+" v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,\n"
+" v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,\n"
+" v.x * m[2].x + v.y * m[2].y + v.z * m[2].z\n"
+" );\n"
"}\n"
"\n"
-"void __operator *= (inout vec4 v, const mat4 m) {\n"
+"void __operator *= (inout vec3 v, const mat3 m) {\n"
" v = v * m;\n"
"}\n"
"\n"
+"vec4 __operator * (const vec4 v, const mat4 m) {\n"
+" return vec4 (\n"
+" v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,\n"
+" v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,\n"
+" v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,\n"
+" v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w\n"
+" );\n"
+"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"float __operator + (const float a, const float b) {\n"
-" float c = a;\n"
-" return c += b;\n"
+"void __operator *= (inout vec4 v, const mat4 m) {\n"
+" v = v * m;\n"
"}\n"
"\n"
"float __operator - (const float a, const float b) {\n"
" return a + -b;\n"
"}\n"
"\n"
-"float __operator * (const float a, const float b) {\n"
-" float c = a;\n"
-" return c *= b;\n"
-"}\n"
-"\n"
-"float __operator / (const float a, const float b) {\n"
-" float c = a;\n"
-" return c /= b;\n"
-"}\n"
-"\n"
"int __operator + (const int a, const int b) {\n"
-" int c = a;\n"
+" int c;\n"
+" c = a;\n"
" return c += b;\n"
"}\n"
"\n"
-"int __operator - (const int x, const int y) {\n"
-" return x + -y;\n"
+"int __operator - (const int a, const int b) {\n"
+" return a + -b;\n"
"}\n"
"\n"
-"int __operator * (const int x, const int y) {\n"
-" int z = x;\n"
-" return z *= y;\n"
+"int __operator * (const int a, const int b) {\n"
+" int c;\n"
+" return (c = a) *= b;\n"
"}\n"
"\n"
-"int __operator / (const int x, const int y) {\n"
-" int z = x;\n"
-" return z /= y;\n"
+"int __operator / (const int a, const int b) {\n"
+" int c;\n"
+" return (c = a) /= b;\n"
"}\n"
"\n"
"vec2 __operator + (const vec2 v, const vec2 u) {\n"
@@ -852,10 +811,6 @@ " return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"vec2 __operator + (const float a, const vec2 u) {\n"
" return vec2 (a + u.x, a + u.y);\n"
"}\n"
@@ -1048,10 +1003,6 @@ " return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"ivec2 __operator + (const int a, const ivec2 u) {\n"
" return ivec2 (a + u.x, a + u.y);\n"
"}\n"
@@ -1148,70 +1099,6 @@ " return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"vec2 __operator * (const mat2 m, const vec2 v) {\n"
-" return vec2 (\n"
-" v.x * m[0].x + v.y * m[1].x,\n"
-" v.x * m[0].y + v.y * m[1].y\n"
-" );\n"
-"}\n"
-"\n"
-"vec2 __operator * (const vec2 v, const mat2 m) {\n"
-" return vec2 (\n"
-" v.x * m[0].x + v.y * m[0].y,\n"
-" v.x * m[1].x + v.y * m[1].y\n"
-" );\n"
-"}\n"
-"\n"
-"vec3 __operator * (const mat3 m, const vec3 v) {\n"
-" return vec3 (\n"
-" v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,\n"
-" v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,\n"
-" v.x * m[0].z + v.y * m[1].z + v.z * m[2].z\n"
-" );\n"
-"}\n"
-"\n"
-"vec3 __operator * (const vec3 v, const mat3 m) {\n"
-" return vec3 (\n"
-" v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,\n"
-" v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,\n"
-" v.x * m[2].x + v.y * m[2].y + v.z * m[2].z\n"
-" );\n"
-"}\n"
-"\n"
-"vec4 __operator * (const mat4 m, const vec4 v) {\n"
-" return vec4 (\n"
-" v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,\n"
-" v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,\n"
-" v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,\n"
-" v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w\n"
-" );\n"
-"}\n"
-"\n"
-"vec4 __operator * (const vec4 v, const mat4 m) {\n"
-" return vec4 (\n"
-" v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,\n"
-" v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,\n"
-" v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,\n"
-" v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w\n"
-" );\n"
-"}\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"vec2 __operator * (const vec2 v, const vec2 u) {\n"
" return vec2 (v.x * u.x, v.y * u.y);\n"
"}\n"
@@ -1236,10 +1123,6 @@ " return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"vec2 __operator / (const vec2 v, const vec2 u) {\n"
" return vec2 (v.x / u.x, v.y / u.y);\n"
"}\n"
@@ -1276,48 +1159,6 @@ " return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"mat2 __operator * (const mat2 m, const mat2 n) {\n"
-" return mat2 (m * n[0], m * n[1]);\n"
-"}\n"
-"\n"
-"mat3 __operator * (const mat3 m, const mat3 n) {\n"
-" return mat3 (m * n[0], m * n[1], m * n[2]);\n"
-"}\n"
-"\n"
-"mat4 __operator * (const mat4 m, const mat4 n) {\n"
-" return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);\n"
-"}\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"float __operator - (const float a) {\n"
-" float c;\n"
-" __asm float_negate c, a;\n"
-" return c;\n"
-"}\n"
-"\n"
-"int __operator - (const int a) {\n"
-" return int (-float (a));\n"
-"}\n"
-"\n"
"vec2 __operator - (const vec2 v) {\n"
" return vec2 (-v.x, -v.y);\n"
"}\n"
@@ -1354,6 +1195,11 @@ " return mat4 (-m[0], -m[1], -m[2], -m[3]);\n"
"}\n"
"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
"void __operator -- (inout float a) {\n"
" a -= 1.0;\n"
"}\n"
@@ -1443,13 +1289,15 @@ "}\n"
"\n"
"float __operator -- (inout float a, const int) {\n"
-" const float c = a;\n"
+" float c;\n"
+" c = a;\n"
" --a;\n"
" return c;\n"
"}\n"
"\n"
"int __operator -- (inout int a, const int) {\n"
-" const int c = a;\n"
+" int c;\n"
+" c = a;\n"
" --a;\n"
" return c;\n"
"}\n"
@@ -1491,13 +1339,15 @@ "}\n"
"\n"
"float __operator ++ (inout float a, const int) {\n"
-" const float c = a;\n"
+" float c;\n"
+" c = a;\n"
" ++a;\n"
" return c;\n"
"}\n"
"\n"
"int __operator ++ (inout int a, const int) {\n"
-" const int c = a;\n"
+" int c;\n"
+" c = a;\n"
" ++a;\n"
" return c;\n"
"}\n"
@@ -1538,14 +1388,6 @@ " return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);\n"
"}\n"
"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
-"\n"
"bool __operator < (const float a, const float b) {\n"
" bool c;\n"
" __asm float_less c, a, b;\n"
@@ -1587,127 +1429,35 @@ "\n"
"\n"
"\n"
-"bool __operator == (const float a, const float b) {\n"
-" bool c;\n"
-" __asm float_equal c, a, b;\n"
-" return c;\n"
-"}\n"
"\n"
-"bool __operator == (const int a, const int b) {\n"
-" return float (a) == float (b);\n"
-"}\n"
"\n"
-"bool __operator == (const bool a, const bool b) {\n"
-" return float (a) == float (b);\n"
-"}\n"
"\n"
-"bool __operator == (const vec2 v, const vec2 u) {\n"
-" return v.x == u.x && v.y == u.y;\n"
-"}\n"
"\n"
-"bool __operator == (const vec3 v, const vec3 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
-"}\n"
"\n"
-"bool __operator == (const vec4 v, const vec4 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
-"}\n"
"\n"
-"bool __operator == (const ivec2 v, const ivec2 u) {\n"
-" return v.x == u.x && v.y == u.y;\n"
-"}\n"
"\n"
-"bool __operator == (const ivec3 v, const ivec3 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
-"}\n"
"\n"
-"bool __operator == (const ivec4 v, const ivec4 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
-"}\n"
"\n"
-"bool __operator == (const bvec2 v, const bvec2 u) {\n"
-" return v.x == u.x && v.y == u.y;\n"
-"}\n"
"\n"
-"bool __operator == (const bvec3 v, const bvec3 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
-"}\n"
"\n"
-"bool __operator == (const bvec4 v, const bvec4 u) {\n"
-" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
-"}\n"
"\n"
-"bool __operator == (const mat2 m, const mat2 n) {\n"
-" return m[0] == n[0] && m[1] == n[1];\n"
-"}\n"
"\n"
-"bool __operator == (const mat3 m, const mat3 n) {\n"
-" return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];\n"
-"}\n"
"\n"
-"bool __operator == (const mat4 m, const mat4 n) {\n"
-" return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];\n"
-"}\n"
"\n"
-"bool __operator != (const float a, const float b) {\n"
-" return !(a == b);\n"
-"}\n"
"\n"
-"bool __operator != (const int a, const int b) {\n"
-" return !(a == b);\n"
-"}\n"
"\n"
-"bool __operator != (const bool a, const bool b) {\n"
-" return !(a == b);\n"
-"}\n"
"\n"
-"bool __operator != (const vec2 v, const vec2 u) {\n"
-" return v.x != u.x || v.y != u.y;\n"
-"}\n"
"\n"
-"bool __operator != (const vec3 v, const vec3 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z;\n"
-"}\n"
"\n"
-"bool __operator != (const vec4 v, const vec4 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"
-"}\n"
"\n"
-"bool __operator != (const ivec2 v, const ivec2 u) {\n"
-" return v.x != u.x || v.y != u.y;\n"
-"}\n"
"\n"
-"bool __operator != (const ivec3 v, const ivec3 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z;\n"
-"}\n"
"\n"
-"bool __operator != (const ivec4 v, const ivec4 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"
-"}\n"
"\n"
-"bool __operator != (const bvec2 v, const bvec2 u) {\n"
-" return v.x != u.x || v.y != u.y;\n"
-"}\n"
"\n"
-"bool __operator != (const bvec3 v, const bvec3 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z;\n"
-"}\n"
"\n"
-"bool __operator != (const bvec4 v, const bvec4 u) {\n"
-" return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"
-"}\n"
"\n"
-"bool __operator != (const mat2 m, const mat2 n) {\n"
-" return m[0] != n[0] || m[1] != n[1];\n"
-"}\n"
"\n"
-"bool __operator != (const mat3 m, const mat3 n) {\n"
-" return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];\n"
-"}\n"
"\n"
-"bool __operator != (const mat4 m, const mat4 n) {\n"
-" return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];\n"
-"}\n"
"\n"
"\n"
"\n"
@@ -1717,9 +1467,6 @@ "\n"
"\n"
"\n"
-"bool __operator ^^ (const bool a, const bool b) {\n"
-" return a != b;\n"
-"}\n"
"\n"
"\n"
"\n"
@@ -1737,6 +1484,81 @@ "\n"
"\n"
"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"bool __operator ^^ (const bool a, const bool b) {\n"
+" return a != b;\n"
+"}\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
+"\n"
"bool __operator ! (const bool a) {\n"
" return a == false;\n"
"}\n"
diff --git a/src/mesa/shader/slang/library/slang_core_gc_bin.h b/src/mesa/shader/slang/library/slang_core_gc_bin.h index 3e415325309..ac53ceea877 100755 --- a/src/mesa/shader/slang/library/slang_core_gc_bin.h +++ b/src/mesa/shader/slang/library/slang_core_gc_bin.h @@ -1,887 +1,490 @@ -2,1,0,5,1,1,1,0,9,95,102,0,0,0,1,3,2,0,5,1,95,105,0,0, -0,4,102,108,111,97,116,95,116,111,95,105,110,116,0,18,95,105,0,0,18,95,102,0, -0,0,8,18,95,105,0,0,0,1,0,1,1,1,1,0,5,95,105,0,0,0,1,8, -18,95,105,0,16,8,48,0,39,0,0,1,0,1,1,1,1,0,9,95,102,0,0,0, -1,8,18,95,102,0,17,48,0,48,0,0,39,0,0,1,0,5,1,1,1,0,1,95, -98,0,0,0,1,8,18,95,98,0,16,10,49,0,16,8,48,0,31,0,0,1,0,9, -1,1,1,0,1,95,98,0,0,0,1,8,18,95,98,0,17,49,0,48,0,0,17,48, -0,48,0,0,31,0,0,1,0,9,1,1,1,0,5,95,105,0,0,0,1,3,2,0, -9,1,95,102,0,0,0,4,105,110,116,95,116,111,95,102,108,111,97,116,0,18,95,102, -0,0,18,95,105,0,0,0,8,18,95,102,0,0,0,1,0,1,1,1,1,0,1,95, -98,0,0,0,1,8,18,95,98,0,0,0,1,0,5,1,1,1,0,5,95,105,0,0, -0,1,8,18,95,105,0,0,0,1,0,9,1,1,1,0,9,95,102,0,0,0,1,8, -18,95,102,0,0,0,1,0,10,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101, -99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,10,1,1,1,0,5, -95,105,0,0,0,1,8,58,118,101,99,50,0,18,95,105,0,0,18,95,105,0,0,0, -0,0,1,0,10,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,50,0,18, -95,98,0,0,18,95,98,0,0,0,0,0,1,0,11,1,1,1,0,9,95,102,0,0, -0,1,8,58,118,101,99,51,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0, -0,0,0,1,0,11,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,51,0, -18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,11,1,1,1, -0,1,95,98,0,0,0,1,8,58,118,101,99,51,0,18,95,98,0,0,18,95,98,0, -0,18,95,98,0,0,0,0,0,1,0,12,1,1,1,0,9,95,102,0,0,0,1,8, -58,118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102, -0,0,0,0,0,1,0,12,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99, -52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0, -0,1,0,12,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,52,0,18,95, -98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,6, -1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,50,0,18,95,105,0,0, -18,95,105,0,0,0,0,0,1,0,6,1,1,1,0,9,95,102,0,0,0,1,8,58, -105,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,6,1,1, -1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,50,0,18,95,98,0,0,18,95, -98,0,0,0,0,0,1,0,7,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118, -101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0, -7,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,51,0,18,95,102,0, -0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,7,1,1,1,0,1,95,98, -0,0,0,1,8,58,105,118,101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95, -98,0,0,0,0,0,1,0,8,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118, -101,99,52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0, -0,0,0,1,0,8,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,52, -0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0, -1,0,8,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,52,0,18,95, -98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2, -1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,50,0,18,95,98,0,0, -18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,9,95,102,0,0,0,1,8,58, -98,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,2,1,1, -1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,50,0,18,95,105,0,0,18,95, -105,0,0,0,0,0,1,0,3,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118, -101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0, -3,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,51,0,18,95,102,0, -0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,3,1,1,1,0,5,95,105, -0,0,0,1,8,58,98,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95, -105,0,0,0,0,0,1,0,4,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118, -101,99,52,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0, -0,0,0,1,0,4,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,52, -0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0, -1,0,4,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,52,0,18,95, -105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,13, -1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,50,0,18,95,102,0,0,17, -0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,13,1,1, -1,0,5,95,105,0,0,0,1,8,58,109,97,116,50,0,18,95,105,0,0,17,0,48, -0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,13,1,1,1,0, -1,95,98,0,0,0,1,8,58,109,97,116,50,0,18,95,98,0,0,17,0,48,0,0, -0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,14,1,1,1,0,9,95, -102,0,0,0,1,8,58,109,97,116,51,0,18,95,102,0,0,17,0,48,0,0,0,17, -0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0, -48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,14,1,1,1, -0,5,95,105,0,0,0,1,8,58,109,97,116,51,0,18,95,105,0,0,17,0,48,0, -0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0,48,0,0, -0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,14, -1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,51,0,18,95,98,0,0,17, -0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0, -48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0, -1,0,15,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,52,0,18,95,102, -0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0, -0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0, -0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0, -17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,15,1, -1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,52,0,18,95,105,0,0,17,0, -48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95, -105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48, -0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0, -0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,15,1,1,1,0,1, -95,98,0,0,0,1,8,58,109,97,116,52,0,18,95,98,0,0,17,0,48,0,0,0, -17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17, -0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18, -95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0, -48,0,0,0,18,95,98,0,0,0,0,0,1,0,0,2,1,1,0,1,9,97,0,0, -1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,99,111,112,121,0,18,97,0, -0,18,98,0,0,0,0,1,0,0,2,1,1,0,1,5,97,0,0,1,1,0,5,98, -0,0,0,1,4,105,110,116,95,99,111,112,121,0,18,97,0,0,18,98,0,0,0,0, -1,0,0,2,1,1,0,1,1,97,0,0,1,1,0,1,98,0,0,0,1,4,98,111, -111,108,95,99,111,112,121,0,18,97,0,0,18,98,0,0,0,0,1,0,0,2,1,1, -0,1,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18,117, -0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,0,0,1,0,0, -2,1,1,0,1,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120, -0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118, -0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2,1,1,0,1,12,118, -0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0, -20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0,59,122,0,18,117,0, -59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20,19,0,0,1,0,0, -2,1,1,0,1,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120, -0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,0,0, -1,0,0,2,1,1,0,1,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118, -0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20, -19,18,118,0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2,1,1,0, -1,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0, -59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0,59,122,0, -18,117,0,59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20,19,0,0, -1,0,0,2,1,1,0,1,2,118,0,0,1,1,0,2,117,0,0,0,1,9,18,118, -0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20, -19,0,0,1,0,0,2,1,1,0,1,3,118,0,0,1,1,0,3,117,0,0,0,1, -9,18,118,0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59, -121,0,20,19,18,118,0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2, -1,1,0,1,4,118,0,0,1,1,0,4,117,0,0,0,1,9,18,118,0,59,120,0, -18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0, -59,122,0,18,117,0,59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20, -19,0,0,1,0,0,2,1,1,0,1,13,109,0,0,1,1,0,13,110,0,0,0,1, -9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,20,18,109,0,16,10,49, -0,57,18,110,0,16,10,49,0,57,20,19,0,0,1,0,0,2,1,1,0,1,14,109, -0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16, -8,48,0,57,20,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,20,19,18, -109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,20,19,0,0,1,0,0,2,1, -1,0,1,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0, -57,18,110,0,16,8,48,0,57,20,18,109,0,16,10,49,0,57,18,110,0,16,10,49, -0,57,20,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,20,19,18,109, -0,16,10,51,0,57,18,110,0,16,10,51,0,57,20,19,0,0,1,0,0,2,2,1, -0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,97,100, -100,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,0,2,3,1,0,2, -9,97,0,0,1,1,0,9,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0, -1,0,0,2,4,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108, -111,97,116,95,109,117,108,116,105,112,108,121,0,18,97,0,0,18,97,0,0,18,98,0, -0,0,0,1,0,0,2,5,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1, -4,102,108,111,97,116,95,100,105,118,105,100,101,0,18,97,0,0,18,97,0,0,18,98, -0,0,0,0,1,0,0,2,2,1,0,2,5,120,0,0,1,1,0,5,121,0,0,0, -1,9,18,120,0,58,105,110,116,0,58,102,108,111,97,116,0,18,120,0,0,0,58,102, -108,111,97,116,0,18,121,0,0,0,46,0,0,20,0,0,1,0,0,2,3,1,0,2, -5,120,0,0,1,1,0,5,121,0,0,0,1,9,18,120,0,18,121,0,54,21,0,0, -1,0,0,2,4,1,0,2,5,120,0,0,1,1,0,5,121,0,0,0,1,9,18,120, -0,58,105,110,116,0,58,102,108,111,97,116,0,18,120,0,0,0,58,102,108,111,97,116, -0,18,121,0,0,0,48,0,0,20,0,0,1,0,0,2,5,1,0,2,5,120,0,0, -1,1,0,5,121,0,0,0,1,9,18,120,0,58,105,110,116,0,58,102,108,111,97,116, -0,18,120,0,0,0,58,102,108,111,97,116,0,18,121,0,0,0,49,0,0,20,0,0, -1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118, -0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21, -19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1, -9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59, -121,0,22,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,10,117,0, -0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18, -117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0,0,1,1,0, -10,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59, -121,0,18,117,0,59,121,0,24,19,0,0,1,0,0,2,2,1,0,2,11,118,0,0, -1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18, -118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122, -0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,11,117,0,0, -0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117, -0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,0,0,1,0, -0,2,4,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59, -120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18, -118,0,59,122,0,18,117,0,59,122,0,23,19,0,0,1,0,0,2,5,1,0,2,11, -118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120, -0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117, -0,59,122,0,24,19,0,0,1,0,0,2,2,1,0,2,12,118,0,0,1,1,0,12, -117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121, -0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18, -118,0,59,119,0,18,117,0,59,119,0,21,19,0,0,1,0,0,2,3,1,0,2,12, -118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120, -0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117, -0,59,122,0,22,19,18,118,0,59,119,0,18,117,0,59,119,0,22,19,0,0,1,0, -0,2,4,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59, -120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18, -118,0,59,122,0,18,117,0,59,122,0,23,19,18,118,0,59,119,0,18,117,0,59,119, -0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,12,117,0,0, -0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117, -0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,18,118,0,59, -119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1,0,2,6,118,0,0, -1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18, -118,0,59,121,0,18,117,0,59,121,0,21,19,0,0,1,0,0,2,3,1,0,2,6, -118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120, -0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,0,0,1,0,0,2,4,1, -0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117, -0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0, -2,5,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120, -0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,0,0, -1,0,0,2,2,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118, -0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21, -19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0, -2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0, -59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0, -18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,7,118,0,0,1,1, -0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0, -59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,23, -19,0,0,1,0,0,2,5,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1, -9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59, -121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,0,0,1,0,0,2, -2,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0, -18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0, -59,122,0,18,117,0,59,122,0,21,19,18,118,0,59,119,0,18,117,0,59,119,0,21, -19,0,0,1,0,0,2,3,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1, -9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59, -121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,18,118,0,59,119,0, -18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,8,118,0,0,1,1, -0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0, -59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,23, -19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0, -2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0, -59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0, -18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0, -1,0,0,2,2,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109, -0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18, -110,0,16,10,49,0,57,21,19,0,0,1,0,0,2,3,1,0,2,13,118,0,0,1, -1,0,13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0, -57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,0,0,1,0, -0,2,4,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,18, -109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0, -13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24, -18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,0,0,1,0,0,2, -2,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48, -0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0,16,10, -49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,0, -0,1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18, -109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57, -18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50, -0,57,22,19,0,0,1,0,0,2,4,1,0,2,14,109,0,0,1,1,0,14,110,0, -0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0, -2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18, -110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57, -24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,0,0,1,0, -0,2,2,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16, -8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0, -16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21, -19,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,21,19,0,0,1,0,0, -2,3,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8, -48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16, -10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,22,19, -18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,22,19,0,0,1,0,0,2, -4,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,18,109,0, -18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,15,110, -0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109, -0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,18,109,0,16,10,50,0,57, -18,110,0,16,10,50,0,57,24,19,18,109,0,16,10,51,0,57,18,110,0,16,10,51, -0,57,24,19,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,9,97,0, -0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21, -19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1, -9,18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,0,0, -1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118, -0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,0,0,1,0,0, -2,5,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120, -0,18,97,0,24,18,118,0,59,121,0,18,97,0,24,19,0,0,1,0,0,2,2,1, -0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97, -0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0,59,122,0,18,97,0,21,19, -0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9, -18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0, -59,122,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,11,118,0,0,1,1, -0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0, -18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,0,0,1,0,0,2,5,1, -0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97, -0,24,18,118,0,59,121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19, -0,0,1,0,0,2,2,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9, -18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0, -59,122,0,18,97,0,21,19,18,118,0,59,119,0,18,97,0,21,19,0,0,1,0,0, -2,3,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120, -0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97, -0,22,19,18,118,0,59,119,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2, -12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23, -18,118,0,59,121,0,18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,18,118, -0,59,119,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1, -1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59,121, -0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,18,118,0,59,119,0,18, -97,0,24,19,0,0,1,0,0,2,2,1,0,2,13,109,0,0,1,1,0,9,97,0, -0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57, -18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,9,97, -0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0, -57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,9, -97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23,18,109,0,16,10,49, -0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0, -9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10, -49,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,14,109,0,0,1,1, -0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16, -10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0,57,18,97,0,21,19,0,0, -1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109, -0,16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18, -109,0,16,10,50,0,57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,14,109, -0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23, -18,109,0,16,10,49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0, -23,19,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0, -1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97, -0,24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1, -0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57, -18,97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0, -57,18,97,0,21,19,18,109,0,16,10,51,0,57,18,97,0,21,19,0,0,1,0,0, -2,3,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8, -48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16, -10,50,0,57,18,97,0,22,19,18,109,0,16,10,51,0,57,18,97,0,22,19,0,0, -1,0,0,2,4,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109, -0,16,8,48,0,57,18,97,0,23,18,109,0,16,10,49,0,57,18,97,0,23,19,18, -109,0,16,10,50,0,57,18,97,0,23,19,18,109,0,16,10,51,0,57,18,97,0,23, -19,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1, -9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0, -24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,18,109,0,16,10,51,0,57,18, -97,0,24,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,13,109,0, -0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,0,2,4,1,0, -2,11,118,0,0,1,1,0,14,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0, -48,20,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,15,109,0,0,0, -1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,9,2,29,1,1,0,9, -97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2,18,97,0,0, -0,8,18,99,0,18,98,0,21,0,0,1,0,9,2,30,1,1,0,9,97,0,0,1, -1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,54,46,0,0,1,0,9,2,24, -1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2, -18,97,0,0,0,8,18,99,0,18,98,0,23,0,0,1,0,9,2,25,1,1,0,9, -97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2,18,97,0,0, -0,8,18,99,0,18,98,0,24,0,0,1,0,5,2,29,1,1,0,5,97,0,0,1, -1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,2,18,97,0,0,0,8,18,99, -0,18,98,0,21,0,0,1,0,5,2,30,1,1,0,5,120,0,0,1,1,0,5,121, -0,0,0,1,8,18,120,0,18,121,0,54,46,0,0,1,0,5,2,24,1,1,0,5, -120,0,0,1,1,0,5,121,0,0,0,1,3,2,0,5,1,122,0,2,18,120,0,0, -0,8,18,122,0,18,121,0,23,0,0,1,0,5,2,25,1,1,0,5,120,0,0,1, -1,0,5,121,0,0,0,1,3,2,0,5,1,122,0,2,18,120,0,0,0,8,18,122, -0,18,121,0,24,0,0,1,0,10,2,29,1,1,0,10,118,0,0,1,1,0,10,117, -0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,46, -0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,30,1, -1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118, -0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0, -47,0,0,0,0,1,0,11,2,29,1,1,0,11,118,0,0,1,1,0,11,117,0,0, -0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,46,0,18, -118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59,122, -0,46,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,11,117,0, -0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0, -18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59, -122,0,47,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1,0,12,117, -0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,46, -0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0, -59,122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0, -12,2,30,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99, -52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117, -0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59, -119,0,18,117,0,59,119,0,47,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0, -0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0, -18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0, -0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58, -105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59, -121,0,18,117,0,59,121,0,47,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0, -0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0, -18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118, -0,59,122,0,18,117,0,59,122,0,46,0,0,0,0,1,0,7,2,30,1,1,0,7, -118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59, -120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0, -18,118,0,59,122,0,18,117,0,59,122,0,47,0,0,0,0,1,0,8,2,29,1,1, -0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118, -0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0, -46,0,18,118,0,59,122,0,18,117,0,59,122,0,46,0,18,118,0,59,119,0,18,117, -0,59,119,0,46,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,1,1,0, -8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59, -120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0, -18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59,119,0,47,0,0,0, -0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58, -109,97,116,50,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18, -109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0,13,2, -30,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0, -18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49, -0,57,18,110,0,16,10,49,0,57,47,0,0,0,0,1,0,14,2,29,1,1,0,14, -109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8, -48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0, -16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46, -0,0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0, -1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57, -47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16, -10,50,0,57,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0,15,2,29,1,1, -0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0, -16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18, -110,0,16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0, -57,46,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,46,0,0,0,0, -1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109, -97,116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109, -0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16,10,50,0,57, -18,110,0,16,10,50,0,57,47,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51, -0,57,47,0,0,0,0,1,0,10,2,29,1,1,0,9,97,0,0,1,1,0,10,117, -0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18,97, -0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,29,1,1,0,10,118,0,0, -1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98, -0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,10,2,30,1,1, -0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0, -18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0,0,1,0, -10,2,30,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99, -50,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0, -0,0,0,1,0,10,2,24,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1, -8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0, -59,121,0,48,0,0,0,0,1,0,10,2,24,1,1,0,10,118,0,0,1,1,0,9, -98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18, -118,0,59,121,0,18,98,0,48,0,0,0,0,1,0,10,2,25,1,1,0,9,97,0, -0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59, -120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,10,2,25,1, -1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118, -0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,0,0,0,1, -0,11,2,29,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101, -99,51,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46, -0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,11,2,29,1,1,0,11, -118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120, -0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,18,118,0,59,122,0,18, -98,0,46,0,0,0,0,1,0,11,2,30,1,1,0,9,97,0,0,1,1,0,11,117, -0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97, -0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47,0,0,0,0,1, -0,11,2,30,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101, -99,51,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47, -0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,11,2,24,1,1,0,9, -97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117, -0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0,18,117,0,59, -122,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,9,98, -0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118, -0,59,121,0,18,98,0,48,0,18,118,0,59,122,0,18,98,0,48,0,0,0,0,1, -0,11,2,25,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101, -99,51,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49, -0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0,11,2,25,1,1,0,11, -118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120, -0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18, -98,0,49,0,0,0,0,1,0,12,2,29,1,1,0,9,97,0,0,1,1,0,12,117, -0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97, -0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,18,97,0,18, -117,0,59,119,0,46,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1, -0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46, -0,18,118,0,59,121,0,18,98,0,46,0,18,118,0,59,122,0,18,98,0,46,0,18, -118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,12,2,30,1,1,0,9,97,0, -0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59, -120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0, -47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,12,2,30,1,1,0, -12,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59, -120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0, -18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,12,2,24, -1,1,0,9,97,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18, -97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0, -18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0, -12,2,24,1,1,0,12,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99, -52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0, -18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0, -0,1,0,12,2,25,1,1,0,9,97,0,0,1,1,0,12,117,0,0,0,1,8,58, -118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121, -0,49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49, -0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1,1,0,9,98,0,0,0, -1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121, -0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18, -98,0,49,0,0,0,0,1,0,13,2,29,1,1,0,9,97,0,0,1,1,0,13,110, -0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,46,0, -18,97,0,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0,13,2,29,1,1,0, -13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16, -8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,0,0, -0,1,0,13,2,30,1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1,8,58, -109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0, -16,10,49,0,57,47,0,0,0,0,1,0,13,2,30,1,1,0,13,109,0,0,1,1, -0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98, -0,47,0,18,109,0,16,10,49,0,57,18,98,0,47,0,0,0,0,1,0,13,2,24, -1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18, -97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48, -0,0,0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0, -1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0, -16,10,49,0,57,18,98,0,48,0,0,0,0,1,0,13,2,25,1,1,0,9,97,0, -0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16, -8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,0,0,0,1,0, -13,2,25,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116, -50,0,18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18, -98,0,49,0,0,0,0,1,0,14,2,29,1,1,0,9,97,0,0,1,1,0,14,110, -0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,46,0, -18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18,110,0,16,10,50,0,57, -46,0,0,0,0,1,0,14,2,29,1,1,0,14,109,0,0,1,1,0,9,98,0,0, -0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109, -0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98,0,46,0, -0,0,0,1,0,14,2,30,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1, -8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18, -110,0,16,10,49,0,57,47,0,18,97,0,18,110,0,16,10,50,0,57,47,0,0,0, -0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58, -109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49, -0,57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,0,0,0,1, -0,14,2,24,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97, -116,51,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10, -49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,14, -2,24,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51, -0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98, -0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,0,0,0,1,0,14,2,25, -1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18, -97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49, -0,18,97,0,18,110,0,16,10,50,0,57,49,0,0,0,0,1,0,14,2,25,1,1, -0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,18,109,0, -16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18, -109,0,16,10,50,0,57,18,98,0,49,0,0,0,0,1,0,15,2,29,1,1,0,9, -97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110, -0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0, -18,110,0,16,10,50,0,57,46,0,18,97,0,18,110,0,16,10,51,0,57,46,0,0, -0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8, -58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10, -49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98,0,46,0,18,109,0, -16,10,51,0,57,18,98,0,46,0,0,0,0,1,0,15,2,30,1,1,0,9,97,0, -0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16, -8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18,97,0,18,110, -0,16,10,50,0,57,47,0,18,97,0,18,110,0,16,10,51,0,57,47,0,0,0,0, -1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109, -97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49,0, -57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,18,109,0,16,10, -51,0,57,18,98,0,47,0,0,0,0,1,0,15,2,24,1,1,0,9,97,0,0,1, -1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48, -0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48,0,18,97,0,18,110,0,16, -10,50,0,57,48,0,18,97,0,18,110,0,16,10,51,0,57,48,0,0,0,0,1,0, -15,2,24,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116, -52,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18, -98,0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,18,109,0,16,10,51,0, -57,18,98,0,48,0,0,0,0,1,0,15,2,25,1,1,0,9,97,0,0,1,1,0, -15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57, -49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18,110,0,16,10,50, -0,57,49,0,18,97,0,18,110,0,16,10,51,0,57,49,0,0,0,0,1,0,15,2, -25,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0, -18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0, -49,0,18,109,0,16,10,50,0,57,18,98,0,49,0,18,109,0,16,10,51,0,57,18, -98,0,49,0,0,0,0,1,0,6,2,29,1,1,0,5,97,0,0,1,1,0,6,117, -0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18, -97,0,18,117,0,59,121,0,46,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0, -0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0, -18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,6,2,30, -1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0, -18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0, -0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58, -105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18, -98,0,47,0,0,0,0,1,0,6,2,24,1,1,0,5,97,0,0,1,1,0,6,117, -0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18, -97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,6,2,24,1,1,0,6,118,0, -0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0, -18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,0,0,0,1,0,6,2,25, -1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0, -18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0, -0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58, -105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18, -98,0,49,0,0,0,0,1,0,7,2,29,1,1,0,5,97,0,0,1,1,0,7,117, -0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,46,0,18, -97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0, -1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105, -118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98, -0,46,0,18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,7,2,30,1,1, -0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97, -0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18, -117,0,59,122,0,47,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1, -0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0, -47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0, -0,0,0,1,0,7,2,24,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1, -8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117, -0,59,121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,7,2, -24,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51, -0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18, -118,0,59,122,0,18,98,0,48,0,0,0,0,1,0,7,2,25,1,1,0,5,97,0, -0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0, -59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122, -0,49,0,0,0,0,1,0,7,2,25,1,1,0,7,118,0,0,1,1,0,5,98,0, -0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18,118, -0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1, -0,8,2,29,1,1,0,5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118, -101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0, -46,0,18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0, -0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1, -8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121, -0,18,98,0,46,0,18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18, -98,0,46,0,0,0,0,1,0,8,2,30,1,1,0,5,97,0,0,1,1,0,8,117, -0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18, -97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47,0,18,97,0, -18,117,0,59,119,0,47,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,1, -1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98, -0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47, -0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,8,2,24,1,1,0,5, -97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18, -117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0,18,117,0, -59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,8,2,24, -1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0, -18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118, -0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1, -0,8,2,25,1,1,0,5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118, -101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0, -49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0, -0,0,0,1,0,8,2,25,1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1, -8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121, -0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18, -98,0,49,0,0,0,0,1,0,10,2,24,1,1,0,13,109,0,0,1,1,0,10,118, -0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,109,0,16,8,48,0, -57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46, -0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121, -0,18,109,0,16,10,49,0,57,59,121,0,48,46,0,0,0,0,1,0,10,2,24,1, -1,0,10,118,0,0,1,1,0,13,109,0,0,0,1,8,58,118,101,99,50,0,18,118, -0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109, -0,16,8,48,0,57,59,121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49, -0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48, -46,0,0,0,0,1,0,11,2,24,1,1,0,14,109,0,0,1,1,0,11,118,0,0, -0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59, -120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118, -0,59,122,0,18,109,0,16,10,50,0,57,59,120,0,48,46,0,18,118,0,59,120,0, -18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49, -0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,121,0, -48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0, -59,121,0,18,109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,122,0,18,109, -0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,11,2,24,1,1,0,11, -118,0,0,1,1,0,14,109,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120, -0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8, -48,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,8,48,0,57,59,122, -0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118, -0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18, -109,0,16,10,49,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10, -50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0, -48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0, -0,1,0,12,2,24,1,1,0,15,109,0,0,1,1,0,12,118,0,0,0,1,8,58, -118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18, -118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59,122,0, -18,109,0,16,10,50,0,57,59,120,0,48,46,18,118,0,59,119,0,18,109,0,16,10, -51,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59, -121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118, -0,59,122,0,18,109,0,16,10,50,0,57,59,121,0,48,46,18,118,0,59,119,0,18, -109,0,16,10,51,0,57,59,121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8, -48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,122,0, -48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0, -59,119,0,18,109,0,16,10,51,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18, -109,0,16,8,48,0,57,59,119,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0, -57,59,119,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,119,0,48, -46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0, -1,0,12,2,24,1,1,0,12,118,0,0,1,1,0,15,109,0,0,0,1,8,58,118, -101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118, -0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0,18, -109,0,16,8,48,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,8,48, -0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120, -0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0, -59,122,0,18,109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109, -0,16,10,49,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,50, -0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0,48, -46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59, -119,0,18,109,0,16,10,50,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109, -0,16,10,51,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,51,0,57, -59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,51,0,57,59,122,0,48,46, -18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1, -0,10,2,24,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101, -99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18, -117,0,59,121,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1, -0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59, -120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18,118,0,59,122,0, -18,117,0,59,122,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1, -1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0, -59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18,118,0,59,122, -0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0, -0,0,1,0,6,2,24,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8, -58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0, -59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118, -0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120, -0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18, -118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,8,2,24,1,1,0, -8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0, -59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48, -0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0, -59,119,0,48,0,0,0,0,1,0,10,2,25,1,1,0,10,118,0,0,1,1,0,10, -117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0, -49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,11,2,25, -1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18, -118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121, -0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,12,2, -25,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0, -18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59, -121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0, -18,117,0,59,119,0,49,0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1, -1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117, -0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1, -0,7,2,25,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118, -101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0, -18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0, -0,1,0,8,2,25,1,1,0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58, -105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59, -121,0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0, -18,118,0,59,119,0,18,117,0,59,119,0,49,0,0,0,0,1,0,13,2,25,1,1, -0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0, -16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18, -110,0,16,10,49,0,57,49,0,0,0,0,1,0,14,2,25,1,1,0,14,109,0,0, -1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57, -18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49, -0,57,49,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,49,0,0,0, -0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58, -109,97,116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18, -109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,18,109,0,16,10,50,0, -57,18,110,0,16,10,50,0,57,49,0,18,109,0,16,10,51,0,57,18,110,0,16,10, -51,0,57,49,0,0,0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,13, -110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,18,110,0,16,8,48,0,57,48, -0,18,109,0,18,110,0,16,10,49,0,57,48,0,0,0,0,1,0,14,2,24,1,1, -0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0, -18,110,0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,18, -109,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,15,2,24,1,1,0,15, -109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,18,110, -0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,18,109,0, -18,110,0,16,10,50,0,57,48,0,18,109,0,18,110,0,16,10,51,0,57,48,0,0, -0,0,1,0,9,2,30,1,1,0,9,97,0,0,0,1,3,2,0,9,1,99,0,0, -0,4,102,108,111,97,116,95,110,101,103,97,116,101,0,18,99,0,0,18,97,0,0,0, -8,18,99,0,0,0,1,0,5,2,30,1,1,0,5,97,0,0,0,1,8,58,105,110, -116,0,58,102,108,111,97,116,0,18,97,0,0,0,54,0,0,0,0,1,0,10,2,30, -1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,54,0, -18,118,0,59,121,0,54,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,0, -1,8,58,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0, -18,118,0,59,122,0,54,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,0, -1,8,58,118,101,99,52,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0, -18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0,1,0,6,2,30, -1,1,0,6,118,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,54, -0,18,118,0,59,121,0,54,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0, -0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0, -54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0, -0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,54,0,18,118,0,59,121, -0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0,1,0, -13,2,30,1,1,0,13,109,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8, -48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,0,0,0,1,0,14,2,30,1, -1,0,14,109,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,54, -0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0,0,0,0, -1,0,15,2,30,1,1,0,15,109,0,0,0,1,8,58,109,97,116,52,0,18,109,0, -16,8,48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0, -57,54,0,18,109,0,16,10,51,0,57,54,0,0,0,0,1,0,0,2,28,1,0,2, -9,97,0,0,0,1,9,18,97,0,17,49,0,48,0,0,22,0,0,1,0,0,2,28, -1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,22,0,0,1,0,0,2, -28,1,0,2,10,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0, -52,19,0,0,1,0,0,2,28,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120, -0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2, -28,1,0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0, -52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2, -28,1,0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0, -52,19,0,0,1,0,0,2,28,1,0,2,7,118,0,0,0,1,9,18,118,0,59,120, -0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2, -28,1,0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0, -52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2, -28,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16, -10,49,0,57,52,19,0,0,1,0,0,2,28,1,0,2,14,109,0,0,0,1,9,18, -109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50, -0,57,52,19,0,0,1,0,0,2,28,1,0,2,15,109,0,0,0,1,9,18,109,0, -16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50,0,57, -52,19,18,109,0,16,10,51,0,57,52,19,0,0,1,0,0,2,27,1,0,2,9,97, -0,0,0,1,9,18,97,0,17,49,0,48,0,0,21,0,0,1,0,0,2,27,1,0, -2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,21,0,0,1,0,0,2,27,1, -0,2,10,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19, -0,0,1,0,0,2,27,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120,0,51, -18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1, -0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19, -18,118,0,59,122,0,51,19,18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1, -0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19, -0,0,1,0,0,2,27,1,0,2,7,118,0,0,0,1,9,18,118,0,59,120,0,51, -18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1, -0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19, -18,118,0,59,122,0,51,19,18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1, -0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16,10,49, -0,57,51,19,0,0,1,0,0,2,27,1,0,2,14,109,0,0,0,1,9,18,109,0, -16,8,48,0,57,51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57, -51,19,0,0,1,0,0,2,27,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8, -48,0,57,51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57,51,19, -18,109,0,16,10,51,0,57,51,19,0,0,1,0,9,2,28,1,0,2,9,97,0,0, -1,1,0,5,0,0,0,1,3,2,1,9,1,99,0,2,18,97,0,0,0,9,18,97, -0,52,0,8,18,99,0,0,0,1,0,5,2,28,1,0,2,5,97,0,0,1,1,0, -5,0,0,0,1,3,2,1,5,1,99,0,2,18,97,0,0,0,9,18,97,0,52,0, -8,18,99,0,0,0,1,0,10,2,28,1,0,2,10,118,0,0,1,1,0,5,0,0, -0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61, -0,0,0,0,1,0,11,2,28,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1, -8,58,118,101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18, -118,0,59,122,0,61,0,0,0,0,1,0,12,2,28,1,0,2,12,118,0,0,1,1, -0,5,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0, -59,121,0,61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0, -1,0,6,2,28,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118, -101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1, -0,7,2,28,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101, -99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122, -0,61,0,0,0,0,1,0,8,2,28,1,0,2,8,118,0,0,1,1,0,5,0,0, -0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0, -61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,13, -2,28,1,0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0, -18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,0,0,0,1, -0,14,2,28,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116, -51,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,18,109, -0,16,10,50,0,57,61,0,0,0,0,1,0,15,2,28,1,0,2,15,109,0,0,1, -1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,61,0, -18,109,0,16,10,49,0,57,61,0,18,109,0,16,10,50,0,57,61,0,18,109,0,16, -10,51,0,57,61,0,0,0,0,1,0,9,2,27,1,0,2,9,97,0,0,1,1,0, -5,0,0,0,1,3,2,1,9,1,99,0,2,18,97,0,0,0,9,18,97,0,51,0, -8,18,99,0,0,0,1,0,5,2,27,1,0,2,5,97,0,0,1,1,0,5,0,0, -0,1,3,2,1,5,1,99,0,2,18,97,0,0,0,9,18,97,0,51,0,8,18,99, -0,0,0,1,0,10,2,27,1,0,2,10,118,0,0,1,1,0,5,0,0,0,1,8, -58,118,101,99,50,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0, -0,1,0,11,2,27,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118, -101,99,51,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59, -122,0,60,0,0,0,0,1,0,12,2,27,1,0,2,12,118,0,0,1,1,0,5,0, -0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0, -60,0,18,118,0,59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,6, -2,27,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,50, -0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0,0,1,0,7,2, -27,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0, -18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0, -0,0,0,1,0,8,2,27,1,0,2,8,118,0,0,1,1,0,5,0,0,0,1,8, -58,105,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18, -118,0,59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,13,2,27,1, -0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0,18,109,0, -16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,0,0,0,1,0,14,2, -27,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18, -109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109,0,16,10, -50,0,57,60,0,0,0,0,1,0,15,2,27,1,0,2,15,109,0,0,1,1,0,5, -0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,60,0,18,109,0, -16,10,49,0,57,60,0,18,109,0,16,10,50,0,57,60,0,18,109,0,16,10,51,0, -57,60,0,0,0,0,1,0,1,2,18,1,1,0,9,97,0,0,1,1,0,9,98,0, -0,0,1,3,2,0,1,1,99,0,0,0,4,102,108,111,97,116,95,108,101,115,115,0, -18,99,0,0,18,97,0,0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,18, -1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,58,102,108,111,97,116,0, -18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,40,0,0,1,0,1,2, -19,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,98,0,18,97,0, -40,0,0,1,0,1,2,19,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1, -8,18,98,0,18,97,0,40,0,0,1,0,1,2,21,1,1,0,9,97,0,0,1,1, -0,9,98,0,0,0,1,8,18,97,0,18,98,0,41,18,97,0,18,98,0,38,32,0, -0,1,0,1,2,21,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18, -97,0,18,98,0,41,18,97,0,18,98,0,38,32,0,0,1,0,1,2,20,1,1,0, -9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0, -18,98,0,38,32,0,0,1,0,1,2,20,1,1,0,5,97,0,0,1,1,0,5,98, -0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0,38,32,0,0,1,0, -1,2,16,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,1,1, -99,0,0,0,4,102,108,111,97,116,95,101,113,117,97,108,0,18,99,0,0,18,97,0, -0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,16,1,1,0,5,97,0,0, -1,1,0,5,98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58,102, -108,111,97,116,0,18,98,0,0,0,38,0,0,1,0,1,2,16,1,1,0,1,97,0, -0,1,1,0,1,98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58, -102,108,111,97,116,0,18,98,0,0,0,38,0,0,1,0,1,2,16,1,1,0,10,118, -0,0,1,1,0,10,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0, -38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1,0,1,2,16,1,1, -0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0, -59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0, -18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0,12,118,0,0,1,1, -0,12,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,38,18,118,0, -59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18,117,0,59,122,0,38, -34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1,0,1,2,16,1,1, -0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0, -59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1,0,1,2, -16,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,18,118,0,59,120,0, -18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0, -59,122,0,18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0,8,118,0, -0,1,1,0,8,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,38, -18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18,117,0,59, -122,0,38,34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1,0,1,2, -16,1,1,0,2,118,0,0,1,1,0,2,117,0,0,0,1,8,18,118,0,59,120,0, -18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1, -0,1,2,16,1,1,0,3,118,0,0,1,1,0,3,117,0,0,0,1,8,18,118,0, -59,120,0,18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34, -18,118,0,59,122,0,18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0, -4,118,0,0,1,1,0,4,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59, -120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18, -117,0,59,122,0,38,34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1, -0,1,2,16,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,18,109,0, -16,8,48,0,57,18,110,0,16,8,48,0,57,38,18,109,0,16,10,49,0,57,18,110, -0,16,10,49,0,57,38,34,0,0,1,0,1,2,16,1,1,0,14,109,0,0,1,1, -0,14,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57, -38,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,38,34,18,109,0,16,10, -50,0,57,18,110,0,16,10,50,0,57,38,34,0,0,1,0,1,2,16,1,1,0,15, -109,0,0,1,1,0,15,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0, -16,8,48,0,57,38,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,38,34, -18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,38,34,18,109,0,16,10,51, -0,57,18,110,0,16,10,51,0,57,38,34,0,0,1,0,1,2,17,1,1,0,9,97, -0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,38,56,0,0,1,0, -1,2,17,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18, -98,0,38,56,0,0,1,0,1,2,17,1,1,0,1,97,0,0,1,1,0,1,98,0, -0,0,1,8,18,97,0,18,98,0,38,56,0,0,1,0,1,2,17,1,1,0,10,118, -0,0,1,1,0,10,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0, -39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1,0,1,2,17,1,1, -0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0, -59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0, -18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0,12,118,0,0,1,1, -0,12,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,39,18,118,0, -59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18,117,0,59,122,0,39, -32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1,0,1,2,17,1,1, -0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0, -59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1,0,1,2, -17,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,18,118,0,59,120,0, -18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0, -59,122,0,18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0,8,118,0, -0,1,1,0,8,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,39, -18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18,117,0,59, -122,0,39,32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1,0,1,2, -17,1,1,0,2,118,0,0,1,1,0,2,117,0,0,0,1,8,18,118,0,59,120,0, -18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1, -0,1,2,17,1,1,0,3,118,0,0,1,1,0,3,117,0,0,0,1,8,18,118,0, -59,120,0,18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32, -18,118,0,59,122,0,18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0, -4,118,0,0,1,1,0,4,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59, -120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18, -117,0,59,122,0,39,32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1, -0,1,2,17,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,18,109,0, -16,8,48,0,57,18,110,0,16,8,48,0,57,39,18,109,0,16,10,49,0,57,18,110, -0,16,10,49,0,57,39,32,0,0,1,0,1,2,17,1,1,0,14,109,0,0,1,1, -0,14,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57, -39,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,39,32,18,109,0,16,10, -50,0,57,18,110,0,16,10,50,0,57,39,32,0,0,1,0,1,2,17,1,1,0,15, -109,0,0,1,1,0,15,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0, -16,8,48,0,57,39,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,39,32, -18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,39,32,18,109,0,16,10,51, -0,57,18,110,0,16,10,51,0,57,39,32,0,0,1,0,1,2,12,1,1,0,1,97, -0,0,1,1,0,1,98,0,0,0,1,8,18,97,0,18,98,0,39,0,0,1,0,1, -2,32,1,1,0,1,97,0,0,0,1,8,18,97,0,15,2,48,0,38,0,0,0
\ No newline at end of file +2,1,0,5,1,1,1,0,9,95,102,0,0,0,1,3,2,0,5,1,95,105,0,0,0,4,102,108,111,97,116,95,116,111,95,105,110, +116,0,18,95,105,0,0,18,95,102,0,0,0,8,18,95,105,0,0,0,1,0,1,1,1,1,0,5,95,105,0,0,0,1,8,18,95,105,0, +16,8,48,0,39,0,0,1,0,1,1,1,1,0,9,95,102,0,0,0,1,8,18,95,102,0,17,48,0,48,0,0,39,0,0,1,0,5,1,1,1,0,1, +95,98,0,0,0,1,8,18,95,98,0,16,10,49,0,16,8,48,0,31,0,0,1,0,9,1,1,1,0,1,95,98,0,0,0,1,8,18,95,98,0, +17,49,0,48,0,0,17,48,0,48,0,0,31,0,0,1,0,9,1,1,1,0,5,95,105,0,0,0,1,3,2,0,9,1,95,102,0,0,0,4,105, +110,116,95,116,111,95,102,108,111,97,116,0,18,95,102,0,0,18,95,105,0,0,0,8,18,95,102,0,0,0,1,0,1,1, +1,1,0,1,95,98,0,0,0,1,8,18,95,98,0,0,0,1,0,5,1,1,1,0,5,95,105,0,0,0,1,8,18,95,105,0,0,0,1,0,9,1,1,1, +0,9,95,102,0,0,0,1,8,18,95,102,0,0,0,1,0,10,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,50,0,18,95,102, +0,0,18,95,102,0,0,0,0,0,1,0,10,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,50,0,18,95,105,0,0,18,95, +105,0,0,0,0,0,1,0,10,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,50,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1, +0,11,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,51,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0, +1,0,11,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0, +0,1,0,11,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0, +1,0,12,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18, +95,102,0,0,0,0,0,1,0,12,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,52,0,18,95,105,0,0,18,95,105,0,0, +18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,12,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,52,0,18,95,98,0,0, +18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,6,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,50, +0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,6,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,50,0,18,95, +102,0,0,18,95,102,0,0,0,0,0,1,0,6,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,50,0,18,95,98,0,0,18, +95,98,0,0,0,0,0,1,0,7,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0, +18,95,105,0,0,0,0,0,1,0,7,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,51,0,18,95,102,0,0,18,95,102, +0,0,18,95,102,0,0,0,0,0,1,0,7,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,51,0,18,95,98,0,0,18,95, +98,0,0,18,95,98,0,0,0,0,0,1,0,8,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,52,0,18,95,105,0,0,18, +95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,8,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,52, +0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,8,1,1,1,0,1,95,98,0,0,0,1,8,58, +105,118,101,99,52,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,1,95,98, +0,0,0,1,8,58,98,118,101,99,50,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,9,95,102,0,0,0,1,8,58, +98,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,2,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101, +99,50,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,3,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,51,0,18, +95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,3,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,51,0,18, +95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,3,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,51,0, +18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,4,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,52, +0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,4,1,1,1,0,9,95,102,0,0,0,1,8,58,98, +118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,4,1,1,1,0,5,95, +105,0,0,0,1,8,58,98,118,101,99,52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1, +0,13,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,50,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95, +102,0,0,0,0,0,1,0,13,1,1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,50,0,18,95,105,0,0,17,0,48,0,0,0,17,0, +48,0,0,0,18,95,105,0,0,0,0,0,1,0,13,1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,50,0,18,95,98,0,0,17,0, +48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,14,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,51,0,18, +95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0, +48,0,0,0,18,95,102,0,0,0,0,0,1,0,14,1,1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,51,0,18,95,105,0,0,17, +0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18, +95,105,0,0,0,0,0,1,0,14,1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,51,0,18,95,98,0,0,17,0,48,0,0,0,17, +0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0, +1,0,15,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,52,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0, +48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95, +102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,15,1,1,1,0, +5,95,105,0,0,0,1,8,58,109,97,116,52,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0, +48,0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0, +48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,15,1,1,1,0,1,95,98,0,0,0, +1,8,58,109,97,116,52,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95, +98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0, +0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,0,2,2,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4, +102,108,111,97,116,95,97,100,100,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,9,2,30,1,1,0,9,97,0,0,0,1, +3,2,0,9,1,99,0,0,0,4,102,108,111,97,116,95,110,101,103,97,116,101,0,18,99,0,0,18,97,0,0,0,8,18,99,0, +0,0,1,0,0,2,3,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0,1,0,0,2,4,1,0,2,9,97,0, +0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,109,117,108,116,105,112,108,121,0,18,97,0,0,18,97,0,0, +18,98,0,0,0,0,1,0,0,2,5,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,100,105,118,105, +100,101,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,9,2,29,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1, +99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,21,0,0,1,0,0,2,2,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0, +1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0, +0,46,0,0,20,0,0,1,0,5,2,30,1,1,0,5,97,0,0,0,1,8,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0, +0,54,0,0,0,0,1,0,0,2,3,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0,1,0,9,2,24,1,1, +0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,23,0,0,1, +0,0,2,4,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0,1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97, +0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,48,0,0,20,0,0,1,0,9,2,25,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0, +1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,24,0,0,1,0,0,2,5,1,0,2,5,97,0,0,1,1,0, +5,98,0,0,0,1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0, +18,98,0,0,0,49,0,0,20,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18, +117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,10, +117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,0,0, +1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0, +59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59, +120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,0,0,1,0,0,2,2,1,0,2,11,118,0,0, +1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0, +21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1, +9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122, +0,18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0, +18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0, +23,19,0,0,1,0,0,2,5,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24, +18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,0,0,1,0,0,2,2,1, +0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18, +117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18,118,0,59,119,0,18,117,0,59,119,0, +21,19,0,0,1,0,0,2,3,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22, +18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,18,118,0,59,119, +0,18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0, +18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0, +23,19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1, +9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122, +0,18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1,0,2,6,118,0,0,1, +1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21, +19,0,0,1,0,0,2,3,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18, +118,0,59,121,0,18,117,0,59,121,0,22,19,0,0,1,0,0,2,4,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0, +59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,6,118,0, +0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0, +24,19,0,0,1,0,0,2,2,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18, +118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0, +2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0, +59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,7,118,0,0,1,1,0,7,117, +0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0, +59,122,0,18,117,0,59,122,0,23,19,0,0,1,0,0,2,5,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59, +120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59, +122,0,24,19,0,0,1,0,0,2,2,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0, +21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18,118,0,59, +119,0,18,117,0,59,119,0,21,19,0,0,1,0,0,2,3,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0, +18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0, +22,19,18,118,0,59,119,0,18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9, +18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0, +18,117,0,59,122,0,23,19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0,2,8,118,0,0,1,1, +0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19, +18,118,0,59,122,0,18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1, +0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10, +49,0,57,18,110,0,16,10,49,0,57,21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0, +16,8,48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,0,0,1,0, +10,2,24,1,1,0,13,109,0,0,1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,109,0,16,8, +48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18, +109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,0,0,0,0,1,0, +13,2,24,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,18,110,0,16,8,48,0,57, +48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,0,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9, +18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,16, +8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,0,0,1,0,0,2, +2,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0, +16,10,49,0,57,18,110,0,16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,0,0, +1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,22,18, +109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,22, +19,0,0,1,0,11,2,24,1,1,0,14,109,0,0,1,1,0,11,118,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18, +109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59, +122,0,18,109,0,16,10,50,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,121,0,48, +18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59, +121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10, +49,0,57,59,122,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,14,2,24, +1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,18,110,0,16,8,48,0,57,48,0,18, +109,0,18,110,0,16,10,49,0,57,48,0,18,109,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,0,2,4,1,0,2,14,109, +0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,14, +110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10, +49,0,57,24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,0,0,1,0,0,2,2,1,0,2,15,109,0,0,1, +1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0, +16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,18,109,0,16,10,51,0,57,18, +110,0,16,10,51,0,57,21,19,0,0,1,0,0,2,3,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0, +57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0, +57,18,110,0,16,10,50,0,57,22,19,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,22,19,0,0,1,0,12,2,24, +1,1,0,15,109,0,0,1,1,0,12,118,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57, +59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59,122,0,18,109,0,16, +10,50,0,57,59,120,0,48,46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,120,0,48,46,0,18,118,0,59,120, +0,18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118, +0,59,122,0,18,109,0,16,10,50,0,57,59,121,0,48,46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,121,0, +48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0, +57,59,122,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109, +0,16,10,51,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,119,0,48,18,118,0,59, +121,0,18,109,0,16,10,49,0,57,59,119,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,119,0,48,46, +18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,0,15,2,24,1,1,0,15,109,0,0,1,1,0, +15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,18,110,0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49, +0,57,48,0,18,109,0,18,110,0,16,10,50,0,57,48,0,18,109,0,18,110,0,16,10,51,0,57,48,0,0,0,0,1,0,0,2,4, +1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,15,109, +0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18, +110,0,16,10,49,0,57,24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,18,109,0,16,10,51,0, +57,18,110,0,16,10,51,0,57,24,19,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120, +0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18, +118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,9,97, +0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0, +0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59,121,0,18,97,0,24,19,0,0,1,0,0,2,2,1, +0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18, +118,0,59,122,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0, +18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,11, +118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,18,118,0, +59,122,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97, +0,24,18,118,0,59,121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,12,118,0,0, +1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0,59,122,0, +18,97,0,21,19,18,118,0,59,119,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9, +18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97,0,22,19,18,118, +0,59,119,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18, +97,0,23,18,118,0,59,121,0,18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,18,118,0,59,119,0,18,97,0, +23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59, +121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,18,118,0,59,119,0,18,97,0,24,19,0,0,1,0,0,2,2,1, +0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57,18,97,0, +21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,22,18,109,0, +16,10,49,0,57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0, +57,18,97,0,23,18,109,0,16,10,49,0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0, +1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,14, +109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19, +18,109,0,16,10,50,0,57,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0, +16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16,10,50,0,57,18,97,0,22,19,0, +0,1,0,0,2,4,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23,18,109,0,16,10, +49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,9, +97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0,24,19,18,109,0,16,10, +50,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18, +97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0,57,18,97,0,21,19,18,109,0,16,10,51, +0,57,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97, +0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16,10,50,0,57,18,97,0,22,19,18,109,0,16,10,51,0, +57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0, +23,18,109,0,16,10,49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0,23,19,18,109,0,16,10,51,0,57, +18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24, +18,109,0,16,10,49,0,57,18,97,0,24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,18,109,0,16,10,51,0,57,18, +97,0,24,19,0,0,1,0,10,2,24,1,1,0,10,118,0,0,1,1,0,13,109,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59, +120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,0,18, +118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0, +48,46,0,0,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,13,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0, +0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,14,109,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,109,0, +16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0, +18,109,0,16,8,48,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118, +0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,49,0,57,59,122,0, +48,46,0,18,118,0,59,120,0,18,109,0,16,10,50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0, +57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,0,2,4,1,0,2, +11,118,0,0,1,1,0,14,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,12,2,24,1,1,0,12,118,0,0, +1,1,0,15,109,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18, +118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,8,48,0,57,59,122, +0,48,46,18,118,0,59,119,0,18,109,0,16,8,48,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10, +49,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18, +109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,10,49,0,57,59,119,0,48,46,0,18,118, +0,59,120,0,18,109,0,16,10,50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0,48, +46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,10,50,0,57, +59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,51,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16, +10,51,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,51,0,57,59,122,0,48,46,18,118,0,59,119,0, +18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,15,109,0,0,0,1,9,18, +118,0,18,118,0,18,109,0,48,20,0,0,1,0,9,2,30,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,54, +46,0,0,1,0,5,2,29,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18, +99,0,18,98,0,21,0,0,1,0,5,2,30,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,54,46,0,0,1,0,5, +2,24,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,8,18,99,0,18,97,0,20,18,98,0,23,0,0,1,0,5, +2,25,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,8,18,99,0,18,97,0,20,18,98,0,24,0,0,1,0, +10,2,29,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59, +120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,1,1,0,10,117, +0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59, +121,0,47,0,0,0,0,1,0,11,2,29,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59, +120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59, +122,0,46,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59, +120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59, +122,0,47,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59, +120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59, +122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,1,1,0,12,117, +0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59, +121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59,119,0,47,0,0,0,0, +1,0,6,2,29,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0, +59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,6,117, +0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117, +0,59,121,0,47,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18, +118,0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18, +117,0,59,122,0,46,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0, +18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0, +18,117,0,59,122,0,47,0,0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52, +0,18,118,0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122, +0,18,117,0,59,122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0, +1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59, +121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59, +119,0,47,0,0,0,0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16, +8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0, +13,2,30,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,110,0, +16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,0,0,0,1,0,14,2,29,1,1,0,14,109, +0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18, +109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46,0, +0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57, +18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16,10,50,0, +57,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97, +116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49, +0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46,0,18,109,0,16,10,51,0,57,18,110,0,16,10, +51,0,57,46,0,0,0,0,1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0, +16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0, +16,10,50,0,57,18,110,0,16,10,50,0,57,47,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,47,0,0,0,0, +1,0,10,2,29,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0, +18,97,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,29,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101, +99,50,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,10,2,30,1,1,0,9,97, +0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59, +121,0,47,0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59, +120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,0,0,0,1,0,10,2,24,1,1,0,9,97,0,0,1,1,0,10,117,0,0, +0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,10, +2,24,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18,118, +0,59,121,0,18,98,0,48,0,0,0,0,1,0,10,2,25,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0, +18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,10,2,25,1,1,0,10,118,0,0,1, +1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0, +0,0,0,1,0,11,2,29,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120, +0,46,0,18,97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,11,2,29,1,1,0,11,118, +0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98, +0,46,0,18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,11,2,30,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58, +118,101,99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59, +122,0,47,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59, +120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,11,2,24, +1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18, +117,0,59,121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,9,98,0, +0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118,0, +59,122,0,18,98,0,48,0,0,0,0,1,0,11,2,25,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18, +97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0, +11,2,25,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18, +118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1,0,12,2,29,1,1,0,9,97,0,0,1,1,0, +12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46,0, +18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1, +1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0, +18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,12,2,30,1,1,0,9,97,0,0,1,1, +0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0, +18,97,0,18,117,0,59,122,0,47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,1, +1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0, +18,118,0,59,122,0,18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,12,2,24,1,1,0,9,97,0,0,1,1, +0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0, +18,97,0,18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1, +1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0, +18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1,0,12,2,25,1,1,0,9,97,0,0,1,1, +0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0, +18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1, +1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0, +18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,98,0,49,0,0,0,0,1,0,13,2,29,1,1,0,9,97,0,0,1,1, +0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49, +0,57,46,0,0,0,0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8, +48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,0,0,0,1,0,13,2,30,1,1,0,9,97,0,0,1,1,0,13, +110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57, +47,0,0,0,0,1,0,13,2,30,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0, +57,18,98,0,47,0,18,109,0,16,10,49,0,57,18,98,0,47,0,0,0,0,1,0,13,2,24,1,1,0,9,97,0,0,1,1,0,13,110,0, +0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48,0,0, +0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18, +98,0,48,0,18,109,0,16,10,49,0,57,18,98,0,48,0,0,0,0,1,0,13,2,25,1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1, +8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,0,0,0,1, +0,13,2,25,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98,0,49, +0,18,109,0,16,10,49,0,57,18,98,0,49,0,0,0,0,1,0,14,2,29,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58, +109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18, +110,0,16,10,50,0,57,46,0,0,0,0,1,0,14,2,29,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0, +18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98, +0,46,0,0,0,0,1,0,14,2,30,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0, +16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18,97,0,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0, +14,2,30,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,47,0, +18,109,0,16,10,49,0,57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,0,0,0,1,0,14,2,24,1,1,0,9, +97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110, +0,16,10,49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,14,2,24,1,1,0,14,109,0,0,1,1,0,9, +98,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98,0, +48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,0,0,0,1,0,14,2,25,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58, +109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18, +110,0,16,10,50,0,57,49,0,0,0,0,1,0,14,2,25,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0, +18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18,109,0,16,10,50,0,57,18,98, +0,49,0,0,0,0,1,0,15,2,29,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0, +16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18,110,0,16,10,50,0,57,46,0,18,97,0, +18,110,0,16,10,51,0,57,46,0,0,0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116, +52,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57, +18,98,0,46,0,18,109,0,16,10,51,0,57,18,98,0,46,0,0,0,0,1,0,15,2,30,1,1,0,9,97,0,0,1,1,0,15,110,0,0, +0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18, +97,0,18,110,0,16,10,50,0,57,47,0,18,97,0,18,110,0,16,10,51,0,57,47,0,0,0,0,1,0,15,2,30,1,1,0,15,109, +0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49,0, +57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,18,109,0,16,10,51,0,57,18,98,0,47,0,0,0,0,1,0, +15,2,24,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57,48,0, +18,97,0,18,110,0,16,10,49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,18,97,0,18,110,0,16,10,51,0, +57,48,0,0,0,0,1,0,15,2,24,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48, +0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98,0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,18,109,0, +16,10,51,0,57,18,98,0,48,0,0,0,0,1,0,15,2,25,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52, +0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18,110,0,16,10,50, +0,57,49,0,18,97,0,18,110,0,16,10,51,0,57,49,0,0,0,0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1, +8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18,109, +0,16,10,50,0,57,18,98,0,49,0,18,109,0,16,10,51,0,57,18,98,0,49,0,0,0,0,1,0,6,2,29,1,1,0,5,97,0,0,1, +1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0, +46,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0, +18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,6,2,30,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8, +58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0,0,1,0,6,2, +30,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,47,0,18, +118,0,59,121,0,18,98,0,47,0,0,0,0,1,0,6,2,24,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99, +50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,6,2,24,1,1,0,6,118,0,0, +1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98, +0,48,0,0,0,0,1,0,6,2,25,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117, +0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1, +8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,0,0,0,1,0,7, +2,29,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,46,0,18, +97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,5, +98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0, +18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,7,2,30,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101, +99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47, +0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18, +98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,7,2,24,1,1,0,5,97, +0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59, +121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58, +105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118,0,59,122,0, +18,98,0,48,0,0,0,0,1,0,7,2,25,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0, +18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0,7,2, +25,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18, +118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1,0,8,2,29,1,1,0,5,97,0,0,1,1,0,8, +117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46,0, +18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0,0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1, +0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46, +0,18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,8,2,30,1,1,0,5,97,0,0,1,1, +0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0, +47,0,18,97,0,18,117,0,59,122,0,47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0, +1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98, +0,47,0,18,118,0,59,122,0,18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,8,2,24,1,1,0,5,97,0, +0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59, +121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,8,2,24,1,1,0,8, +118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121, +0,18,98,0,48,0,18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1,0,8,2,25,1,1,0, +5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117, +0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0,0,0,0,1,0,8,2,25,1,1, +0,8,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59, +121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,98,0,49,0,0,0,0,1,0,10,2,24, +1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0, +18,118,0,59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8, +58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48, +0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1, +8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0, +48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0,0,0,1,0,6, +2,24,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120, +0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0, +1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59, +121,0,48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,8,2,24,1,1,0,8,118,0,0,1,1,0,8,117,0, +0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0, +59,121,0,48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0,0, +0,1,0,10,2,25,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0, +59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,11,2,25,1,1,0,11,118,0,0,1,1,0,11, +117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117, +0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1,1,0, +12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18, +117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0,18,117,0,59,119,0,49, +0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0, +18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,7,2,25,1,1,0,7,118,0,0,1, +1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121, +0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,8,2,25,1,1,0,8,118,0,0, +1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59, +121,0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0,18,117,0,59, +119,0,49,0,0,0,0,1,0,13,2,25,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16, +8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,0,0,0,1,0, +14,2,25,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0, +16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,18,109,0,16,10,50,0,57,18,110, +0,16,10,50,0,57,49,0,0,0,0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0, +18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0, +18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,49,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,49, +0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,54,0,18,118,0,59, +121,0,54,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,54,0,18, +118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,0,1,8,58,118,101,99, +52,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0, +0,0,1,0,6,2,30,1,1,0,6,118,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,54,0,18,118,0,59,121, +0,54,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118, +0,59,121,0,54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,0,1,8,58,105,118,101,99,52, +0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0, +1,0,13,2,30,1,1,0,13,109,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,54,0,18,109,0,16,10,49, +0,57,54,0,0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,54,0,18, +109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0,0,0,0,1,0,15,2,30,1,1,0,15,109,0,0,0,1,8,58, +109,97,116,52,0,18,109,0,16,8,48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0, +18,109,0,16,10,51,0,57,54,0,0,0,0,1,0,0,2,28,1,0,2,9,97,0,0,0,1,9,18,97,0,17,49,0,48,0,0,22,0,0,1,0, +0,2,28,1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,22,0,0,1,0,0,2,28,1,0,2,10,118,0,0,0,1,9,18,118,0,59, +120,0,52,18,118,0,59,121,0,52,19,0,0,1,0,0,2,28,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118, +0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,28,1,0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,52, +18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2,28,1,0,2,6,118, +0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,52,19,0,0,1,0,0,2,28,1,0,2,7,118,0,0,0,1,9,18,118, +0,59,120,0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,28,1,0,2,8,118,0,0,0,1,9, +18,118,0,59,120,0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1, +0,0,2,28,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,0,0,1,0,0,2, +28,1,0,2,14,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50,0, +57,52,19,0,0,1,0,0,2,28,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52, +19,18,109,0,16,10,50,0,57,52,19,18,109,0,16,10,51,0,57,52,19,0,0,1,0,0,2,27,1,0,2,9,97,0,0,0,1,9,18, +97,0,17,49,0,48,0,0,21,0,0,1,0,0,2,27,1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,21,0,0,1,0,0,2,27,1,0, +2,10,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,0,0,1,0,0,2,27,1,0,2,11,118,0,0,0,1, +9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1,0,2,12,118, +0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,18,118,0,59,119,0,51, +19,0,0,1,0,0,2,27,1,0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,0,0,1,0,0,2,27, +1,0,2,7,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0, +0,2,27,1,0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19, +18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16, +10,49,0,57,51,19,0,0,1,0,0,2,27,1,0,2,14,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16,10,49,0, +57,51,19,18,109,0,16,10,50,0,57,51,19,0,0,1,0,0,2,27,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8,48,0,57, +51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57,51,19,18,109,0,16,10,51,0,57,51,19,0,0,1,0,9, +2,28,1,0,2,9,97,0,0,1,1,0,5,0,0,0,1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,52,0,8,18, +99,0,0,0,1,0,5,2,28,1,0,2,5,97,0,0,1,1,0,5,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18, +97,0,52,0,8,18,99,0,0,0,1,0,10,2,28,1,0,2,10,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,50,0,18,118,0, +59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1,0,11,2,28,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118, +101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122,0,61,0,0,0,0,1,0,12,2,28, +1,0,2,12,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0, +18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,6,2,28,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58, +105,118,101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1,0,7,2,28,1,0,2,7,118,0,0, +1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59, +122,0,61,0,0,0,0,1,0,8,2,28,1,0,2,8,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59, +120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,13,2,28,1, +0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0, +57,61,0,0,0,0,1,0,14,2,28,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0, +57,61,0,18,109,0,16,10,49,0,57,61,0,18,109,0,16,10,50,0,57,61,0,0,0,0,1,0,15,2,28,1,0,2,15,109,0,0, +1,1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,18,109, +0,16,10,50,0,57,61,0,18,109,0,16,10,51,0,57,61,0,0,0,0,1,0,9,2,27,1,0,2,9,97,0,0,1,1,0,5,0,0,0,1,3, +2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,51,0,8,18,99,0,0,0,1,0,5,2,27,1,0,2,5,97,0,0,1,1, +0,5,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,51,0,8,18,99,0,0,0,1,0,10,2,27,1,0, +2,10,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0, +0,1,0,11,2,27,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,60,0,18,118,0, +59,121,0,60,0,18,118,0,59,122,0,60,0,0,0,0,1,0,12,2,27,1,0,2,12,118,0,0,1,1,0,5,0,0,0,1,8,58,118, +101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0,18,118,0,59,119,0, +60,0,0,0,0,1,0,6,2,27,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,60, +0,18,118,0,59,121,0,60,0,0,0,0,1,0,7,2,27,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0, +18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0,0,0,0,1,0,8,2,27,1,0,2,8,118,0, +0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0, +59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,13,2,27,1,0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97, +116,50,0,18,109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,0,0,0,1,0,14,2,27,1,0,2,14,109,0,0, +1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109, +0,16,10,50,0,57,60,0,0,0,0,1,0,15,2,27,1,0,2,15,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109, +0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109,0,16,10,50,0,57,60,0,18,109,0,16,10,51,0,57, +60,0,0,0,0,1,0,1,2,18,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,1,1,99,0,0,0,4,102,108,111,97,116,95, +108,101,115,115,0,18,99,0,0,18,97,0,0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,18,1,1,0,5,97,0,0,1,1,0,5, +98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,40,0,0,1,0,1,2, +19,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,98,0,18,97,0,40,0,0,1,0,1,2,19,1,1,0,5,97,0,0,1,1,0,5,98, +0,0,0,1,8,18,98,0,18,97,0,40,0,0,1,0,1,2,21,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,41, +18,97,0,18,98,0,38,32,0,0,1,0,1,2,21,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,41,18,97,0, +18,98,0,38,32,0,0,1,0,1,2,20,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0, +38,32,0,0,1,0,1,2,20,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0,38,32,0, +0,1,0,1,2,12,1,1,0,1,97,0,0,1,1,0,1,98,0,0,0,1,8,18,97,0,18,98,0,39,0,0,1,0,1,2,32,1,1,0,1,97,0,0,0, +1,8,18,97,0,15,2,48,0,38,0,0,0
\ No newline at end of file |