summaryrefslogtreecommitdiffstats
path: root/src/mesa/swrast/s_texture.c
diff options
context:
space:
mode:
authorKeith Whitwell <[email protected]>2000-10-31 18:00:04 +0000
committerKeith Whitwell <[email protected]>2000-10-31 18:00:04 +0000
commite3a051e0538a605551f4d58294c94f5eb00ed07f (patch)
treeea5ccfd6d578fee1f8adb5a5c7f34f12d601c1c9 /src/mesa/swrast/s_texture.c
parent6e0f0f51e0371688a434ed65c4ae0da1b061a4b5 (diff)
Moved software rasterizer functionality to new directory.
Diffstat (limited to 'src/mesa/swrast/s_texture.c')
-rw-r--r--src/mesa/swrast/s_texture.c2539
1 files changed, 2539 insertions, 0 deletions
diff --git a/src/mesa/swrast/s_texture.c b/src/mesa/swrast/s_texture.c
new file mode 100644
index 00000000000..04f8645b97f
--- /dev/null
+++ b/src/mesa/swrast/s_texture.c
@@ -0,0 +1,2539 @@
+/* $Id: s_texture.c,v 1.1 2000/10/31 18:00:04 keithw Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 3.5
+ *
+ * Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "glheader.h"
+#include "context.h"
+#include "colormac.h"
+#include "macros.h"
+#include "mmath.h"
+#include "mem.h"
+#include "teximage.h"
+
+#include "s_pb.h"
+#include "s_texture.h"
+
+
+
+
+/*
+ * Paletted texture sampling.
+ * Input: tObj - the texture object
+ * index - the palette index (8-bit only)
+ * Output: red, green, blue, alpha - the texel color
+ */
+static void palette_sample(const struct gl_texture_object *tObj,
+ GLint index, GLchan rgba[4] )
+{
+ GLcontext *ctx = _mesa_get_current_context(); /* THIS IS A HACK */
+ const GLchan *palette;
+ GLenum format;
+
+ if (ctx->Texture.SharedPalette) {
+ ASSERT(!ctx->Texture.Palette.FloatTable);
+ palette = (const GLchan *) ctx->Texture.Palette.Table;
+ format = ctx->Texture.Palette.Format;
+ }
+ else {
+ ASSERT(!tObj->Palette.FloatTable);
+ palette = (const GLchan *) tObj->Palette.Table;
+ format = tObj->Palette.Format;
+ }
+
+ switch (format) {
+ case GL_ALPHA:
+ rgba[ACOMP] = palette[index];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = palette[index];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ rgba[RCOMP] = palette[(index << 1) + 0];
+ rgba[ACOMP] = palette[(index << 1) + 1];
+ return;
+ case GL_RGB:
+ rgba[RCOMP] = palette[index * 3 + 0];
+ rgba[GCOMP] = palette[index * 3 + 1];
+ rgba[BCOMP] = palette[index * 3 + 2];
+ return;
+ case GL_RGBA:
+ rgba[RCOMP] = palette[(index << 2) + 0];
+ rgba[GCOMP] = palette[(index << 2) + 1];
+ rgba[BCOMP] = palette[(index << 2) + 2];
+ rgba[ACOMP] = palette[(index << 2) + 3];
+ return;
+ default:
+ gl_problem(NULL, "Bad palette format in palette_sample");
+ }
+}
+
+
+
+/*
+ * These values are used in the fixed-point arithmetic used
+ * for linear filtering.
+ */
+#define WEIGHT_SCALE 65536.0F
+#define WEIGHT_SHIFT 16
+
+
+/*
+ * Used to compute texel locations for linear sampling.
+ */
+#define COMPUTE_LINEAR_TEXEL_LOCATIONS(wrapMode, S, U, SIZE, I0, I1) \
+{ \
+ if (wrapMode == GL_REPEAT) { \
+ U = S * SIZE - 0.5F; \
+ I0 = ((GLint) myFloor(U)) & (SIZE - 1); \
+ I1 = (I0 + 1) & (SIZE - 1); \
+ } \
+ else { \
+ U = S * SIZE; \
+ if (U < 0.0F) \
+ U = 0.0F; \
+ else if (U >= SIZE) \
+ U = SIZE; \
+ U -= 0.5F; \
+ I0 = (GLint) myFloor(U); \
+ I1 = I0 + 1; \
+ if (wrapMode == GL_CLAMP_TO_EDGE) { \
+ if (I0 < 0) \
+ I0 = 0; \
+ if (I1 >= SIZE) \
+ I1 = SIZE - 1; \
+ } \
+ } \
+}
+
+
+/*
+ * Used to compute texel location for nearest sampling.
+ */
+#define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I) \
+{ \
+ if (wrapMode == GL_REPEAT) { \
+ /* s limited to [0,1) */ \
+ /* i limited to [0,width-1] */ \
+ I = (GLint) (S * SIZE); \
+ if (S < 0.0F) \
+ I -= 1; \
+ I &= (SIZE - 1); \
+ } \
+ else if (wrapMode == GL_CLAMP_TO_EDGE) { \
+ const GLfloat min = 1.0F / (2.0F * SIZE); \
+ const GLfloat max = 1.0F - min; \
+ if (S < min) \
+ I = 0; \
+ else if (S > max) \
+ I = SIZE - 1; \
+ else \
+ I = (GLint) (S * SIZE); \
+ } \
+ else { \
+ ASSERT(wrapMode == GL_CLAMP); \
+ /* s limited to [0,1] */ \
+ /* i limited to [0,width-1] */ \
+ if (S <= 0.0F) \
+ I = 0; \
+ else if (S >= 1.0F) \
+ I = SIZE - 1; \
+ else \
+ I = (GLint) (S * SIZE); \
+ } \
+}
+
+
+/*
+ * Compute linear mipmap levels for given lambda.
+ */
+#define COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level) \
+{ \
+ if (lambda < 0.0F) \
+ lambda = 0.0F; \
+ else if (lambda > tObj->M) \
+ lambda = tObj->M; \
+ level = (GLint) (tObj->BaseLevel + lambda); \
+}
+
+
+/*
+ * Compute nearest mipmap level for given lambda.
+ */
+#define COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level) \
+{ \
+ if (lambda <= 0.5F) \
+ lambda = 0.0F; \
+ else if (lambda > tObj->M + 0.4999F) \
+ lambda = tObj->M + 0.4999F; \
+ level = (GLint) (tObj->BaseLevel + lambda + 0.5F); \
+ if (level > tObj->P) \
+ level = tObj->P; \
+}
+
+
+
+
+/*
+ * Bitflags for texture border color sampling.
+ */
+#define I0BIT 1
+#define I1BIT 2
+#define J0BIT 4
+#define J1BIT 8
+#define K0BIT 16
+#define K1BIT 32
+
+
+
+/**********************************************************************/
+/* 1-D Texture Sampling Functions */
+/**********************************************************************/
+
+
+/*
+ * Return floor of x, being careful of negative values.
+ */
+static GLfloat myFloor(GLfloat x)
+{
+ if (x < 0.0F)
+ return (GLfloat) ((GLint) x - 1);
+ else
+ return (GLfloat) (GLint) x;
+}
+
+
+/*
+ * Return the fractional part of x.
+ */
+#define myFrac(x) ( (x) - myFloor(x) )
+
+
+
+
+/*
+ * Given 1-D texture image and an (i) texel column coordinate, return the
+ * texel color.
+ */
+static void get_1d_texel( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img, GLint i,
+ GLchan rgba[4] )
+{
+ const GLchan *texel;
+
+#ifdef DEBUG
+ GLint width = img->Width;
+ assert(i >= 0);
+ assert(i < width);
+#endif
+
+ switch (img->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[i];
+ palette_sample(tObj, index, rgba);
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[ i ];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[ i ];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + i * 2;
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + i * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + i * 4;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in get_1d_texel");
+ return;
+ }
+}
+
+
+
+/*
+ * Return the texture sample for coordinate (s) using GL_NEAREST filter.
+ */
+static void sample_1d_nearest( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s, GLchan rgba[4] )
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLchan *texel;
+ GLint i;
+
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
+
+ /* skip over the border, if any */
+ i += img->Border;
+
+ /* Get the texel */
+ switch (img->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[i];
+ palette_sample(tObj, index, rgba );
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[i];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[i];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + i * 2;
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + i * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + i * 4;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in sample_1d_nearest");
+ }
+}
+
+
+
+/*
+ * Return the texture sample for coordinate (s) using GL_LINEAR filter.
+ */
+static void sample_1d_linear( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s,
+ GLchan rgba[4] )
+{
+ const GLint width = img->Width2;
+ GLint i0, i1;
+ GLfloat u;
+ GLuint useBorderColor;
+
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
+
+ useBorderColor = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ {
+ const GLfloat a = myFrac(u);
+ /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
+ const GLint w0 = (GLint) ((1.0F-a) * WEIGHT_SCALE + 0.5F);
+ const GLint w1 = (GLint) ( a * WEIGHT_SCALE + 0.5F);
+
+ GLchan t0[4], t1[4]; /* texels */
+
+ if (useBorderColor & I0BIT) {
+ COPY_CHAN4(t0, tObj->BorderColor);
+ }
+ else {
+ get_1d_texel( tObj, img, i0, t0 );
+ }
+ if (useBorderColor & I1BIT) {
+ COPY_CHAN4(t1, tObj->BorderColor);
+ }
+ else {
+ get_1d_texel( tObj, img, i1, t1 );
+ }
+
+ rgba[0] = (GLchan) ((w0 * t0[0] + w1 * t1[0]) >> WEIGHT_SHIFT);
+ rgba[1] = (GLchan) ((w0 * t0[1] + w1 * t1[1]) >> WEIGHT_SHIFT);
+ rgba[2] = (GLchan) ((w0 * t0[2] + w1 * t1[2]) >> WEIGHT_SHIFT);
+ rgba[3] = (GLchan) ((w0 * t0[3] + w1 * t1[3]) >> WEIGHT_SHIFT);
+ }
+}
+
+
+static void
+sample_1d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_1d_nearest( tObj, tObj->Image[level], s, rgba );
+}
+
+
+static void
+sample_1d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_1d_linear( tObj, tObj->Image[level], s, rgba );
+}
+
+
+
+static void
+sample_1d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_1d_nearest( tObj, tObj->Image[tObj->P], s, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4];
+ const GLfloat f = myFrac(lambda);
+ sample_1d_nearest( tObj, tObj->Image[level ], s, t0 );
+ sample_1d_nearest( tObj, tObj->Image[level+1], s, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+
+static void
+sample_1d_linear_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_1d_linear( tObj, tObj->Image[tObj->P], s, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4];
+ const GLfloat f = myFrac(lambda);
+ sample_1d_linear( tObj, tObj->Image[level ], s, t0 );
+ sample_1d_linear( tObj, tObj->Image[level+1], s, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+
+static void sample_nearest_1d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) t;
+ (void) u;
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_1d_nearest( tObj, image, s[i], rgba[i] );
+ }
+}
+
+
+
+static void sample_linear_1d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) t;
+ (void) u;
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_1d_linear( tObj, image, s[i], rgba[i] );
+ }
+}
+
+
+/*
+ * Given an (s) texture coordinate and lambda (level of detail) value,
+ * return a texture sample.
+ *
+ */
+static void sample_lambda_1d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+
+ (void) t;
+ (void) u;
+
+ for (i=0;i<n;i++) {
+ if (lambda[i] > tObj->MinMagThresh) {
+ /* minification */
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ sample_1d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_1d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_nearest_mipmap_nearest( tObj, lambda[i], s[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_linear_mipmap_nearest( tObj, s[i], lambda[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_nearest_mipmap_linear( tObj, s[i], lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_linear_mipmap_linear( tObj, s[i], lambda[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad min filter in sample_1d_texture");
+ return;
+ }
+ }
+ else {
+ /* magnification */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_1d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_1d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad mag filter in sample_1d_texture");
+ return;
+ }
+ }
+ }
+}
+
+
+
+
+/**********************************************************************/
+/* 2-D Texture Sampling Functions */
+/**********************************************************************/
+
+
+/*
+ * Given a texture image and an (i,j) integer texel coordinate, return the
+ * texel color.
+ */
+static void get_2d_texel( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img, GLint i, GLint j,
+ GLchan rgba[4] )
+{
+ const GLint width = img->Width; /* includes border */
+ const GLchan *texel;
+
+#ifdef DEBUG
+ const GLint height = img->Height; /* includes border */
+ assert(i >= 0);
+ assert(i < width);
+ assert(j >= 0);
+ assert(j < height);
+#endif
+
+ switch (img->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[ width *j + i ];
+ palette_sample(tObj, index, rgba );
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[ width * j + i ];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[ width * j + i ];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + (width * j + i) * 2;
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + (width * j + i) * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + (width * j + i) * 4;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in get_2d_texel");
+ }
+}
+
+
+
+/*
+ * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
+ */
+static void sample_2d_nearest( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s, GLfloat t,
+ GLchan rgba[] )
+{
+ const GLint imgWidth = img->Width; /* includes border */
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLchan *texel;
+ GLint i, j;
+
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j);
+
+ /* skip over the border, if any */
+ i += img->Border;
+ j += img->Border;
+
+ switch (img->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[ j * imgWidth + i ];
+ palette_sample(tObj, index, rgba);
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[ j * imgWidth + i ];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[ j * imgWidth + i ];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + ((j * imgWidth + i) << 1);
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + (j * imgWidth + i) * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + ((j * imgWidth + i) << 2);
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in sample_2d_nearest");
+ }
+}
+
+
+
+/*
+ * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
+ * New sampling code contributed by Lynn Quam <[email protected]>.
+ */
+static void sample_2d_linear( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s, GLfloat t,
+ GLchan rgba[] )
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLuint useBorderColor;
+ GLfloat u, v;
+
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1);
+
+ useBorderColor = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ {
+ const GLfloat a = myFrac(u);
+ const GLfloat b = myFrac(v);
+ /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
+ const GLint w00 = (GLint) ((1.0F-a)*(1.0F-b) * WEIGHT_SCALE + 0.5F);
+ const GLint w10 = (GLint) ( a *(1.0F-b) * WEIGHT_SCALE + 0.5F);
+ const GLint w01 = (GLint) ((1.0F-a)* b * WEIGHT_SCALE + 0.5F);
+ const GLint w11 = (GLint) ( a * b * WEIGHT_SCALE + 0.5F);
+ GLchan t00[4];
+ GLchan t10[4];
+ GLchan t01[4];
+ GLchan t11[4];
+
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ COPY_CHAN4(t00, tObj->BorderColor);
+ }
+ else {
+ get_2d_texel( tObj, img, i0, j0, t00 );
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ COPY_CHAN4(t10, tObj->BorderColor);
+ }
+ else {
+ get_2d_texel( tObj, img, i1, j0, t10 );
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ COPY_CHAN4(t01, tObj->BorderColor);
+ }
+ else {
+ get_2d_texel( tObj, img, i0, j1, t01 );
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ COPY_CHAN4(t11, tObj->BorderColor);
+ }
+ else {
+ get_2d_texel( tObj, img, i1, j1, t11 );
+ }
+
+ rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
+ rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
+ rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
+ rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
+ }
+
+}
+
+
+
+static void
+sample_2d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_2d_nearest( tObj, tObj->Image[level], s, t, rgba );
+}
+
+
+
+static void
+sample_2d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_2d_linear( tObj, tObj->Image[level], s, t, rgba );
+}
+
+
+
+static void
+sample_2d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_2d_nearest( tObj, tObj->Image[tObj->P], s, t, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4]; /* texels */
+ const GLfloat f = myFrac(lambda);
+ sample_2d_nearest( tObj, tObj->Image[level ], s, t, t0 );
+ sample_2d_nearest( tObj, tObj->Image[level+1], s, t, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+
+static void
+sample_2d_linear_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat lambda,
+ GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_2d_linear( tObj, tObj->Image[tObj->P], s, t, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4]; /* texels */
+ const GLfloat f = myFrac(lambda);
+ sample_2d_linear( tObj, tObj->Image[level ], s, t, t0 );
+ sample_2d_linear( tObj, tObj->Image[level+1], s, t, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+
+static void sample_nearest_2d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) u;
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_2d_nearest( tObj, image, s[i], t[i], rgba[i] );
+ }
+}
+
+
+
+static void sample_linear_2d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) u;
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_2d_linear( tObj, image, s[i], t[i], rgba[i] );
+ }
+}
+
+
+/*
+ * Given an (s,t) texture coordinate and lambda (level of detail) value,
+ * return a texture sample.
+ */
+static void sample_lambda_2d( const struct gl_texture_object *tObj,
+ GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ (void) u;
+ for (i=0;i<n;i++) {
+ if (lambda[i] > tObj->MinMagThresh) {
+ /* minification */
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ sample_2d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_2d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_nearest_mipmap_nearest( tObj, s[i], t[i], lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_linear_mipmap_nearest( tObj, s[i], t[i], lambda[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_nearest_mipmap_linear( tObj, s[i], t[i], lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_2d_linear_mipmap_linear( tObj, s[i], t[i], lambda[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad min filter in sample_2d_texture");
+ return;
+ }
+ }
+ else {
+ /* magnification */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_2d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_2d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad mag filter in sample_2d_texture");
+ }
+ }
+ }
+}
+
+
+/*
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border
+ * Format = GL_RGB
+ */
+static void opt_sample_rgb_2d( const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint k;
+ (void) u;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(tObj->MinFilter==GL_NEAREST);
+ ASSERT(tObj->MagFilter==GL_NEAREST);
+ ASSERT(img->Border==0);
+ ASSERT(img->Format==GL_RGB);
+
+ /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */
+ for (k=0;k<n;k++) {
+ GLint i = (GLint) ((s[k] + 10000.0) * width) & colMask;
+ GLint j = (GLint) ((t[k] + 10000.0) * height) & rowMask;
+ GLint pos = (j << shift) | i;
+ GLchan *texel = img->Data + pos + pos + pos; /* pos*3 */
+ rgba[k][RCOMP] = texel[0];
+ rgba[k][GCOMP] = texel[1];
+ rgba[k][BCOMP] = texel[2];
+ }
+}
+
+
+/*
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border
+ * Format = GL_RGBA
+ */
+static void opt_sample_rgba_2d( const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint k;
+ (void) u;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(tObj->MinFilter==GL_NEAREST);
+ ASSERT(tObj->MagFilter==GL_NEAREST);
+ ASSERT(img->Border==0);
+ ASSERT(img->Format==GL_RGBA);
+
+ /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */
+ for (k=0;k<n;k++) {
+ GLint i = (GLint) ((s[k] + 10000.0) * width) & colMask;
+ GLint j = (GLint) ((t[k] + 10000.0) * height) & rowMask;
+ GLint pos = (j << shift) | i;
+ GLchan *texel = img->Data + (pos << 2); /* pos*4 */
+ rgba[k][RCOMP] = texel[0];
+ rgba[k][GCOMP] = texel[1];
+ rgba[k][BCOMP] = texel[2];
+ rgba[k][ACOMP] = texel[3];
+ }
+}
+
+
+
+/**********************************************************************/
+/* 3-D Texture Sampling Functions */
+/**********************************************************************/
+
+/*
+ * Given a texture image and an (i,j,k) integer texel coordinate, return the
+ * texel color.
+ */
+static void get_3d_texel( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLint i, GLint j, GLint k,
+ GLchan rgba[4] )
+{
+ const GLint width = img->Width; /* includes border */
+ const GLint height = img->Height; /* includes border */
+ const GLint rectarea = width * height;
+ const GLchan *texel;
+
+#ifdef DEBUG
+ const GLint depth = img->Depth; /* includes border */
+ assert(i >= 0);
+ assert(i < width);
+ assert(j >= 0);
+ assert(j < height);
+ assert(k >= 0);
+ assert(k < depth);
+#endif
+
+ switch (img->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[ rectarea * k + width * j + i ];
+ palette_sample(tObj, index, rgba );
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[ rectarea * k + width * j + i ];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[ rectarea * k + width * j + i ];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + ( rectarea * k + width * j + i) * 2;
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + (rectarea * k + width * j + i) * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + (rectarea * k + width * j + i) * 4;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in get_3d_texel");
+ }
+}
+
+
+/*
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void sample_3d_nearest( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLchan rgba[4] )
+{
+ const GLint imgWidth = img->Width; /* includes border, if any */
+ const GLint imgHeight = img->Height; /* includes border, if any */
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth2; /* without border, power of two */
+ const GLint rectarea = imgWidth * imgHeight;
+ const GLchan *texel;
+ GLint i, j, k;
+
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j);
+ COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, r, depth, k);
+
+ switch (tObj->Image[0]->Format) {
+ case GL_COLOR_INDEX:
+ {
+ GLint index = img->Data[ rectarea * k + j * imgWidth + i ];
+ palette_sample(tObj, index, rgba );
+ return;
+ }
+ case GL_ALPHA:
+ rgba[ACOMP] = img->Data[ rectarea * k + j * imgWidth + i ];
+ return;
+ case GL_LUMINANCE:
+ case GL_INTENSITY:
+ rgba[RCOMP] = img->Data[ rectarea * k + j * imgWidth + i ];
+ return;
+ case GL_LUMINANCE_ALPHA:
+ texel = img->Data + ((rectarea * k + j * imgWidth + i) << 1);
+ rgba[RCOMP] = texel[0];
+ rgba[ACOMP] = texel[1];
+ return;
+ case GL_RGB:
+ texel = img->Data + ( rectarea * k + j * imgWidth + i) * 3;
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ return;
+ case GL_RGBA:
+ texel = img->Data + ((rectarea * k + j * imgWidth + i) << 2);
+ rgba[RCOMP] = texel[0];
+ rgba[GCOMP] = texel[1];
+ rgba[BCOMP] = texel[2];
+ rgba[ACOMP] = texel[3];
+ return;
+ default:
+ gl_problem(NULL, "Bad format in sample_3d_nearest");
+ }
+}
+
+
+
+/*
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void sample_3d_linear( const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLchan rgba[4] )
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth2;
+ GLint i0, j0, k0, i1, j1, k1;
+ GLuint useBorderColor;
+ GLfloat u, v, w;
+
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1);
+ COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, r, w, depth, k0, k1);
+
+ useBorderColor = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ k0 += img->Border;
+ k1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
+ if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
+ }
+
+ {
+ const GLfloat a = myFrac(u);
+ const GLfloat b = myFrac(v);
+ const GLfloat c = myFrac(w);
+ /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
+ GLint w000 = (GLint) ((1.0F-a)*(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F);
+ GLint w100 = (GLint) ( a *(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F);
+ GLint w010 = (GLint) ((1.0F-a)* b *(1.0F-c) * WEIGHT_SCALE + 0.5F);
+ GLint w110 = (GLint) ( a * b *(1.0F-c) * WEIGHT_SCALE + 0.5F);
+ GLint w001 = (GLint) ((1.0F-a)*(1.0F-b)* c * WEIGHT_SCALE + 0.5F);
+ GLint w101 = (GLint) ( a *(1.0F-b)* c * WEIGHT_SCALE + 0.5F);
+ GLint w011 = (GLint) ((1.0F-a)* b * c * WEIGHT_SCALE + 0.5F);
+ GLint w111 = (GLint) ( a * b * c * WEIGHT_SCALE + 0.5F);
+
+ GLchan t000[4], t010[4], t001[4], t011[4];
+ GLchan t100[4], t110[4], t101[4], t111[4];
+
+ if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
+ COPY_CHAN4(t000, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i0, j0, k0, t000 );
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
+ COPY_CHAN4(t100, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i1, j0, k0, t100 );
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
+ COPY_CHAN4(t010, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i0, j1, k0, t010 );
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
+ COPY_CHAN4(t110, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i1, j1, k0, t110 );
+ }
+
+ if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
+ COPY_CHAN4(t001, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i0, j0, k1, t001 );
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
+ COPY_CHAN4(t101, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i1, j0, k1, t101 );
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
+ COPY_CHAN4(t011, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i0, j1, k1, t011 );
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
+ COPY_CHAN4(t111, tObj->BorderColor);
+ }
+ else {
+ get_3d_texel( tObj, img, i1, j1, k1, t111 );
+ }
+
+ rgba[0] = (GLchan) (
+ (w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
+ w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] )
+ >> WEIGHT_SHIFT);
+ rgba[1] = (GLchan) (
+ (w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
+ w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1] )
+ >> WEIGHT_SHIFT);
+ rgba[2] = (GLchan) (
+ (w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
+ w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2] )
+ >> WEIGHT_SHIFT);
+ rgba[3] = (GLchan) (
+ (w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
+ w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3] )
+ >> WEIGHT_SHIFT);
+ }
+}
+
+
+
+static void
+sample_3d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_3d_nearest( tObj, tObj->Image[level], s, t, r, rgba );
+}
+
+
+static void
+sample_3d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ GLint level;
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+ sample_3d_linear( tObj, tObj->Image[level], s, t, r, rgba );
+}
+
+
+static void
+sample_3d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_3d_nearest( tObj, tObj->Image[tObj->P], s, t, r, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4]; /* texels */
+ const GLfloat f = myFrac(lambda);
+ sample_3d_nearest( tObj, tObj->Image[level ], s, t, r, t0 );
+ sample_3d_nearest( tObj, tObj->Image[level+1], s, t, r, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat r,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ if (level >= tObj->P) {
+ sample_3d_linear( tObj, tObj->Image[tObj->P], s, t, r, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4]; /* texels */
+ const GLfloat f = myFrac(lambda);
+ sample_3d_linear( tObj, tObj->Image[level ], s, t, r, t0 );
+ sample_3d_linear( tObj, tObj->Image[level+1], s, t, r, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+static void sample_nearest_3d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_3d_nearest( tObj, image, s[i], t[i], u[i], rgba[i] );
+ }
+}
+
+
+
+static void sample_linear_3d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
+ (void) lambda;
+ for (i=0;i<n;i++) {
+ sample_3d_linear( tObj, image, s[i], t[i], u[i], rgba[i] );
+ }
+}
+
+
+/*
+ * Given an (s,t,r) texture coordinate and lambda (level of detail) value,
+ * return a texture sample.
+ */
+static void sample_lambda_3d( const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4] )
+{
+ GLuint i;
+
+ for (i=0;i<n;i++) {
+
+ if (lambda[i] > tObj->MinMagThresh) {
+ /* minification */
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ sample_3d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_3d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_3d_nearest_mipmap_nearest( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_3d_linear_mipmap_nearest( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_3d_nearest_mipmap_linear( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_3d_linear_mipmap_linear( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad min filterin sample_3d_texture");
+ }
+ }
+ else {
+ /* magnification */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_3d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_3d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad mag filter in sample_3d_texture");
+ }
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Cube Map Sampling Functions */
+/**********************************************************************/
+
+/*
+ * Choose one of six sides of a texture cube map given the texture
+ * coord (rx,ry,rz). Return pointer to corresponding array of texture
+ * images.
+ */
+static const struct gl_texture_image **
+choose_cube_face(const struct gl_texture_object *texObj,
+ GLfloat rx, GLfloat ry, GLfloat rz,
+ GLfloat *newS, GLfloat *newT)
+{
+/*
+ major axis
+ direction target sc tc ma
+ ---------- ------------------------------- --- --- ---
+ +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
+ -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
+ -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+ +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
+ -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
+*/
+ const struct gl_texture_image **imgArray;
+ const GLfloat arx = ABSF(rx), ary = ABSF(ry), arz = ABSF(rz);
+ GLfloat sc, tc, ma;
+
+ if (arx > ary && arx > arz) {
+ if (rx >= 0.0F) {
+ imgArray = (const struct gl_texture_image **) texObj->Image;
+ sc = -rz;
+ tc = -ry;
+ ma = arx;
+ }
+ else {
+ imgArray = (const struct gl_texture_image **) texObj->NegX;
+ sc = rz;
+ tc = -ry;
+ ma = arx;
+ }
+ }
+ else if (ary > arx && ary > arz) {
+ if (ry >= 0.0F) {
+ imgArray = (const struct gl_texture_image **) texObj->PosY;
+ sc = rx;
+ tc = rz;
+ ma = ary;
+ }
+ else {
+ imgArray = (const struct gl_texture_image **) texObj->NegY;
+ sc = rx;
+ tc = -rz;
+ ma = ary;
+ }
+ }
+ else {
+ if (rz > 0.0F) {
+ imgArray = (const struct gl_texture_image **) texObj->PosZ;
+ sc = rx;
+ tc = -ry;
+ ma = arz;
+ }
+ else {
+ imgArray = (const struct gl_texture_image **) texObj->NegZ;
+ sc = -rx;
+ tc = -ry;
+ ma = arz;
+ }
+ }
+
+ *newS = ( sc / ma + 1.0F ) * 0.5F;
+ *newT = ( tc / ma + 1.0F ) * 0.5F;
+ return imgArray;
+}
+
+
+static void
+sample_nearest_cube(const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ images = choose_cube_face(tObj, s[i], t[i], u[i], &newS, &newT);
+ sample_2d_nearest( tObj, images[tObj->BaseLevel], newS, newT, rgba[i] );
+ }
+}
+
+
+static void
+sample_linear_cube(const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ images = choose_cube_face(tObj, s[i], t[i], u[i], &newS, &newT);
+ sample_2d_linear( tObj, images[tObj->BaseLevel], newS, newT, rgba[i] );
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat u,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ GLint level;
+
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+
+ images = choose_cube_face(tObj, s, t, u, &newS, &newT);
+ sample_2d_nearest( tObj, images[level], newS, newT, rgba );
+}
+
+
+static void
+sample_cube_linear_mipmap_nearest( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat u,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ GLint level;
+
+ COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level);
+
+ images = choose_cube_face(tObj, s, t, u, &newS, &newT);
+ sample_2d_linear( tObj, images[level], newS, newT, rgba );
+}
+
+
+static void
+sample_cube_nearest_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat u,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ images = choose_cube_face(tObj, s, t, u, &newS, &newT);
+
+ if (level >= tObj->P) {
+ sample_2d_nearest( tObj, images[tObj->P], newS, newT, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4]; /* texels */
+ const GLfloat f = myFrac(lambda);
+ sample_2d_nearest( tObj, images[level ], newS, newT, t0 );
+ sample_2d_nearest( tObj, images[level+1], newS, newT, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_linear( const struct gl_texture_object *tObj,
+ GLfloat s, GLfloat t, GLfloat u,
+ GLfloat lambda, GLchan rgba[4] )
+{
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ GLint level;
+
+ COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level);
+
+ images = choose_cube_face(tObj, s, t, u, &newS, &newT);
+
+ if (level >= tObj->P) {
+ sample_2d_linear( tObj, images[tObj->P], newS, newT, rgba );
+ }
+ else {
+ GLchan t0[4], t1[4];
+ const GLfloat f = myFrac(lambda);
+ sample_2d_linear( tObj, images[level ], newS, newT, t0 );
+ sample_2d_linear( tObj, images[level+1], newS, newT, t1 );
+ rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
+ rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
+ rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
+ rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+ }
+}
+
+
+static void
+sample_lambda_cube(const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat u[], const GLfloat lambda[],
+ GLchan rgba[][4])
+{
+ GLuint i;
+
+ for (i = 0; i < n; i++) {
+ if (lambda[i] > tObj->MinMagThresh) {
+ /* minification */
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ {
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ images = choose_cube_face(tObj, s[i], t[i], u[i],
+ &newS, &newT);
+ sample_2d_nearest( tObj, images[tObj->BaseLevel],
+ newS, newT, rgba[i] );
+ }
+ break;
+ case GL_LINEAR:
+ {
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ images = choose_cube_face(tObj, s[i], t[i], u[i],
+ &newS, &newT);
+ sample_2d_linear( tObj, images[tObj->BaseLevel],
+ newS, newT, rgba[i] );
+ }
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_cube_nearest_mipmap_nearest( tObj, s[i], t[i], u[i],
+ lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_cube_linear_mipmap_nearest( tObj, s[i], t[i], u[i],
+ lambda[i], rgba[i] );
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_cube_nearest_mipmap_linear( tObj, s[i], t[i], u[i],
+ lambda[i], rgba[i] );
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_cube_linear_mipmap_linear( tObj, s[i], t[i], u[i],
+ lambda[i], rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad min filter in sample_lambda_cube");
+ }
+ }
+ else {
+ /* magnification */
+ const struct gl_texture_image **images;
+ GLfloat newS, newT;
+ images = choose_cube_face(tObj, s[i], t[i], u[i],
+ &newS, &newT);
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_2d_nearest( tObj, images[tObj->BaseLevel],
+ newS, newT, rgba[i] );
+ break;
+ case GL_LINEAR:
+ sample_2d_linear( tObj, images[tObj->BaseLevel],
+ newS, newT, rgba[i] );
+ break;
+ default:
+ gl_problem(NULL, "Bad mag filter in sample_lambda_cube");
+ }
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Sampling Setup */
+/**********************************************************************/
+
+
+/*
+ * Setup the texture sampling function for this texture object.
+ */
+void
+_swrast_set_texture_sampler( struct gl_texture_object *t )
+{
+ if (!t->Complete) {
+ t->SampleFunc = NULL;
+ }
+ else {
+ GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
+
+ if (needLambda) {
+ /* Compute min/mag filter threshold */
+ if (t->MagFilter==GL_LINEAR
+ && (t->MinFilter==GL_NEAREST_MIPMAP_NEAREST ||
+ t->MinFilter==GL_LINEAR_MIPMAP_NEAREST)) {
+ t->MinMagThresh = 0.5F;
+ }
+ else {
+ t->MinMagThresh = 0.0F;
+ }
+ }
+
+ switch (t->Dimensions) {
+ case 1:
+ if (needLambda) {
+ t->SampleFunc = sample_lambda_1d;
+ }
+ else if (t->MinFilter==GL_LINEAR) {
+ t->SampleFunc = sample_linear_1d;
+ }
+ else {
+ ASSERT(t->MinFilter==GL_NEAREST);
+ t->SampleFunc = sample_nearest_1d;
+ }
+ break;
+ case 2:
+ if (needLambda) {
+ t->SampleFunc = sample_lambda_2d;
+ }
+ else if (t->MinFilter==GL_LINEAR) {
+ t->SampleFunc = sample_linear_2d;
+ }
+ else {
+ ASSERT(t->MinFilter==GL_NEAREST);
+ if (t->WrapS==GL_REPEAT && t->WrapT==GL_REPEAT
+ && t->Image[0]->Border==0 && t->Image[0]->Format==GL_RGB) {
+ t->SampleFunc = opt_sample_rgb_2d;
+ }
+ else if (t->WrapS==GL_REPEAT && t->WrapT==GL_REPEAT
+ && t->Image[0]->Border==0 && t->Image[0]->Format==GL_RGBA) {
+ t->SampleFunc = opt_sample_rgba_2d;
+ }
+ else
+ t->SampleFunc = sample_nearest_2d;
+ }
+ break;
+ case 3:
+ if (needLambda) {
+ t->SampleFunc = sample_lambda_3d;
+ }
+ else if (t->MinFilter==GL_LINEAR) {
+ t->SampleFunc = sample_linear_3d;
+ }
+ else {
+ ASSERT(t->MinFilter==GL_NEAREST);
+ t->SampleFunc = sample_nearest_3d;
+ }
+ break;
+ case 6: /* cube map */
+ if (needLambda) {
+ t->SampleFunc = sample_lambda_cube;
+ }
+ else if (t->MinFilter==GL_LINEAR) {
+ t->SampleFunc = sample_linear_cube;
+ }
+ else {
+ ASSERT(t->MinFilter==GL_NEAREST);
+ t->SampleFunc = sample_nearest_cube;
+ }
+ break;
+ default:
+ gl_problem(NULL, "invalid dimensions in _mesa_set_texture_sampler");
+ }
+ }
+}
+
+
+#define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) )
+
+static INLINE void
+_mesa_texture_combine(const GLcontext *ctx,
+ const struct gl_texture_unit *textureUnit,
+ GLuint n,
+ GLchan (*primary_rgba)[4],
+ GLchan (*texel)[4],
+ GLchan (*rgba)[4])
+{
+ GLchan ccolor [3][3*MAX_WIDTH][4];
+ GLchan (*argRGB [3])[4];
+ GLchan (*argA [3])[4];
+ GLuint i, j;
+ const GLuint RGBshift = textureUnit->CombineScaleShiftRGB;
+ const GLuint Ashift = textureUnit->CombineScaleShiftA;
+
+ ASSERT(ctx->Extensions.EXT_texture_env_combine);
+
+ for (j = 0; j < 3; j++) {
+ switch (textureUnit->CombineSourceA[j]) {
+ case GL_TEXTURE:
+ argA[j] = texel;
+ break;
+ case GL_PRIMARY_COLOR_EXT:
+ argA[j] = primary_rgba;
+ break;
+ case GL_PREVIOUS_EXT:
+ argA[j] = rgba;
+ break;
+ case GL_CONSTANT_EXT:
+ {
+ GLchan (*c)[4] = ccolor[j];
+ GLchan alpha = FLOAT_TO_CHAN(textureUnit->EnvColor[3]);
+ for (i = 0; i < n; i++)
+ c[i][ACOMP] = alpha;
+ argA[j] = ccolor[j];
+ }
+ break;
+ default:
+ gl_problem(NULL, "invalid combine source");
+ }
+
+ switch (textureUnit->CombineSourceRGB[j]) {
+ case GL_TEXTURE:
+ argRGB[j] = texel;
+ break;
+ case GL_PRIMARY_COLOR_EXT:
+ argRGB[j] = primary_rgba;
+ break;
+ case GL_PREVIOUS_EXT:
+ argRGB[j] = rgba;
+ break;
+ case GL_CONSTANT_EXT:
+ {
+ GLchan (*c)[4] = ccolor[j];
+ const GLchan red = FLOAT_TO_CHAN(textureUnit->EnvColor[0]);
+ const GLchan green = FLOAT_TO_CHAN(textureUnit->EnvColor[1]);
+ const GLchan blue = FLOAT_TO_CHAN(textureUnit->EnvColor[2]);
+ for (i = 0; i < n; i++) {
+ c[i][RCOMP] = red;
+ c[i][GCOMP] = green;
+ c[i][BCOMP] = blue;
+ }
+ argRGB[j] = ccolor[j];
+ }
+ break;
+ default:
+ gl_problem(NULL, "invalid combine source");
+ }
+
+ if (textureUnit->CombineOperandRGB[j] != GL_SRC_COLOR) {
+ GLchan (*src)[4] = argRGB[j];
+ GLchan (*dst)[4] = ccolor[j];
+
+ argRGB[j] = ccolor[j];
+
+ if (textureUnit->CombineOperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) {
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP];
+ dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP];
+ dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP];
+ }
+ }
+ else if (textureUnit->CombineOperandRGB[j] == GL_SRC_ALPHA) {
+ src = argA[j];
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] = src[i][ACOMP];
+ dst[i][GCOMP] = src[i][ACOMP];
+ dst[i][BCOMP] = src[i][ACOMP];
+ }
+ }
+ else { /* GL_ONE_MINUS_SRC_ALPHA */
+ src = argA[j];
+ for (i = 0; i < n; i++) {
+ dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP];
+ dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP];
+ dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP];
+ }
+ }
+ }
+
+ if (textureUnit->CombineOperandA[j] == GL_ONE_MINUS_SRC_ALPHA) {
+ GLchan (*src)[4] = argA[j];
+ GLchan (*dst)[4] = ccolor[j];
+ argA[j] = ccolor[j];
+ for (i = 0; i < n; i++) {
+ dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP];
+ }
+ }
+
+ if (textureUnit->CombineModeRGB == GL_REPLACE &&
+ textureUnit->CombineModeA == GL_REPLACE) {
+ break; /* done, we need only arg0 */
+ }
+
+ if (j == 1 &&
+ textureUnit->CombineModeRGB != GL_INTERPOLATE_EXT &&
+ textureUnit->CombineModeA != GL_INTERPOLATE_EXT) {
+ break; /* arg0 and arg1 are done. we don't need arg2. */
+ }
+ }
+
+ switch (textureUnit->CombineModeRGB) {
+ case GL_REPLACE:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
+ if (RGBshift) {
+ for (i = 0; i < n; i++) {
+ GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift;
+ GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift;
+ GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift;
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = arg0[i][RCOMP];
+ rgba[i][GCOMP] = arg0[i][GCOMP];
+ rgba[i][BCOMP] = arg0[i][BCOMP];
+ }
+ }
+ }
+ break;
+ case GL_MODULATE:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
+ const GLint shift = 8 - RGBshift;
+ for (i = 0; i < n; i++) {
+ GLuint r = PROD(arg0[i][0], arg1[i][RCOMP]) >> shift;
+ GLuint g = PROD(arg0[i][1], arg1[i][GCOMP]) >> shift;
+ GLuint b = PROD(arg0[i][2], arg1[i][BCOMP]) >> shift;
+ rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_ADD:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
+ for (i = 0; i < n; i++) {
+ GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift;
+ GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift;
+ GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift;
+ rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_ADD_SIGNED_EXT:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
+ for (i = 0; i < n; i++) {
+ GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] - 128;
+ GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] - 128;
+ GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] - 128;
+ r = (r < 0) ? 0 : r << RGBshift;
+ g = (g < 0) ? 0 : g << RGBshift;
+ b = (b < 0) ? 0 : b << RGBshift;
+ rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_INTERPOLATE_EXT:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
+ const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
+ const GLint shift = 8 - RGBshift;
+ for (i = 0; i < n; i++) {
+ GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
+ + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP]))
+ >> shift;
+ GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
+ + PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP]))
+ >> shift;
+ GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
+ + PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP]))
+ >> shift;
+ rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
+ }
+ }
+ break;
+ default:
+ gl_problem(NULL, "invalid combine mode");
+ }
+
+ switch (textureUnit->CombineModeA) {
+ case GL_REPLACE:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
+ if (Ashift) {
+ for (i = 0; i < n; i++) {
+ GLuint a = (GLuint) arg0[i][ACOMP] << Ashift;
+ rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ rgba[i][ACOMP] = arg0[i][ACOMP];
+ }
+ }
+ }
+ break;
+ case GL_MODULATE:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
+ const GLint shift = 8 - Ashift;
+ for (i = 0; i < n; i++) {
+ GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift);
+ rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_ADD:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
+ for (i = 0; i < n; i++) {
+ GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift;
+ rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_ADD_SIGNED_EXT:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
+ for (i = 0; i < n; i++) {
+ GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] - 128;
+ a = (a < 0) ? 0 : a << Ashift;
+ rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
+ }
+ }
+ break;
+ case GL_INTERPOLATE_EXT:
+ {
+ const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
+ const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
+ const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
+ const GLint shift = 8 - Ashift;
+ for (i=0; i<n; i++) {
+ GLuint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
+ + PROD(arg1[i][ACOMP], CHAN_MAX - arg2[i][ACOMP]))
+ >> shift;
+ rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
+ }
+ }
+ break;
+ default:
+ gl_problem(NULL, "invalid combine mode");
+ }
+}
+#undef PROD
+
+
+
+/**********************************************************************/
+/* Texture Application */
+/**********************************************************************/
+
+
+/*
+ * Combine incoming fragment color with texel color to produce output color.
+ * Input: textureUnit - pointer to texture unit to apply
+ * format - base internal texture format
+ * n - number of fragments
+ * primary_rgba - primary colors (may be rgba for single texture)
+ * texels - array of texel colors
+ * InOut: rgba - incoming fragment colors modified by texel colors
+ * according to the texture environment mode.
+ */
+static void
+apply_texture( const GLcontext *ctx,
+ const struct gl_texture_unit *texUnit,
+ GLuint n,
+ GLchan primary_rgba[][4], GLchan texel[][4],
+ GLchan rgba[][4] )
+{
+ GLint baseLevel;
+ GLuint i;
+ GLint Rc, Gc, Bc, Ac;
+ GLenum format;
+
+ ASSERT(texUnit);
+ ASSERT(texUnit->Current);
+
+ baseLevel = texUnit->Current->BaseLevel;
+ ASSERT(texUnit->Current->Image[baseLevel]);
+
+ format = texUnit->Current->Image[baseLevel]->Format;
+
+ if (format==GL_COLOR_INDEX) {
+ format = GL_RGBA; /* XXXX a hack! */
+ }
+
+ switch (texUnit->EnvMode) {
+ case GL_REPLACE:
+ switch (format) {
+ case GL_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf */
+ /* Av = At */
+ rgba[i][ACOMP] = texel[i][ACOMP];
+ }
+ break;
+ case GL_LUMINANCE:
+ for (i=0;i<n;i++) {
+ /* Cv = Lt */
+ GLchan Lt = texel[i][RCOMP];
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
+ /* Av = Af */
+ }
+ break;
+ case GL_LUMINANCE_ALPHA:
+ for (i=0;i<n;i++) {
+ GLchan Lt = texel[i][RCOMP];
+ /* Cv = Lt */
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
+ /* Av = At */
+ rgba[i][ACOMP] = texel[i][ACOMP];
+ }
+ break;
+ case GL_INTENSITY:
+ for (i=0;i<n;i++) {
+ /* Cv = It */
+ GLchan It = texel[i][RCOMP];
+ rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = It;
+ /* Av = It */
+ rgba[i][ACOMP] = It;
+ }
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ /* Cv = Ct */
+ rgba[i][RCOMP] = texel[i][RCOMP];
+ rgba[i][GCOMP] = texel[i][GCOMP];
+ rgba[i][BCOMP] = texel[i][BCOMP];
+ /* Av = Af */
+ }
+ break;
+ case GL_RGBA:
+ for (i=0;i<n;i++) {
+ /* Cv = Ct */
+ rgba[i][RCOMP] = texel[i][RCOMP];
+ rgba[i][GCOMP] = texel[i][GCOMP];
+ rgba[i][BCOMP] = texel[i][BCOMP];
+ /* Av = At */
+ rgba[i][ACOMP] = texel[i][ACOMP];
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad format (GL_REPLACE) in apply_texture");
+ return;
+ }
+ break;
+
+ case GL_MODULATE:
+ switch (format) {
+ case GL_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf */
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
+ }
+ break;
+ case GL_LUMINANCE:
+ for (i=0;i<n;i++) {
+ /* Cv = LtCf */
+ GLchan Lt = texel[i][RCOMP];
+ rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
+ rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
+ rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
+ /* Av = Af */
+ }
+ break;
+ case GL_LUMINANCE_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Cv = CfLt */
+ GLchan Lt = texel[i][RCOMP];
+ rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
+ rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
+ rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
+ }
+ break;
+ case GL_INTENSITY:
+ for (i=0;i<n;i++) {
+ /* Cv = CfIt */
+ GLchan It = texel[i][RCOMP];
+ rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], It );
+ rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], It );
+ rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], It );
+ /* Av = AfIt */
+ rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], It );
+ }
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ /* Cv = CfCt */
+ rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
+ rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
+ rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
+ /* Av = Af */
+ }
+ break;
+ case GL_RGBA:
+ for (i=0;i<n;i++) {
+ /* Cv = CfCt */
+ rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
+ rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
+ rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad format (GL_MODULATE) in apply_texture");
+ return;
+ }
+ break;
+
+ case GL_DECAL:
+ switch (format) {
+ case GL_ALPHA:
+ case GL_LUMINANCE:
+ case GL_LUMINANCE_ALPHA:
+ case GL_INTENSITY:
+ /* undefined */
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ /* Cv = Ct */
+ rgba[i][RCOMP] = texel[i][RCOMP];
+ rgba[i][GCOMP] = texel[i][GCOMP];
+ rgba[i][BCOMP] = texel[i][BCOMP];
+ /* Av = Af */
+ }
+ break;
+ case GL_RGBA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-At) + CtAt */
+ GLint t = texel[i][ACOMP], s = CHAN_MAX - t;
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(texel[i][RCOMP],t);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(texel[i][GCOMP],t);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(texel[i][BCOMP],t);
+ /* Av = Af */
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad format (GL_DECAL) in apply_texture");
+ return;
+ }
+ break;
+
+ case GL_BLEND:
+ Rc = (GLint) (texUnit->EnvColor[0] * CHAN_MAXF);
+ Gc = (GLint) (texUnit->EnvColor[1] * CHAN_MAXF);
+ Bc = (GLint) (texUnit->EnvColor[2] * CHAN_MAXF);
+ Ac = (GLint) (texUnit->EnvColor[3] * CHAN_MAXF);
+ switch (format) {
+ case GL_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf */
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
+ }
+ break;
+ case GL_LUMINANCE:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-Lt) + CcLt */
+ GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
+ /* Av = Af */
+ }
+ break;
+ case GL_LUMINANCE_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-Lt) + CcLt */
+ GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
+ }
+ break;
+ case GL_INTENSITY:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-It) + CcLt */
+ GLchan It = texel[i][RCOMP], s = CHAN_MAX - It;
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, It);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, It);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, It);
+ /* Av = Af(1-It) + Ac*It */
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], s) + CHAN_PRODUCT(Ac, It);
+ }
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-Ct) + CcCt */
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
+ /* Av = Af */
+ }
+ break;
+ case GL_RGBA:
+ for (i=0;i<n;i++) {
+ /* Cv = Cf(1-Ct) + CcCt */
+ rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
+ rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
+ rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
+ /* Av = AfAt */
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad format (GL_BLEND) in apply_texture");
+ return;
+ }
+ break;
+
+ case GL_ADD: /* GL_EXT_texture_add_env */
+ switch (format) {
+ case GL_ALPHA:
+ for (i=0;i<n;i++) {
+ /* Rv = Rf */
+ /* Gv = Gf */
+ /* Bv = Bf */
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
+ }
+ break;
+ case GL_LUMINANCE:
+ for (i=0;i<n;i++) {
+ GLuint Lt = texel[i][RCOMP];
+ GLuint r = rgba[i][RCOMP] + Lt;
+ GLuint g = rgba[i][GCOMP] + Lt;
+ GLuint b = rgba[i][BCOMP] + Lt;
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ /* Av = Af */
+ }
+ break;
+ case GL_LUMINANCE_ALPHA:
+ for (i=0;i<n;i++) {
+ GLuint Lt = texel[i][RCOMP];
+ GLuint r = rgba[i][RCOMP] + Lt;
+ GLuint g = rgba[i][GCOMP] + Lt;
+ GLuint b = rgba[i][BCOMP] + Lt;
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
+ }
+ break;
+ case GL_INTENSITY:
+ for (i=0;i<n;i++) {
+ GLchan It = texel[i][RCOMP];
+ GLuint r = rgba[i][RCOMP] + It;
+ GLuint g = rgba[i][GCOMP] + It;
+ GLuint b = rgba[i][BCOMP] + It;
+ GLuint a = rgba[i][ACOMP] + It;
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ rgba[i][ACOMP] = MIN2(a, CHAN_MAX);
+ }
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
+ GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
+ GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ /* Av = Af */
+ }
+ break;
+ case GL_RGBA:
+ for (i=0;i<n;i++) {
+ GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
+ GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
+ GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
+ rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
+ rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
+ rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
+ rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad format (GL_ADD) in apply_texture");
+ return;
+ }
+ break;
+
+ case GL_COMBINE_EXT: /* GL_EXT_combine_ext; we modify texel array */
+ switch (format) {
+ case GL_ALPHA:
+ for (i=0;i<n;i++)
+ texel[i][RCOMP] = texel[i][GCOMP] = texel[i][BCOMP] = 0;
+ break;
+ case GL_LUMINANCE:
+ for (i=0;i<n;i++) {
+ /* Cv = Lt */
+ GLchan Lt = texel[i][RCOMP];
+ texel[i][GCOMP] = texel[i][BCOMP] = Lt;
+ /* Av = 1 */
+ texel[i][ACOMP] = CHAN_MAX;
+ }
+ break;
+ case GL_LUMINANCE_ALPHA:
+ for (i=0;i<n;i++) {
+ GLchan Lt = texel[i][RCOMP];
+ /* Cv = Lt */
+ texel[i][GCOMP] = texel[i][BCOMP] = Lt;
+ }
+ break;
+ case GL_INTENSITY:
+ for (i=0;i<n;i++) {
+ /* Cv = It */
+ GLchan It = texel[i][RCOMP];
+ texel[i][GCOMP] = texel[i][BCOMP] = It;
+ /* Av = It */
+ texel[i][ACOMP] = It;
+ }
+ break;
+ case GL_RGB:
+ for (i=0;i<n;i++) {
+ /* Av = 1 */
+ texel[i][ACOMP] = CHAN_MAX;
+ }
+ break;
+ case GL_RGBA: /* do nothing. */
+ break;
+ default:
+ gl_problem(ctx, "Bad format in apply_texture (GL_COMBINE_EXT)");
+ return;
+ }
+ _mesa_texture_combine(ctx, texUnit, n, primary_rgba, texel, rgba);
+ break;
+
+ default:
+ gl_problem(ctx, "Bad env mode in apply_texture");
+ return;
+ }
+}
+
+
+
+/*
+ * Apply a unit of texture mapping to the incoming fragments.
+ */
+void gl_texture_pixels( GLcontext *ctx, GLuint texUnit, GLuint n,
+ const GLfloat s[], const GLfloat t[],
+ const GLfloat r[], GLfloat lambda[],
+ GLchan primary_rgba[][4], GLchan rgba[][4] )
+{
+ const GLuint mask = TEXTURE0_ANY << (texUnit * 4);
+
+ if (ctx->Texture.ReallyEnabled & mask) {
+ const struct gl_texture_unit *textureUnit = &ctx->Texture.Unit[texUnit];
+
+ if (textureUnit->Current && textureUnit->Current->SampleFunc) {
+ GLchan texel[PB_SIZE][4];
+
+ if (textureUnit->LodBias != 0.0F) {
+ /* apply LOD bias, but don't clamp yet */
+ GLuint i;
+ for (i=0;i<n;i++) {
+ lambda[i] += textureUnit->LodBias;
+ }
+ }
+
+ if (textureUnit->Current->MinLod != -1000.0
+ || textureUnit->Current->MaxLod != 1000.0) {
+ /* apply LOD clamping to lambda */
+ GLfloat min = textureUnit->Current->MinLod;
+ GLfloat max = textureUnit->Current->MaxLod;
+ GLuint i;
+ for (i=0;i<n;i++) {
+ GLfloat l = lambda[i];
+ lambda[i] = CLAMP(l, min, max);
+ }
+ }
+
+ /* fetch texture images from device driver, if needed */
+ if (ctx->Driver.GetTexImage) {
+ if (!_mesa_get_teximages_from_driver(ctx, textureUnit->Current)) {
+ return;
+ }
+ }
+
+ /* Sample the texture. */
+ (*textureUnit->Current->SampleFunc)( textureUnit->Current, n,
+ s, t, r, lambda, texel );
+
+ apply_texture( ctx, textureUnit, n, primary_rgba, texel, rgba );
+ }
+ }
+}