summaryrefslogtreecommitdiffstats
path: root/src/mesa/swrast/s_aatritemp.h
diff options
context:
space:
mode:
authorBrian Paul <[email protected]>2001-07-13 20:07:37 +0000
committerBrian Paul <[email protected]>2001-07-13 20:07:37 +0000
commitf431a3fb4dc1bf860203d79e54657e3a62bc50df (patch)
tree51a598faf5e8b971b2bd7cf85702e021426f54c6 /src/mesa/swrast/s_aatritemp.h
parentbc07a99cc3faeb1aa48700065b34baa76c201e7d (diff)
assorted changes for supporting GLfloat color channels (not done)
Diffstat (limited to 'src/mesa/swrast/s_aatritemp.h')
-rw-r--r--src/mesa/swrast/s_aatritemp.h520
1 files changed, 274 insertions, 246 deletions
diff --git a/src/mesa/swrast/s_aatritemp.h b/src/mesa/swrast/s_aatritemp.h
index 0c6a8be3ec2..060f7d988fc 100644
--- a/src/mesa/swrast/s_aatritemp.h
+++ b/src/mesa/swrast/s_aatritemp.h
@@ -1,4 +1,4 @@
-/* $Id: s_aatritemp.h,v 1.18 2001/06/05 21:41:05 brianp Exp $ */
+/* $Id: s_aatritemp.h,v 1.19 2001/07/13 20:07:37 brianp Exp $ */
/*
* Mesa 3-D graphics library
@@ -48,10 +48,11 @@
const GLfloat *p1 = v1->win;
const GLfloat *p2 = v2->win;
const SWvertex *vMin, *vMid, *vMax;
- GLint iyMin, iyMax;
- GLfloat yMin, yMax;
- GLboolean ltor;
- GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
+ GLfloat xMin, yMin, xMid, yMid, xMax, yMax;
+ GLfloat majDx, majDy, botDx, botDy, topDx, topDy;
+ GLfloat area;
+ GLboolean majorOnLeft;
+ GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
#ifdef DO_Z
GLfloat zPlane[4];
@@ -71,6 +72,7 @@
GLfloat iPlane[4];
GLuint index[MAX_WIDTH];
GLint icoverageSpan[MAX_WIDTH];
+ GLfloat coverageSpan[MAX_WIDTH];
#else
GLfloat coverageSpan[MAX_WIDTH];
#endif
@@ -96,7 +98,6 @@
DEFMARRAY(GLfloat, u, MAX_TEXTURE_UNITS, MAX_WIDTH);
DEFMARRAY(GLfloat, lambda, MAX_TEXTURE_UNITS, MAX_WIDTH);
#endif
- GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
#ifdef DO_RGBA
CHECKARRAY(rgba, return); /* mac 32k limitation */
@@ -140,27 +141,38 @@
}
}
- majDx = vMax->win[0] - vMin->win[0];
- majDy = vMax->win[1] - vMin->win[1];
-
- {
- const GLfloat botDx = vMid->win[0] - vMin->win[0];
- const GLfloat botDy = vMid->win[1] - vMin->win[1];
- const GLfloat area = majDx * botDy - botDx * majDy;
- ltor = (GLboolean) (area < 0.0F);
- /* Do backface culling */
- if (area * bf < 0 || area * area < .0025)
- return;
- }
+ xMin = vMin->win[0]; yMin = vMin->win[1];
+ xMid = vMid->win[0]; yMid = vMid->win[1];
+ xMax = vMax->win[0]; yMax = vMax->win[1];
+
+ /* the major edge is between the top and bottom vertices */
+ majDx = xMax - xMin;
+ majDy = yMax - yMin;
+ /* the bottom edge is between the bottom and mid vertices */
+ botDx = xMid - xMin;
+ botDy = yMid - yMin;
+ /* the top edge is between the top and mid vertices */
+ topDx = xMax - xMid;
+ topDy = yMax - yMid;
+
+ /* compute clockwise / counter-clockwise orientation and do BF culling */
+ area = majDx * botDy - botDx * majDy;
+ /* Do backface culling */
+ if (area * bf < 0 || area * area < .0025)
+ return;
+ majorOnLeft = (GLboolean) (area < 0.0F);
#ifndef DO_OCCLUSION_TEST
ctx->OcclusionResult = GL_TRUE;
#endif
+ assert(majDy > 0.0F);
+
/* Plane equation setup:
* We evaluate plane equations at window (x,y) coordinates in order
* to compute color, Z, fog, texcoords, etc. This isn't terribly
- * efficient but it's easy and reliable.
+ * efficient but it's easy and reliable. It also copes with computing
+ * interpolated data just outside the triangle's edges.
*/
#ifdef DO_Z
compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
@@ -268,285 +280,301 @@
* edges, stopping when we find that coverage = 0. If the long edge
* is on the left we scan left-to-right. Else, we scan right-to-left.
*/
- yMin = vMin->win[1];
- yMax = vMax->win[1];
- iyMin = (GLint) yMin;
- iyMax = (GLint) yMax + 1;
-
- if (ltor) {
- /* scan left to right */
- const GLfloat *pMin = vMin->win;
- const GLfloat *pMid = vMid->win;
- const GLfloat *pMax = vMax->win;
- const GLfloat dxdy = majDx / majDy;
- const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
- GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
+ {
+ const GLint iyMin = (GLint) yMin;
+ const GLint iyMax = (GLint) yMax + 1;
+ /* upper edge and lower edge derivatives */
+ const GLfloat topDxDy = (topDy != 0.0F) ? topDx / topDy : 0.0F;
+ const GLfloat botDxDy = (botDy != 0.0F) ? botDx / botDy : 0.0F;
+ const GLfloat *pA, *pB, *pC;
+ const GLfloat majDxDy = majDx / majDy;
+ const GLfloat absMajDxDy = FABSF(majDxDy);
+ const GLfloat absTopDxDy = FABSF(topDxDy);
+ const GLfloat absBotDxDy = FABSF(botDxDy);
+#if 0
+ GLfloat xMaj = xMin - (yMin - (GLfloat) iyMin) * majDxDy;
+ GLfloat xBot = xMaj;
+ GLfloat xTop = xMid - (yMid - (GLint) yMid) * topDxDy;
+#else
+ GLfloat xMaj;
+ GLfloat xBot;
+ GLfloat xTop;
+#endif
GLint iy;
- for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
- GLint ix, startX = (GLint) (x - xAdj);
- GLuint count, n;
+ GLint k;
+
+ /* pA, pB, pC are the vertices in counter-clockwise order */
+ if (majorOnLeft) {
+ pA = vMin->win;
+ pB = vMid->win;
+ pC = vMax->win;
+ xMaj = xMin - absMajDxDy - 1.0;
+ xBot = xMin + absBotDxDy + 1.0;
+ xTop = xMid + absTopDxDy + 1.0;
+ }
+ else {
+ pA = vMin->win;
+ pB = vMax->win;
+ pC = vMid->win;
+ xMaj = xMin + absMajDxDy + 1.0;
+ xBot = xMin - absBotDxDy - 1.0;
+ xTop = xMid - absTopDxDy - 1.0;
+ }
+
+ /* Scan from bottom to top */
+ for (iy = iyMin; iy < iyMax; iy++, xMaj += majDxDy) {
+ GLint ix, i, j, len;
+ GLint iRight, iLeft;
GLfloat coverage = 0.0F;
- /* skip over fragments with zero coverage */
- while (startX < MAX_WIDTH) {
- coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
- if (coverage > 0.0F)
- break;
- startX++;
+
+ if (majorOnLeft) {
+ iLeft = (GLint) (xMaj + 0.0);
+ /* compute right */
+ if (iy <= yMid) {
+ /* we're in the lower part */
+ iRight = (GLint) (xBot + 0.0);
+ xBot += botDxDy;
+ }
+ else {
+ /* we're in the upper part */
+ iRight = (GLint) (xTop + 0.0);
+ xTop += topDxDy;
+ }
+ }
+ else {
+ iRight = (GLint) (xMaj + 0.0);
+ /* compute left */
+ if (iy <= yMid) {
+ /* we're in the lower part */
+ iLeft = (GLint) (xBot - 0.0);
+ xBot += botDxDy;
+ }
+ else {
+ /* we're in the upper part */
+ iLeft = (GLint) (xTop - 0.0);
+ xTop += topDxDy;
+ }
}
- /* enter interior of triangle */
- ix = startX;
- count = 0;
- while (coverage > 0.0F) {
- /* (cx,cy) = center of fragment */
- const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
-#ifdef DO_INDEX
- icoverageSpan[count] = compute_coveragei(pMin, pMid, pMax, ix, iy);
-#else
- coverageSpan[count] = coverage;
+#ifdef DEBUG
+ for (i = 0; i < MAX_WIDTH; i++) {
+ coverageSpan[i] = -1.0;
+ }
#endif
+
+ if (iLeft < 0)
+ iLeft = 0;
+ if (iRight >= ctx->DrawBuffer->_Xmax)
+ iRight = ctx->DrawBuffer->_Xmax - 1;
+
+ /*printf("%d: iLeft = %d iRight = %d\n", iy, iLeft, iRight);*/
+
+ /* The pixels at y in [iLeft, iRight] (inclusive) are candidates */
+
+ /* scan left to right until we hit 100% coverage or the right edge */
+ i = iLeft;
+ while (i < iRight) {
+ coverage = compute_coveragef(pA, pB, pC, i, iy);
+ if (coverage == 0.0F) {
+ if (i == iLeft)
+ iLeft++; /* skip zero coverage pixels */
+ else {
+ iRight = i;
+ i--;
+ break; /* went past right edge */
+ }
+ }
+ else {
+ coverageSpan[i - iLeft] = coverage;
+ if (coverage == 1.0F)
+ break;
+ }
+ i++;
+ }
+
+ assert(coverageSpan[i-iLeft] > 0.0 || iLeft == iRight);
+
+ assert(i == iRight || coverage == 1.0 || coverage == 0.0);
+
+ /* scan right to left until we hit 100% coverage or the left edge */
+ j = iRight;
+ assert(j - iLeft >= 0);
+ while (1) {
+ coverage = compute_coveragef(pA, pB, pC, j, iy);
+ if (coverage == 0.0F) {
+ if (j == iRight && j > i)
+ iRight--; /* skip zero coverage pixels */
+ else
+ break;
+ }
+ else {
+ if (j <= i)
+ break;
+ assert(j - iLeft >= 0);
+ coverageSpan[j - iLeft] = coverage;
+ if (coverage == 1.0F)
+ break;
+ }
+ /*printf("%d: coverage[%d]' = %g\n", iy, j-iLeft, coverage);*/
+ j--;
+ }
+
+ assert(coverageSpan[j-iLeft] > 0.0 || iRight <= iLeft);
+
+ printf("iLeft=%d i=%d j=%d iRight=%d\n", iLeft, i, j, iRight);
+
+ assert(iLeft >= 0);
+ assert(iLeft < ctx->DrawBuffer->_Xmax);
+ assert(iRight >= 0);
+ assert(iRight < ctx->DrawBuffer->_Xmax);
+ assert(iRight >= iLeft);
+
+
+ /* any pixels left in between must have 100% coverage */
+ k = i + 1;
+ while (k < j) {
+ coverageSpan[k - iLeft] = 1.0F;
+ k++;
+ }
+
+ len = iRight - iLeft;
+ /*printf("len = %d\n", len);*/
+ assert(len >= 0);
+ assert(len < MAX_WIDTH);
+
+ if (len == 0)
+ continue;
+
+#ifdef DEBUG
+ for (k = 0; k < len; k++) {
+ assert(coverageSpan[k] > 0.0);
+ }
+#endif
+
+ /*
+ * Compute color, texcoords, etc for the span
+ */
+ {
+ const GLfloat cx = iLeft + 0.5F, cy = iy + 0.5F;
#ifdef DO_Z
- z[count] = (GLdepth) solve_plane(cx, cy, zPlane);
+ GLfloat zFrag = solve_plane(cx, cy, zPlane);
+ const GLfloat zStep = -zPlane[0] / zPlane[2];
#endif
#ifdef DO_FOG
- fog[count] = solve_plane(cx, cy, fogPlane);
+ GLfloat fogFrag = solve_plane(cx, cy, fogPlane);
+ const GLfloat fogStep = -fogPlane[0] / fogPlane[2];
#endif
#ifdef DO_RGBA
- rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
- rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
- rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
- rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
+ /* to do */
#endif
#ifdef DO_INDEX
- index[count] = (GLint) solve_plane(cx, cy, iPlane);
+ /* to do */
#endif
#ifdef DO_SPEC
- spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
- spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
- spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
+ /* to do */
#endif
#ifdef DO_TEX
- {
- const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
- s[count] = solve_plane(cx, cy, sPlane) * invQ;
- t[count] = solve_plane(cx, cy, tPlane) * invQ;
- u[count] = solve_plane(cx, cy, uPlane) * invQ;
- lambda[count] = compute_lambda(sPlane, tPlane, invQ,
- texWidth, texHeight);
- }
+ GLfloat sFrag = solve_plane(cx, cy, sPlane);
+ GLfloat tFrag = solve_plane(cx, cy, tPlane);
+ GLfloat uFrag = solve_plane(cx, cy, uPlane);
+ GLfloat vFrag = solve_plane(cx, cy, vPlane);
+ const GLfloat sStep = -sPlane[0] / sPlane[2];
+ const GLfloat tStep = -tPlane[0] / tPlane[2];
+ const GLfloat uStep = -uPlane[0] / uPlane[2];
+ const GLfloat vStep = -vPlane[0] / vPlane[2];
#elif defined(DO_MULTITEX)
- {
- GLuint unit;
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
- s[unit][count] = solve_plane(cx, cy, sPlane[unit]) * invQ;
- t[unit][count] = solve_plane(cx, cy, tPlane[unit]) * invQ;
- u[unit][count] = solve_plane(cx, cy, uPlane[unit]) * invQ;
- lambda[unit][count] = compute_lambda(sPlane[unit],
- tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
- }
- }
- }
-#endif
- ix++;
- count++;
- coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
- }
-
- if (ix <= startX)
- continue;
-
- n = (GLuint) ix - (GLuint) startX;
-
-#ifdef DO_MULTITEX
-# ifdef DO_SPEC
- _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
- (const GLfloat (*)[MAX_WIDTH]) s,
- (const GLfloat (*)[MAX_WIDTH]) t,
- (const GLfloat (*)[MAX_WIDTH]) u,
- (GLfloat (*)[MAX_WIDTH]) lambda,
- rgba, (const GLchan (*)[4]) spec,
- coverageSpan, GL_POLYGON);
-# else
- _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
- (const GLfloat (*)[MAX_WIDTH]) s,
- (const GLfloat (*)[MAX_WIDTH]) t,
- (const GLfloat (*)[MAX_WIDTH]) u,
- lambda, rgba, NULL, coverageSpan,
- GL_POLYGON);
-# endif
-#elif defined(DO_TEX)
-# ifdef DO_SPEC
- _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
- s, t, u, lambda, rgba,
- (const GLchan (*)[4]) spec,
- coverageSpan, GL_POLYGON);
-# else
- _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
- s, t, u, lambda,
- rgba, NULL, coverageSpan, GL_POLYGON);
-# endif
-#elif defined(DO_RGBA)
- _mesa_write_rgba_span(ctx, n, startX, iy, z, fog, rgba,
- coverageSpan, GL_POLYGON);
-#elif defined(DO_INDEX)
- _mesa_write_index_span(ctx, n, startX, iy, z, fog, index,
- icoverageSpan, GL_POLYGON);
+ /* to do */
#endif
- }
- }
- else {
- /* scan right to left */
- const GLfloat *pMin = vMin->win;
- const GLfloat *pMid = vMid->win;
- const GLfloat *pMax = vMax->win;
- const GLfloat dxdy = majDx / majDy;
- const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
- GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
- GLint iy;
- for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
- GLint ix, left, startX = (GLint) (x + xAdj);
- GLuint count, n;
- GLfloat coverage = 0.0F;
- /* make sure we're not past the window edge */
- if (startX >= ctx->DrawBuffer->_Xmax) {
- startX = ctx->DrawBuffer->_Xmax - 1;
- }
+ for (ix = iLeft; ix < iRight; ix++) {
+ const GLint k = ix - iLeft;
+ const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
- /* skip fragments with zero coverage */
- while (startX >= 0) {
- coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
- if (coverage > 0.0F)
- break;
- startX--;
- }
-
- /* enter interior of triangle */
- ix = startX;
- count = 0;
- while (coverage > 0.0F) {
- /* (cx,cy) = center of fragment */
- const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
-#ifdef DO_INDEX
- icoverageSpan[ix] = compute_coveragei(pMin, pMid, pMax, ix, iy);
-#else
- coverageSpan[ix] = coverage;
-#endif
#ifdef DO_Z
- z[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
+ z[k] = zFrag; zFrag += zStep;
#endif
#ifdef DO_FOG
- fog[ix] = solve_plane(cx, cy, fogPlane);
+ fog[k] = fogFrag; fogFrag += fogStep;
#endif
#ifdef DO_RGBA
- rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
- rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
- rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
- rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
+ rgba[k][RCOMP] = solve_plane_chan(cx, cy, rPlane);
+ rgba[k][GCOMP] = solve_plane_chan(cx, cy, gPlane);
+ rgba[k][BCOMP] = solve_plane_chan(cx, cy, bPlane);
+ rgba[k][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif
#ifdef DO_INDEX
- index[ix] = (GLint) solve_plane(cx, cy, iPlane);
+ index[k] = (GLint) solve_plane(cx, cy, iPlane);
#endif
#ifdef DO_SPEC
- spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
- spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
- spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
+ spec[k][RCOMP] = solve_plane_chan(cx, cy, srPlane);
+ spec[k][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
+ spec[k][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif
#ifdef DO_TEX
- {
- const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
- s[ix] = solve_plane(cx, cy, sPlane) * invQ;
- t[ix] = solve_plane(cx, cy, tPlane) * invQ;
- u[ix] = solve_plane(cx, cy, uPlane) * invQ;
- lambda[ix] = compute_lambda(sPlane, tPlane, invQ,
- texWidth, texHeight);
- }
+ s[k] = sFrag / vFrag;
+ t[k] = tFrag / vFrag;
+ u[k] = uFrag / vFrag;
+ lambda[k] = compute_lambda(sPlane, tPlane, 1.0F / vFrag,
+ texWidth, texHeight);
+ sFrag += sStep;
+ tFrag += tStep;
+ uFrag += uStep;
+ vFrag += vStep;
#elif defined(DO_MULTITEX)
- {
- GLuint unit;
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
- s[unit][ix] = solve_plane(cx, cy, sPlane[unit]) * invQ;
- t[unit][ix] = solve_plane(cx, cy, tPlane[unit]) * invQ;
- u[unit][ix] = solve_plane(cx, cy, uPlane[unit]) * invQ;
- lambda[unit][ix] = compute_lambda(sPlane[unit],
- tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
+ {
+ GLuint unit;
+ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
+ if (ctx->Texture.Unit[unit]._ReallyEnabled) {
+ GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
+ s[unit][k] = solve_plane(cx, cy, sPlane[unit]) * invQ;
+ t[unit][k] = solve_plane(cx, cy, tPlane[unit]) * invQ;
+ u[unit][k] = solve_plane(cx, cy, uPlane[unit]) * invQ;
+ lambda[unit][k] = compute_lambda(sPlane[unit],
+ tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
+ }
}
}
- }
#endif
- ix--;
- count++;
- coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
+ } /* for ix */
}
- if (startX <= ix)
- continue;
-
- n = (GLuint) startX - (GLuint) ix;
-
- left = ix + 1;
+ /*
+ * Write/process the span of fragments.
+ */
#ifdef DO_MULTITEX
- {
- GLuint unit;
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- GLint j;
- for (j = 0; j < (GLint) n; j++) {
- s[unit][j] = s[unit][j + left];
- t[unit][j] = t[unit][j + left];
- u[unit][j] = u[unit][j + left];
- lambda[unit][j] = lambda[unit][j + left];
- }
- }
- }
- }
-# ifdef DO_SPEC
- _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
+ _mesa_write_multitexture_span(ctx, len, iLeft, iy, z, fog,
(const GLfloat (*)[MAX_WIDTH]) s,
(const GLfloat (*)[MAX_WIDTH]) t,
(const GLfloat (*)[MAX_WIDTH]) u,
- lambda, rgba + left,
- (const GLchan (*)[4]) (spec + left),
- coverageSpan + left,
- GL_POLYGON);
+ (GLfloat (*)[MAX_WIDTH]) lambda,
+ rgba,
+# ifdef DO_SPEC
+ (const GLchan (*)[4]) spec,
# else
- _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
- (const GLfloat (*)[MAX_WIDTH]) s,
- (const GLfloat (*)[MAX_WIDTH]) t,
- (const GLfloat (*)[MAX_WIDTH]) u,
- lambda,
- rgba + left, NULL, coverageSpan + left,
- GL_POLYGON);
+ NULL,
# endif
+ coverageSpan, GL_POLYGON);
#elif defined(DO_TEX)
+ _mesa_write_texture_span(ctx, len, iLeft, iy, z, fog,
+ s, t, u, lambda, rgba,
# ifdef DO_SPEC
- _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
- s + left, t + left, u + left,
- lambda + left, rgba + left,
- (const GLchan (*)[4]) (spec + left),
- coverageSpan + left,
- GL_POLYGON);
+ (const GLchan (*)[4]) spec,
# else
- _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
- s + left, t + left,
- u + left, lambda + left,
- rgba + left, NULL,
- coverageSpan + left, GL_POLYGON);
+ NULL,
# endif
+ coverageSpan, GL_POLYGON);
#elif defined(DO_RGBA)
- _mesa_write_rgba_span(ctx, n, left, iy, z + left, fog + left,
- rgba + left, coverageSpan + left, GL_POLYGON);
+ _mesa_write_rgba_span(ctx, len, iLeft, iy, z, fog, rgba,
+ coverageSpan, GL_POLYGON);
#elif defined(DO_INDEX)
- _mesa_write_index_span(ctx, n, left, iy, z + left, fog + left,
- index + left, icoverageSpan + left, GL_POLYGON);
+ _mesa_write_index_span(ctx, len, iLeft, iy, z, fog, index,
+ icoverageSpan, GL_POLYGON);
#endif
- }
+
+ } /* for iy */
}
+
#ifdef DO_RGBA
UNDEFARRAY(rgba); /* mac 32k limitation */
#endif