diff options
author | Gareth Hughes <[email protected]> | 2001-03-12 00:48:37 +0000 |
---|---|---|
committer | Gareth Hughes <[email protected]> | 2001-03-12 00:48:37 +0000 |
commit | 22144ab7552f0799bcfca506bf4ffa7f70a06649 (patch) | |
tree | e7986aa02e97d88071b0769dc8d5359860320614 /src/mesa/math/m_matrix.c | |
parent | 57ffddba9870a0e602ae454e13072a0af48fa150 (diff) |
Consistent copyright info (version number, date) across all files.
Diffstat (limited to 'src/mesa/math/m_matrix.c')
-rw-r--r-- | src/mesa/math/m_matrix.c | 172 |
1 files changed, 86 insertions, 86 deletions
diff --git a/src/mesa/math/m_matrix.c b/src/mesa/math/m_matrix.c index 8f8320f2565..de002adb5d2 100644 --- a/src/mesa/math/m_matrix.c +++ b/src/mesa/math/m_matrix.c @@ -1,21 +1,21 @@ -/* $Id: m_matrix.c,v 1.7 2001/03/07 05:06:12 brianp Exp $ */ +/* $Id: m_matrix.c,v 1.8 2001/03/12 00:48:41 gareth Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 - * + * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. - * + * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: - * + * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. - * + * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL @@ -66,13 +66,13 @@ static GLfloat Identity[16] = { /* - * This matmul was contributed by Thomas Malik + * This matmul was contributed by Thomas Malik * * Perform a 4x4 matrix multiplication (product = a x b). * Input: a, b - matrices to multiply * Output: product - product of a and b * WARNING: (product != b) assumed - * NOTE: (product == a) allowed + * NOTE: (product == a) allowed * * KW: 4*16 = 64 muls */ @@ -94,7 +94,7 @@ static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) /* Multiply two matrices known to occupy only the top three rows, such - * as typical model matrices, and ortho matrices. + * as typical model matrices, and ortho matrices. */ static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) { @@ -127,8 +127,8 @@ static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) matmul34( mat->m, mat->m, m ); - else - matmul4( mat->m, mat->m, m ); + else + matmul4( mat->m, mat->m, m ); } @@ -140,7 +140,7 @@ static void print_matrix_floats( const GLfloat m[16] ) } } -void +void _math_matrix_print( const GLmatrix *m ) { fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); @@ -176,31 +176,31 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) GLfloat wtmp[4][8]; GLfloat m0, m1, m2, m3, s; GLfloat *r0, *r1, *r2, *r3; - + r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; - + r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, - + r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, - + r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, - + r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; - + /* choose pivot - or die */ if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); if (0.0 == r0[0]) return GL_FALSE; - + /* eliminate first variable */ m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; @@ -214,12 +214,12 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } - + /* choose pivot - or die */ if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); if (0.0 == r1[1]) return GL_FALSE; - + /* eliminate second variable */ m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; @@ -228,23 +228,23 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } - + /* choose pivot - or die */ if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); if (0.0 == r2[2]) return GL_FALSE; - + /* eliminate third variable */ m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; - + /* last check */ if (0.0 == r3[3]) return GL_FALSE; - + s = 1.0/r3[3]; /* now back substitute row 3 */ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; - + m2 = r2[3]; /* now back substitute row 2 */ s = 1.0/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), @@ -255,7 +255,7 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; - + m1 = r1[2]; /* now back substitute row 1 */ s = 1.0/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), @@ -263,12 +263,12 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; - + m0 = r0[1]; /* now back substitute row 0 */ s = 1.0/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); - + MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], @@ -276,15 +276,15 @@ static GLboolean invert_matrix_general( GLmatrix *mat ) MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], - MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; - + MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; + return GL_TRUE; } #undef SWAP_ROWS /* Adapted from graphics gems II. - */ + */ static GLboolean invert_matrix_3d_general( GLmatrix *mat ) { const GLfloat *in = mat->m; @@ -293,7 +293,7 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat ) GLfloat det; /* Calculate the determinant of upper left 3x3 submatrix and - * determine if the matrix is singular. + * determine if the matrix is singular. */ pos = neg = 0.0; t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); @@ -316,9 +316,9 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat ) det = pos + neg; - if (det*det < 1e-25) + if (det*det < 1e-25) return GL_FALSE; - + det = 1.0 / det; MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); @@ -340,7 +340,7 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat ) MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + MAT(in,1,3) * MAT(out,2,1) + MAT(in,2,3) * MAT(out,2,2) ); - + return GL_TRUE; } @@ -353,13 +353,13 @@ static GLboolean invert_matrix_3d( GLmatrix *mat ) if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { return invert_matrix_3d_general( mat ); } - + if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + MAT(in,0,1) * MAT(in,0,1) + MAT(in,0,2) * MAT(in,0,2)); - if (scale == 0.0) + if (scale == 0.0) return GL_FALSE; scale = 1.0 / scale; @@ -395,7 +395,7 @@ static GLboolean invert_matrix_3d( GLmatrix *mat ) MAT(out,2,3) = - MAT(in,2,3); return GL_TRUE; } - + if (mat->flags & MAT_FLAG_TRANSLATION) { /* Do the translation part */ MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + @@ -411,11 +411,11 @@ static GLboolean invert_matrix_3d( GLmatrix *mat ) else { MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; } - + return GL_TRUE; } - + static GLboolean invert_matrix_identity( GLmatrix *mat ) { @@ -429,9 +429,9 @@ static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) const GLfloat *in = mat->m; GLfloat *out = mat->inv; - if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) + if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) return GL_FALSE; - + MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); MAT(out,0,0) = 1.0 / MAT(in,0,0); MAT(out,1,1) = 1.0 / MAT(in,1,1); @@ -452,9 +452,9 @@ static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) const GLfloat *in = mat->m; GLfloat *out = mat->inv; - if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) + if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) return GL_FALSE; - + MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); MAT(out,0,0) = 1.0 / MAT(in,0,0); MAT(out,1,1) = 1.0 / MAT(in,1,1); @@ -517,7 +517,7 @@ static GLboolean matrix_invert( GLmatrix *mat ) mat->flags |= MAT_FLAG_SINGULAR; MEMCPY( mat->inv, Identity, sizeof(Identity) ); return GL_FALSE; - } + } } @@ -529,15 +529,15 @@ static GLboolean matrix_invert( GLmatrix *mat ) * Generate a 4x4 transformation matrix from glRotate parameters, and * postmultiply the input matrix by it. */ -void -_math_matrix_rotate( GLmatrix *mat, +void +_math_matrix_rotate( GLmatrix *mat, GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { /* This function contributed by Erich Boleyn ([email protected]) */ GLfloat mag, s, c; GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; GLfloat m[16]; - + s = sin( angle * DEG2RAD ); c = cos( angle * DEG2RAD ); @@ -646,9 +646,9 @@ _math_matrix_rotate( GLmatrix *mat, void -_math_matrix_frustum( GLmatrix *mat, +_math_matrix_frustum( GLmatrix *mat, GLfloat left, GLfloat right, - GLfloat bottom, GLfloat top, + GLfloat bottom, GLfloat top, GLfloat nearval, GLfloat farval ) { GLfloat x, y, a, b, c, d; @@ -672,9 +672,9 @@ _math_matrix_frustum( GLmatrix *mat, } void -_math_matrix_ortho( GLmatrix *mat, +_math_matrix_ortho( GLmatrix *mat, GLfloat left, GLfloat right, - GLfloat bottom, GLfloat top, + GLfloat bottom, GLfloat top, GLfloat nearval, GLfloat farval ) { GLfloat x, y, z; @@ -738,7 +738,7 @@ _math_matrix_ortho( GLmatrix *mat, ZERO(3) | ZERO(7) | ZERO(15) ) #define SQ(x) ((x)*(x)) - + /* Determine type and flags from scratch. This is expensive enough to * only want to do it once. */ @@ -751,7 +751,7 @@ static void analyse_from_scratch( GLmatrix *mat ) for (i = 0 ; i < 16 ; i++) { if (m[i] == 0.0) mask |= (1<<i); } - + if (m[0] == 1.0F) mask |= (1<<16); if (m[5] == 1.0F) mask |= (1<<21); if (m[10] == 1.0F) mask |= (1<<26); @@ -759,10 +759,10 @@ static void analyse_from_scratch( GLmatrix *mat ) mat->flags &= ~MAT_FLAGS_GEOMETRY; - /* Check for translation - no-one really cares + /* Check for translation - no-one really cares */ - if ((mask & MASK_NO_TRX) != MASK_NO_TRX) - mat->flags |= MAT_FLAG_TRANSLATION; + if ((mask & MASK_NO_TRX) != MASK_NO_TRX) + mat->flags |= MAT_FLAG_TRANSLATION; /* Do the real work */ @@ -771,7 +771,7 @@ static void analyse_from_scratch( GLmatrix *mat ) } else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { mat->type = MATRIX_2D_NO_ROT; - + if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) mat->flags = MAT_FLAG_GENERAL_SCALE; } @@ -784,7 +784,7 @@ static void analyse_from_scratch( GLmatrix *mat ) /* Check for scale */ if (SQ(mm-1) > SQ(1e-6) || - SQ(m4m4-1) > SQ(1e-6)) + SQ(m4m4-1) > SQ(1e-6)) mat->flags |= MAT_FLAG_GENERAL_SCALE; /* Check for rotation */ @@ -798,7 +798,7 @@ static void analyse_from_scratch( GLmatrix *mat ) mat->type = MATRIX_3D_NO_ROT; /* Check for scale */ - if (SQ(m[0]-m[5]) < SQ(1e-6) && + if (SQ(m[0]-m[5]) < SQ(1e-6) && SQ(m[0]-m[10]) < SQ(1e-6)) { if (SQ(m[0]-1.0) > SQ(1e-6)) { mat->flags |= MAT_FLAG_UNIFORM_SCALE; @@ -831,7 +831,7 @@ static void analyse_from_scratch( GLmatrix *mat ) if (SQ(d1) < SQ(1e-6)) { CROSS3( cp, m, m+4 ); SUB_3V( cp, cp, (m+8) ); - if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) + if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) mat->flags |= MAT_FLAG_ROTATION; else mat->flags |= MAT_FLAG_GENERAL_3D; @@ -852,7 +852,7 @@ static void analyse_from_scratch( GLmatrix *mat ) /* Analyse a matrix given that its flags are accurate - this is the - * more common operation, hopefully. + * more common operation, hopefully. */ static void analyse_from_flags( GLmatrix *mat ) { @@ -872,7 +872,7 @@ static void analyse_from_flags( GLmatrix *mat ) } } else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { - if ( m[ 8]==0.0F + if ( m[ 8]==0.0F && m[ 9]==0.0F && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { mat->type = MATRIX_2D; @@ -893,11 +893,11 @@ static void analyse_from_flags( GLmatrix *mat ) } -void -_math_matrix_analyse( GLmatrix *mat ) +void +_math_matrix_analyse( GLmatrix *mat ) { if (mat->flags & MAT_DIRTY_TYPE) { - if (mat->flags & MAT_DIRTY_FLAGS) + if (mat->flags & MAT_DIRTY_FLAGS) analyse_from_scratch( mat ); else analyse_from_flags( mat ); @@ -913,7 +913,7 @@ _math_matrix_analyse( GLmatrix *mat ) } -void +void _math_matrix_copy( GLmatrix *to, const GLmatrix *from ) { MEMCPY( to->m, from->m, sizeof(Identity) ); @@ -931,7 +931,7 @@ _math_matrix_copy( GLmatrix *to, const GLmatrix *from ) } -void +void _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) { GLfloat *m = mat->m; @@ -945,12 +945,12 @@ _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) else mat->flags |= MAT_FLAG_GENERAL_SCALE; - mat->flags |= (MAT_DIRTY_TYPE | + mat->flags |= (MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); } -void +void _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) { GLfloat *m = mat->m; @@ -959,20 +959,20 @@ _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; - mat->flags |= (MAT_FLAG_TRANSLATION | - MAT_DIRTY_TYPE | + mat->flags |= (MAT_FLAG_TRANSLATION | + MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); } -void +void _math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) { MEMCPY( mat->m, m, 16*sizeof(GLfloat) ); mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); } -void +void _math_matrix_ctr( GLmatrix *m ) { if ( m->m == 0 ) { @@ -984,7 +984,7 @@ _math_matrix_ctr( GLmatrix *m ) m->flags = 0; } -void +void _math_matrix_dtr( GLmatrix *m ) { if ( m->m != 0 ) { @@ -998,7 +998,7 @@ _math_matrix_dtr( GLmatrix *m ) } -void +void _math_matrix_alloc_inv( GLmatrix *m ) { if ( m->inv == 0 ) { @@ -1008,32 +1008,32 @@ _math_matrix_alloc_inv( GLmatrix *m ) } -void +void _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) { dest->flags = (a->flags | b->flags | - MAT_DIRTY_TYPE | + MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) matmul34( dest->m, a->m, b->m ); - else + else matmul4( dest->m, a->m, b->m ); } -void +void _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) { dest->flags |= (MAT_FLAG_GENERAL | - MAT_DIRTY_TYPE | + MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); - matmul4( dest->m, dest->m, m ); + matmul4( dest->m, dest->m, m ); } -void +void _math_matrix_set_identity( GLmatrix *mat ) { MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) ); @@ -1049,7 +1049,7 @@ _math_matrix_set_identity( GLmatrix *mat ) -void +void _math_transposef( GLfloat to[16], const GLfloat from[16] ) { to[0] = from[0]; @@ -1071,7 +1071,7 @@ _math_transposef( GLfloat to[16], const GLfloat from[16] ) } -void +void _math_transposed( GLdouble to[16], const GLdouble from[16] ) { to[0] = from[0]; @@ -1092,7 +1092,7 @@ _math_transposed( GLdouble to[16], const GLdouble from[16] ) to[15] = from[15]; } -void +void _math_transposefd( GLfloat to[16], const GLdouble from[16] ) { to[0] = from[0]; |