summaryrefslogtreecommitdiffstats
path: root/src/mesa/math/m_matrix.c
diff options
context:
space:
mode:
authorKeith Whitwell <[email protected]>2003-07-17 13:43:59 +0000
committerKeith Whitwell <[email protected]>2003-07-17 13:43:59 +0000
commit6dc85575000127630489b407c50a4b3ea87c9acb (patch)
treec79b24b7059577caf8201eeb7a42a6890721f52b /src/mesa/math/m_matrix.c
parent44c699949ac09459771304a8aec8f2fc622057fb (diff)
Merge Jose's documentation and core Mesa changes from embedded branch
Diffstat (limited to 'src/mesa/math/m_matrix.c')
-rw-r--r--src/mesa/math/m_matrix.c561
1 files changed, 431 insertions, 130 deletions
diff --git a/src/mesa/math/m_matrix.c b/src/mesa/math/m_matrix.c
index e204cc7bbc6..e81be8a7e00 100644
--- a/src/mesa/math/m_matrix.c
+++ b/src/mesa/math/m_matrix.c
@@ -1,3 +1,12 @@
+/**
+ * \file m_matrix.c
+ * Matrix operations.
+ *
+ * \note
+ * -# 4x4 transformation matrices are stored in memory in column major order.
+ * -# Points/vertices are to be thought of as column vectors.
+ * -# Transformation of a point p by a matrix M is: p' = M * p
+ */
/*
* Mesa 3-D graphics library
@@ -24,15 +33,6 @@
*/
-/*
- * Matrix operations
- *
- * NOTES:
- * 1. 4x4 transformation matrices are stored in memory in column major order.
- * 2. Points/vertices are to be thought of as column vectors.
- * 3. Transformation of a point p by a matrix M is: p' = M * p
- */
-
#include "glheader.h"
#include "imports.h"
#include "macros.h"
@@ -41,6 +41,9 @@
#include "m_matrix.h"
+/**
+ * Names of the corresponding GLmatrixtype values.
+ */
static const char *types[] = {
"MATRIX_GENERAL",
"MATRIX_IDENTITY",
@@ -52,6 +55,9 @@ static const char *types[] = {
};
+/**
+ * Identity matrix.
+ */
static GLfloat Identity[16] = {
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
@@ -61,22 +67,27 @@ static GLfloat Identity[16] = {
+/**********************************************************************/
+/** \name Matrix multiplication */
+/*@{*/
-/*
- * This matmul was contributed by Thomas Malik
- *
- * Perform a 4x4 matrix multiplication (product = a x b).
- * Input: a, b - matrices to multiply
- * Output: product - product of a and b
- * WARNING: (product != b) assumed
- * NOTE: (product == a) allowed
- *
- * KW: 4*16 = 64 muls
- */
#define A(row,col) a[(col<<2)+row]
#define B(row,col) b[(col<<2)+row]
#define P(row,col) product[(col<<2)+row]
+/**
+ * Perform a full 4x4 matrix multiplication.
+ *
+ * \param a matrix.
+ * \param b matrix.
+ * \param product will receive the product of \p a and \p b.
+ *
+ * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
+ *
+ * \note KW: 4*16 = 64 multiplications
+ *
+ * \author This \c matmul was contributed by Thomas Malik
+ */
static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
{
GLint i;
@@ -89,9 +100,13 @@ static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
}
}
-
-/* Multiply two matrices known to occupy only the top three rows, such
- * as typical model matrices, and ortho matrices.
+/**
+ * Multiply two matrices known to occupy only the top three rows, such
+ * as typical model matrices, and orthogonal matrices.
+ *
+ * \param a matrix.
+ * \param b matrix.
+ * \param product will receive the product of \p a and \p b.
*/
static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
{
@@ -109,14 +124,20 @@ static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
P(3,3) = 1;
}
-
#undef A
#undef B
#undef P
-
-/*
+/**
* Multiply a matrix by an array of floats with known properties.
+ *
+ * \param mat pointer to a GLmatrix structure containing the left multiplication
+ * matrix, and that will receive the product result.
+ * \param m right multiplication matrix array.
+ * \param flags flags of the matrix \p m.
+ *
+ * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
+ * if both matrices are 3D, or matmul4() otherwise.
*/
static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
{
@@ -128,7 +149,63 @@ static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
matmul4( mat->m, mat->m, m );
}
+/**
+ * Matrix multiplication.
+ *
+ * \param dest destination matrix.
+ * \param a left matrix.
+ * \param b right matrix.
+ *
+ * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
+ * if both matrices are 3D, or matmul4() otherwise.
+ */
+void
+_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
+{
+ dest->flags = (a->flags |
+ b->flags |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE);
+ if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
+ matmul34( dest->m, a->m, b->m );
+ else
+ matmul4( dest->m, a->m, b->m );
+}
+
+/**
+ * Matrix multiplication.
+ *
+ * \param dest left and destination matrix.
+ * \param m right matrix array.
+ *
+ * Marks the matrix flags with general flag, and type and inverse dirty flags.
+ * Calls matmul4() for the multiplication.
+ */
+void
+_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
+{
+ dest->flags |= (MAT_FLAG_GENERAL |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE);
+
+ matmul4( dest->m, dest->m, m );
+}
+
+/*@}*/
+
+
+/**********************************************************************/
+/** \name Matrix output */
+/*@{*/
+
+/**
+ * Print a matrix array.
+ *
+ * \param m matrix array.
+ *
+ * Called by _math_matrix_print() to print a matrix or its inverse.
+ */
static void print_matrix_floats( const GLfloat m[16] )
{
int i;
@@ -137,6 +214,11 @@ static void print_matrix_floats( const GLfloat m[16] )
}
}
+/**
+ * Dumps the contents of a GLmatrix structure.
+ *
+ * \param m pointer to the GLmatrix structure.
+ */
void
_math_matrix_print( const GLmatrix *m )
{
@@ -155,16 +237,48 @@ _math_matrix_print( const GLmatrix *m )
}
}
+/*@}*/
+
+
+/**
+ * References an element of 4x4 matrix.
+ *
+ * \param m matrix array.
+ * \param c column of the desired element.
+ * \param r row of the desired element.
+ *
+ * \return value of the desired element.
+ *
+ * Calculate the linear storage index of the element and references it.
+ */
+#define MAT(m,r,c) (m)[(c)*4+(r)]
+/**********************************************************************/
+/** \name Matrix inversion */
+/*@{*/
+/**
+ * Swaps the values of two floating pointer variables.
+ *
+ * Used by invert_matrix_general() to swap the row pointers.
+ */
#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
-#define MAT(m,r,c) (m)[(c)*4+(r)]
-/*
+/**
* Compute inverse of 4x4 transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * \author
* Code contributed by Jacques Leroy [email protected]
- * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
+ *
+ * Calculates the inverse matrix by performing the gaussian matrix reduction
+ * with partial pivoting followed by back/substitution with the loops manually
+ * unrolled.
*/
static GLboolean invert_matrix_general( GLmatrix *mat )
{
@@ -279,8 +393,20 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
}
#undef SWAP_ROWS
-
-/* Adapted from graphics gems II.
+/**
+ * Compute inverse of a general 3d transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * \author Adapted from graphics gems II.
+ *
+ * Calculates the inverse of the upper left by first calculating its
+ * determinant and multiplying it to the symmetric adjust matrix of each
+ * element. Finally deals with the translation part by transforming the
+ * original translation vector using by the calculated submatrix inverse.
*/
static GLboolean invert_matrix_3d_general( GLmatrix *mat )
{
@@ -341,7 +467,19 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat )
return GL_TRUE;
}
-
+/**
+ * Compute inverse of a 3d transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * If the matrix is not an angle preserving matrix then calls
+ * invert_matrix_3d_general for the actual calculation. Otherwise calculates
+ * the inverse matrix analyzing and inverting each of the scaling, rotation and
+ * translation parts.
+ */
static GLboolean invert_matrix_3d( GLmatrix *mat )
{
const GLfloat *in = mat->m;
@@ -412,15 +550,32 @@ static GLboolean invert_matrix_3d( GLmatrix *mat )
return GL_TRUE;
}
-
-
+/**
+ * Compute inverse of an identity transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return always GL_TRUE.
+ *
+ * Simply copies Identity into GLmatrix::inv.
+ */
static GLboolean invert_matrix_identity( GLmatrix *mat )
{
MEMCPY( mat->inv, Identity, sizeof(Identity) );
return GL_TRUE;
}
-
+/**
+ * Compute inverse of a no-rotation 3d transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * Calculates the
+ */
static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
{
const GLfloat *in = mat->m;
@@ -443,7 +598,17 @@ static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
return GL_TRUE;
}
-
+/**
+ * Compute inverse of a no-rotation 2d transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * Calculates the inverse matrix by applying the inverse scaling and
+ * translation to the identity matrix.
+ */
static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
{
const GLfloat *in = mat->m;
@@ -464,7 +629,6 @@ static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
return GL_TRUE;
}
-
#if 0
/* broken */
static GLboolean invert_matrix_perspective( GLmatrix *mat )
@@ -493,10 +657,14 @@ static GLboolean invert_matrix_perspective( GLmatrix *mat )
}
#endif
-
+/**
+ * Matrix inversion function pointer type.
+ */
typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
-
+/**
+ * Table of the matrix inversion functions according to the matrix type.
+ */
static inv_mat_func inv_mat_tab[7] = {
invert_matrix_general,
invert_matrix_identity,
@@ -514,7 +682,18 @@ static inv_mat_func inv_mat_tab[7] = {
invert_matrix_3d
};
-
+/**
+ * Compute inverse of a transformation matrix.
+ *
+ * \param mat pointer to a GLmatrix structure. The matrix inverse will be
+ * stored in the GLmatrix::inv attribute.
+ *
+ * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
+ *
+ * Calls the matrix inversion function in inv_mat_tab corresponding to the
+ * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
+ * and copies the identity matrix into GLmatrix::inv.
+ */
static GLboolean matrix_invert( GLmatrix *mat )
{
if (inv_mat_tab[mat->type](mat)) {
@@ -527,16 +706,20 @@ static GLboolean matrix_invert( GLmatrix *mat )
}
}
+/*@}*/
+/**********************************************************************/
+/** \name Matrix generation */
+/*@{*/
-
-
-/*
+/**
* Generate a 4x4 transformation matrix from glRotate parameters, and
- * postmultiply the input matrix by it.
- * This function contributed by Erich Boleyn ([email protected]).
- * Optimizatios contributed by Rudolf Opalla ([email protected]).
+ * post-multiply the input matrix by it.
+ *
+ * \author
+ * This function was contributed by Erich Boleyn ([email protected]).
+ * Optimizations contributed by Rudolf Opalla ([email protected]).
*/
void
_math_matrix_rotate( GLmatrix *mat,
@@ -708,8 +891,20 @@ _math_matrix_rotate( GLmatrix *mat,
matrix_multf( mat, m, MAT_FLAG_ROTATION );
}
-
-
+/**
+ * Apply a perspective projection matrix.
+ *
+ * \param mat matrix to apply the projection.
+ * \param left left clipping plane coordinate.
+ * \param right right clipping plane coordinate.
+ * \param bottom bottom clipping plane coordinate.
+ * \param top top clipping plane coordinate.
+ * \param nearval distance to the near clipping plane.
+ * \param farval distance to the far clipping plane.
+ *
+ * Creates the projection matrix and multiplies it with \p mat, marking the
+ * MAT_FLAG_PERSPECTIVE flag.
+ */
void
_math_matrix_frustum( GLmatrix *mat,
GLfloat left, GLfloat right,
@@ -736,6 +931,20 @@ _math_matrix_frustum( GLmatrix *mat,
matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
}
+/**
+ * Apply an orthographic projection matrix.
+ *
+ * \param mat matrix to apply the projection.
+ * \param left left clipping plane coordinate.
+ * \param right right clipping plane coordinate.
+ * \param bottom bottom clipping plane coordinate.
+ * \param top top clipping plane coordinate.
+ * \param nearval distance to the near clipping plane.
+ * \param farval distance to the far clipping plane.
+ *
+ * Creates the projection matrix and multiplies it with \p mat, marking the
+ * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
+ */
void
_math_matrix_ortho( GLmatrix *mat,
GLfloat left, GLfloat right,
@@ -763,6 +972,91 @@ _math_matrix_ortho( GLmatrix *mat,
matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
}
+/**
+ * Multiply a matrix with a general scaling matrix.
+ *
+ * \param mat matrix.
+ * \param x x axis scale factor.
+ * \param y y axis scale factor.
+ * \param z z axis scale factor.
+ *
+ * Multiplies in-place the elements of \p mat by the scale factors. Checks if
+ * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
+ * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
+ * MAT_DIRTY_INVERSE dirty flags.
+ */
+void
+_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
+{
+ GLfloat *m = mat->m;
+ m[0] *= x; m[4] *= y; m[8] *= z;
+ m[1] *= x; m[5] *= y; m[9] *= z;
+ m[2] *= x; m[6] *= y; m[10] *= z;
+ m[3] *= x; m[7] *= y; m[11] *= z;
+
+ if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
+ mat->flags |= MAT_FLAG_UNIFORM_SCALE;
+ else
+ mat->flags |= MAT_FLAG_GENERAL_SCALE;
+
+ mat->flags |= (MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE);
+}
+
+/**
+ * Multiply a matrix with a translation matrix.
+ *
+ * \param mat matrix.
+ * \param x translation vector x coordinate.
+ * \param y translation vector y coordinate.
+ * \param z translation vector z coordinate.
+ *
+ * Adds the translation coordinates to the elements of \p mat in-place. Marks
+ * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
+ * dirty flags.
+ */
+void
+_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
+{
+ GLfloat *m = mat->m;
+ m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
+ m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
+ m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
+ m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
+
+ mat->flags |= (MAT_FLAG_TRANSLATION |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE);
+}
+
+/**
+ * Set a matrix to the identity matrix.
+ *
+ * \param mat matrix.
+ *
+ * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
+ * Sets the matrix type to identity, and clear the dirty flags.
+ */
+void
+_math_matrix_set_identity( GLmatrix *mat )
+{
+ MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
+
+ if (mat->inv)
+ MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
+
+ mat->type = MATRIX_IDENTITY;
+ mat->flags &= ~(MAT_DIRTY_FLAGS|
+ MAT_DIRTY_TYPE|
+ MAT_DIRTY_INVERSE);
+}
+
+/*@}*/
+
+
+/**********************************************************************/
+/** \name Matrix analysis */
+/*@{*/
#define ZERO(x) (1<<x)
#define ONE(x) (1<<(x+16))
@@ -804,8 +1098,12 @@ _math_matrix_ortho( GLmatrix *mat,
#define SQ(x) ((x)*(x))
-/* Determine type and flags from scratch. This is expensive enough to
- * only want to do it once.
+/**
+ * Determine type and flags from scratch.
+ *
+ * \param mat matrix.
+ *
+ * This is expensive enough to only want to do it once.
*/
static void analyse_from_scratch( GLmatrix *mat )
{
@@ -915,9 +1213,10 @@ static void analyse_from_scratch( GLmatrix *mat )
}
}
-
-/* Analyse a matrix given that its flags are accurate - this is the
- * more common operation, hopefully.
+/**
+ * Analyze a matrix given that its flags are accurate.
+ *
+ * This is the more common operation, hopefully.
*/
static void analyse_from_flags( GLmatrix *mat )
{
@@ -957,7 +1256,16 @@ static void analyse_from_flags( GLmatrix *mat )
}
}
-
+/**
+ * Analyze and update a matrix.
+ *
+ * \param mat matrix.
+ *
+ * If the matrix type is dirty then calls either analyse_from_scratch() or
+ * analyse_from_flags() to determine its type, according to whether the flags
+ * are dirty or not, respectively. If the matrix has an inverse and it's dirty
+ * then calls matrix_invert(). Finally clears the dirty flags.
+ */
void
_math_matrix_analyse( GLmatrix *mat )
{
@@ -977,7 +1285,21 @@ _math_matrix_analyse( GLmatrix *mat )
MAT_DIRTY_INVERSE);
}
+/*@}*/
+
+/**********************************************************************/
+/** \name Matrix setup */
+/*@{*/
+
+/**
+ * Copy a matrix.
+ *
+ * \param to destination matrix.
+ * \param from source matrix.
+ *
+ * Copies all fields in GLmatrix, creating an inverse array if necessary.
+ */
void
_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
{
@@ -995,41 +1317,15 @@ _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
}
}
-
-void
-_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
-{
- GLfloat *m = mat->m;
- m[0] *= x; m[4] *= y; m[8] *= z;
- m[1] *= x; m[5] *= y; m[9] *= z;
- m[2] *= x; m[6] *= y; m[10] *= z;
- m[3] *= x; m[7] *= y; m[11] *= z;
-
- if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
- mat->flags |= MAT_FLAG_UNIFORM_SCALE;
- else
- mat->flags |= MAT_FLAG_GENERAL_SCALE;
-
- mat->flags |= (MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE);
-}
-
-
-void
-_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
-{
- GLfloat *m = mat->m;
- m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
- m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
- m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
- m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
-
- mat->flags |= (MAT_FLAG_TRANSLATION |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE);
-}
-
-
+/**
+ * Loads a matrix array into GLmatrix.
+ *
+ * \param m matrix array.
+ * \param mat matrix.
+ *
+ * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
+ * flags.
+ */
void
_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
{
@@ -1037,6 +1333,13 @@ _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
}
+/**
+ * Matrix constructor.
+ *
+ * \param m matrix.
+ *
+ * Initialize the GLmatrix fields.
+ */
void
_math_matrix_ctr( GLmatrix *m )
{
@@ -1048,6 +1351,13 @@ _math_matrix_ctr( GLmatrix *m )
m->flags = 0;
}
+/**
+ * Matrix destructor.
+ *
+ * \param m matrix.
+ *
+ * Frees the data in a GLmatrix.
+ */
void
_math_matrix_dtr( GLmatrix *m )
{
@@ -1061,7 +1371,13 @@ _math_matrix_dtr( GLmatrix *m )
}
}
-
+/**
+ * Allocate a matrix inverse.
+ *
+ * \param m matrix.
+ *
+ * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity.
+ */
void
_math_matrix_alloc_inv( GLmatrix *m )
{
@@ -1072,48 +1388,19 @@ _math_matrix_alloc_inv( GLmatrix *m )
}
}
-
-void
-_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
-{
- dest->flags = (a->flags |
- b->flags |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE);
-
- if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
- matmul34( dest->m, a->m, b->m );
- else
- matmul4( dest->m, a->m, b->m );
-}
-
-
-void
-_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
-{
- dest->flags |= (MAT_FLAG_GENERAL |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE);
-
- matmul4( dest->m, dest->m, m );
-}
-
-void
-_math_matrix_set_identity( GLmatrix *mat )
-{
- MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
-
- if (mat->inv)
- MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
-
- mat->type = MATRIX_IDENTITY;
- mat->flags &= ~(MAT_DIRTY_FLAGS|
- MAT_DIRTY_TYPE|
- MAT_DIRTY_INVERSE);
-}
+/*@}*/
+/**********************************************************************/
+/** \name Matrix transpose */
+/*@{*/
+/**
+ * Transpose a GLfloat matrix.
+ *
+ * \param to destination array.
+ * \param from source array.
+ */
void
_math_transposef( GLfloat to[16], const GLfloat from[16] )
{
@@ -1135,7 +1422,12 @@ _math_transposef( GLfloat to[16], const GLfloat from[16] )
to[15] = from[15];
}
-
+/**
+ * Transpose a GLdouble matrix.
+ *
+ * \param to destination array.
+ * \param from source array.
+ */
void
_math_transposed( GLdouble to[16], const GLdouble from[16] )
{
@@ -1157,6 +1449,12 @@ _math_transposed( GLdouble to[16], const GLdouble from[16] )
to[15] = from[15];
}
+/**
+ * Transpose a GLdouble matrix and convert to GLfloat.
+ *
+ * \param to destination array.
+ * \param from source array.
+ */
void
_math_transposefd( GLfloat to[16], const GLdouble from[16] )
{
@@ -1177,3 +1475,6 @@ _math_transposefd( GLfloat to[16], const GLdouble from[16] )
to[14] = (GLfloat) from[11];
to[15] = (GLfloat) from[15];
}
+
+/*@}*/
+