diff options
author | Keith Whitwell <[email protected]> | 2000-12-26 05:09:27 +0000 |
---|---|---|
committer | Keith Whitwell <[email protected]> | 2000-12-26 05:09:27 +0000 |
commit | cab974cf6c2dbfbf5dd5d291e1aae0f8eeb34290 (patch) | |
tree | 45385bd755d8e3876c54b2b0113636f5ceb7976a /src/mesa/math/m_eval.h | |
parent | d1ff1f6798b003a820f5de9fad835ff352f31afe (diff) |
Major rework of tnl module
New array_cache module
Support 8 texture units in core mesa (now support 8 everywhere)
Rework core mesa statechange operations to avoid flushing on many
noop statechanges.
Diffstat (limited to 'src/mesa/math/m_eval.h')
-rw-r--r-- | src/mesa/math/m_eval.h | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/src/mesa/math/m_eval.h b/src/mesa/math/m_eval.h new file mode 100644 index 00000000000..b478b39351e --- /dev/null +++ b/src/mesa/math/m_eval.h @@ -0,0 +1,79 @@ + +#ifndef _M_EVAL_H +#define _M_EVAL_H + +#include "glheader.h" + +void _math_init_eval( void ); + + +/* + * Horner scheme for Bezier curves + * + * Bezier curves can be computed via a Horner scheme. + * Horner is numerically less stable than the de Casteljau + * algorithm, but it is faster. For curves of degree n + * the complexity of Horner is O(n) and de Casteljau is O(n^2). + * Since stability is not important for displaying curve + * points I decided to use the Horner scheme. + * + * A cubic Bezier curve with control points b0, b1, b2, b3 can be + * written as + * + * (([3] [3] ) [3] ) [3] + * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 + * + * [n] + * where s=1-t and the binomial coefficients [i]. These can + * be computed iteratively using the identity: + * + * [n] [n ] [n] + * [i] = (n-i+1)/i * [i-1] and [0] = 1 + */ + + +void +_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, + GLuint dim, GLuint order); + + +/* + * Tensor product Bezier surfaces + * + * Again the Horner scheme is used to compute a point on a + * TP Bezier surface. First a control polygon for a curve + * on the surface in one parameter direction is computed, + * then the point on the curve for the other parameter + * direction is evaluated. + * + * To store the curve control polygon additional storage + * for max(uorder,vorder) points is needed in the + * control net cn. + */ + +void +_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, + GLuint dim, GLuint uorder, GLuint vorder); + + +/* + * The direct de Casteljau algorithm is used when a point on the + * surface and the tangent directions spanning the tangent plane + * should be computed (this is needed to compute normals to the + * surface). In this case the de Casteljau algorithm approach is + * nicer because a point and the partial derivatives can be computed + * at the same time. To get the correct tangent length du and dv + * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. + * Since only the directions are needed, this scaling step is omitted. + * + * De Casteljau needs additional storage for uorder*vorder + * values in the control net cn. + */ + +void +_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, + GLfloat u, GLfloat v, GLuint dim, + GLuint uorder, GLuint vorder); + + +#endif |