diff options
author | Keith Whitwell <[email protected]> | 2000-11-16 21:05:34 +0000 |
---|---|---|
committer | Keith Whitwell <[email protected]> | 2000-11-16 21:05:34 +0000 |
commit | 23caf20169ac38436ee9c13914f1d6aa7cf6bb5e (patch) | |
tree | 21307f7bbcaf9ee1e841d7e7bee130570a7b5b95 /src/mesa/main/matrix.c | |
parent | 179516673211a2350e479d5321840291f339f5dd (diff) |
Move the transform and lighting code to two new directories
math: Provides basic matrix and vector functionality that
might be useful to multiple software t&l
implementations, and is used by core mesa to
manage the Model, Project, etc matrices.
tnl: The real transform & lighting code from core mesa,
including everything from glVertex3f through vertex
buffer handling, transformation, clipping, lighting
and handoff to a driver for rasterization.
The interfaces of these can be further tightened up, but the basic
splitting up of state and code move is done.
Diffstat (limited to 'src/mesa/main/matrix.c')
-rw-r--r-- | src/mesa/main/matrix.c | 1151 |
1 files changed, 50 insertions, 1101 deletions
diff --git a/src/mesa/main/matrix.c b/src/mesa/main/matrix.c index 7cf464e07bf..227f54b73d5 100644 --- a/src/mesa/main/matrix.c +++ b/src/mesa/main/matrix.c @@ -1,4 +1,4 @@ -/* $Id: matrix.c,v 1.25 2000/11/13 20:02:56 keithw Exp $ */ +/* $Id: matrix.c,v 1.26 2000/11/16 21:05:35 keithw Exp $ */ /* * Mesa 3-D graphics library @@ -47,936 +47,9 @@ #include "mem.h" #include "mmath.h" #include "types.h" -#endif - - -static const char *types[] = { - "MATRIX_GENERAL", - "MATRIX_IDENTITY", - "MATRIX_3D_NO_ROT", - "MATRIX_PERSPECTIVE", - "MATRIX_2D", - "MATRIX_2D_NO_ROT", - "MATRIX_3D" -}; - - -static GLfloat Identity[16] = { - 1.0, 0.0, 0.0, 0.0, - 0.0, 1.0, 0.0, 0.0, - 0.0, 0.0, 1.0, 0.0, - 0.0, 0.0, 0.0, 1.0 -}; - - - -static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ); - - -static void print_matrix_floats( const GLfloat m[16] ) -{ - int i; - for (i=0;i<4;i++) { - fprintf(stderr,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); - } -} - -void gl_print_matrix( const GLmatrix *m ) -{ - fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); - print_matrix_floats(m->m); - fprintf(stderr, "Inverse: \n"); - if (m->inv) { - GLfloat prod[16]; - print_matrix_floats(m->inv); - matmul4(prod, m->m, m->inv); - fprintf(stderr, "Mat * Inverse:\n"); - print_matrix_floats(prod); - } - else { - fprintf(stderr, " - not available\n"); - } -} - - - -/* - * This matmul was contributed by Thomas Malik - * - * Perform a 4x4 matrix multiplication (product = a x b). - * Input: a, b - matrices to multiply - * Output: product - product of a and b - * WARNING: (product != b) assumed - * NOTE: (product == a) allowed - * - * KW: 4*16 = 64 muls - */ -#define A(row,col) a[(col<<2)+row] -#define B(row,col) b[(col<<2)+row] -#define P(row,col) product[(col<<2)+row] - -static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) -{ - GLint i; - for (i = 0; i < 4; i++) { - const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); - P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); - P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); - P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); - P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); - } -} - - -/* Multiply two matrices known to occupy only the top three rows, - * such as typical modelling matrices, and ortho matrices. - */ -static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) -{ - GLint i; - for (i = 0; i < 3; i++) { - const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); - P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); - P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); - P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); - P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; - } - P(3,0) = 0; - P(3,1) = 0; - P(3,2) = 0; - P(3,3) = 1; -} - -static void matmul4fd( GLfloat *product, const GLfloat *a, const GLdouble *b ) -{ - GLint i; - for (i = 0; i < 4; i++) { - const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); - P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); - P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); - P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); - P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); - } -} - -#undef A -#undef B -#undef P - - -#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } -#define MAT(m,r,c) (m)[(c)*4+(r)] - -/* - * Compute inverse of 4x4 transformation matrix. - * Code contributed by Jacques Leroy [email protected] - * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) - */ -static GLboolean invert_matrix_general( GLmatrix *mat ) -{ - const GLfloat *m = mat->m; - GLfloat *out = mat->inv; - GLfloat wtmp[4][8]; - GLfloat m0, m1, m2, m3, s; - GLfloat *r0, *r1, *r2, *r3; - - r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; - - r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), - r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), - r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, - - r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), - r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), - r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, - - r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), - r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), - r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, - - r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), - r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), - r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; - - /* choose pivot - or die */ - if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); - if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); - if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); - if (0.0 == r0[0]) return GL_FALSE; - - /* eliminate first variable */ - m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; - s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; - s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; - s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; - s = r0[4]; - if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r0[5]; - if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r0[6]; - if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r0[7]; - if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); - if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); - if (0.0 == r1[1]) return GL_FALSE; - - /* eliminate second variable */ - m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; - r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; - r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; - s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); - if (0.0 == r2[2]) return GL_FALSE; - - /* eliminate third variable */ - m3 = r3[2]/r2[2]; - r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], - r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], - r3[7] -= m3 * r2[7]; - - /* last check */ - if (0.0 == r3[3]) return GL_FALSE; - - s = 1.0/r3[3]; /* now back substitute row 3 */ - r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; - - m2 = r2[3]; /* now back substitute row 2 */ - s = 1.0/r2[2]; - r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), - r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); - m1 = r1[3]; - r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, - r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; - m0 = r0[3]; - r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, - r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; - - m1 = r1[2]; /* now back substitute row 1 */ - s = 1.0/r1[1]; - r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), - r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); - m0 = r0[2]; - r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, - r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; - - m0 = r0[1]; /* now back substitute row 0 */ - s = 1.0/r0[0]; - r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), - r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); - - MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], - MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], - MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], - MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], - MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], - MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], - MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], - MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; - - return GL_TRUE; -} -#undef SWAP_ROWS - - -/* Adapted from graphics gems II. - */ -static GLboolean invert_matrix_3d_general( GLmatrix *mat ) -{ - const GLfloat *in = mat->m; - GLfloat *out = mat->inv; - GLfloat pos, neg, t; - GLfloat det; - - /* Calculate the determinant of upper left 3x3 submatrix and - * determine if the matrix is singular. - */ - pos = neg = 0.0; - t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); - if (t >= 0.0) pos += t; else neg += t; - - t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); - if (t >= 0.0) pos += t; else neg += t; - - t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); - if (t >= 0.0) pos += t; else neg += t; - - det = pos + neg; - - if (det*det < 1e-25) - return GL_FALSE; - - det = 1.0 / det; - MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); - MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); - MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); - MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); - MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); - MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); - MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); - MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); - MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); - - /* Do the translation part */ - MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + - MAT(in,1,3) * MAT(out,0,1) + - MAT(in,2,3) * MAT(out,0,2) ); - MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + - MAT(in,1,3) * MAT(out,1,1) + - MAT(in,2,3) * MAT(out,1,2) ); - MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + - MAT(in,1,3) * MAT(out,2,1) + - MAT(in,2,3) * MAT(out,2,2) ); - - return GL_TRUE; -} - - -static GLboolean invert_matrix_3d( GLmatrix *mat ) -{ - const GLfloat *in = mat->m; - GLfloat *out = mat->inv; - - if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { - return invert_matrix_3d_general( mat ); - } - - if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { - GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + - MAT(in,0,1) * MAT(in,0,1) + - MAT(in,0,2) * MAT(in,0,2)); - - if (scale == 0.0) - return GL_FALSE; - - scale = 1.0 / scale; - - /* Transpose and scale the 3 by 3 upper-left submatrix. */ - MAT(out,0,0) = scale * MAT(in,0,0); - MAT(out,1,0) = scale * MAT(in,0,1); - MAT(out,2,0) = scale * MAT(in,0,2); - MAT(out,0,1) = scale * MAT(in,1,0); - MAT(out,1,1) = scale * MAT(in,1,1); - MAT(out,2,1) = scale * MAT(in,1,2); - MAT(out,0,2) = scale * MAT(in,2,0); - MAT(out,1,2) = scale * MAT(in,2,1); - MAT(out,2,2) = scale * MAT(in,2,2); - } - else if (mat->flags & MAT_FLAG_ROTATION) { - /* Transpose the 3 by 3 upper-left submatrix. */ - MAT(out,0,0) = MAT(in,0,0); - MAT(out,1,0) = MAT(in,0,1); - MAT(out,2,0) = MAT(in,0,2); - MAT(out,0,1) = MAT(in,1,0); - MAT(out,1,1) = MAT(in,1,1); - MAT(out,2,1) = MAT(in,1,2); - MAT(out,0,2) = MAT(in,2,0); - MAT(out,1,2) = MAT(in,2,1); - MAT(out,2,2) = MAT(in,2,2); - } - else { - /* pure translation */ - MEMCPY( out, Identity, sizeof(Identity) ); - MAT(out,0,3) = - MAT(in,0,3); - MAT(out,1,3) = - MAT(in,1,3); - MAT(out,2,3) = - MAT(in,2,3); - return GL_TRUE; - } - - if (mat->flags & MAT_FLAG_TRANSLATION) { - /* Do the translation part */ - MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + - MAT(in,1,3) * MAT(out,0,1) + - MAT(in,2,3) * MAT(out,0,2) ); - MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + - MAT(in,1,3) * MAT(out,1,1) + - MAT(in,2,3) * MAT(out,1,2) ); - MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + - MAT(in,1,3) * MAT(out,2,1) + - MAT(in,2,3) * MAT(out,2,2) ); - } - else { - MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; - } - - return GL_TRUE; -} - - - -static GLboolean invert_matrix_identity( GLmatrix *mat ) -{ - MEMCPY( mat->inv, Identity, sizeof(Identity) ); - return GL_TRUE; -} - - -static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) -{ - const GLfloat *in = mat->m; - GLfloat *out = mat->inv; - - if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) - return GL_FALSE; - - MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); - MAT(out,0,0) = 1.0 / MAT(in,0,0); - MAT(out,1,1) = 1.0 / MAT(in,1,1); - MAT(out,2,2) = 1.0 / MAT(in,2,2); - - if (mat->flags & MAT_FLAG_TRANSLATION) { - MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); - MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); - MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); - } - - return GL_TRUE; -} - - -static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) -{ - const GLfloat *in = mat->m; - GLfloat *out = mat->inv; - - if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) - return GL_FALSE; - - MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); - MAT(out,0,0) = 1.0 / MAT(in,0,0); - MAT(out,1,1) = 1.0 / MAT(in,1,1); - - if (mat->flags & MAT_FLAG_TRANSLATION) { - MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); - MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); - } - - return GL_TRUE; -} - - -static GLboolean invert_matrix_perspective( GLmatrix *mat ) -{ - const GLfloat *in = mat->m; - GLfloat *out = mat->inv; - - if (MAT(in,2,3) == 0) - return GL_FALSE; - - MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); - - MAT(out,0,0) = 1.0 / MAT(in,0,0); - MAT(out,1,1) = 1.0 / MAT(in,1,1); - - MAT(out,0,3) = MAT(in,0,2); - MAT(out,1,3) = MAT(in,1,2); - - MAT(out,2,2) = 0; - MAT(out,2,3) = -1; - - MAT(out,3,2) = 1.0 / MAT(in,2,3); - MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); - - return GL_TRUE; -} - - -typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); - - -static inv_mat_func inv_mat_tab[7] = { - invert_matrix_general, - invert_matrix_identity, - invert_matrix_3d_no_rot, - invert_matrix_perspective, - invert_matrix_3d, /* lazy! */ - invert_matrix_2d_no_rot, - invert_matrix_3d -}; - - -static GLboolean matrix_invert( GLmatrix *mat ) -{ - if (inv_mat_tab[mat->type](mat)) { - mat->flags &= ~MAT_FLAG_SINGULAR; - return GL_TRUE; - } else { - mat->flags |= MAT_FLAG_SINGULAR; - MEMCPY( mat->inv, Identity, sizeof(Identity) ); - return GL_FALSE; - } -} - - - -void gl_matrix_transposef( GLfloat to[16], const GLfloat from[16] ) -{ - to[0] = from[0]; - to[1] = from[4]; - to[2] = from[8]; - to[3] = from[12]; - to[4] = from[1]; - to[5] = from[5]; - to[6] = from[9]; - to[7] = from[13]; - to[8] = from[2]; - to[9] = from[6]; - to[10] = from[10]; - to[11] = from[14]; - to[12] = from[3]; - to[13] = from[7]; - to[14] = from[11]; - to[15] = from[15]; -} - - - -void gl_matrix_transposed( GLdouble to[16], const GLdouble from[16] ) -{ - to[0] = from[0]; - to[1] = from[4]; - to[2] = from[8]; - to[3] = from[12]; - to[4] = from[1]; - to[5] = from[5]; - to[6] = from[9]; - to[7] = from[13]; - to[8] = from[2]; - to[9] = from[6]; - to[10] = from[10]; - to[11] = from[14]; - to[12] = from[3]; - to[13] = from[7]; - to[14] = from[11]; - to[15] = from[15]; -} - - - -/* - * Generate a 4x4 transformation matrix from glRotate parameters. - */ -void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z, - GLfloat m[] ) -{ - /* This function contributed by Erich Boleyn ([email protected]) */ - GLfloat mag, s, c; - GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; - - s = sin( angle * DEG2RAD ); - c = cos( angle * DEG2RAD ); - - mag = GL_SQRT( x*x + y*y + z*z ); - - if (mag <= 1.0e-4) { - /* generate an identity matrix and return */ - MEMCPY(m, Identity, sizeof(GLfloat)*16); - return; - } - - x /= mag; - y /= mag; - z /= mag; - -#define M(row,col) m[col*4+row] - - /* - * Arbitrary axis rotation matrix. - * - * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied - * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation - * (which is about the X-axis), and the two composite transforms - * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary - * from the arbitrary axis to the X-axis then back. They are - * all elementary rotations. - * - * Rz' is a rotation about the Z-axis, to bring the axis vector - * into the x-z plane. Then Ry' is applied, rotating about the - * Y-axis to bring the axis vector parallel with the X-axis. The - * rotation about the X-axis is then performed. Ry and Rz are - * simply the respective inverse transforms to bring the arbitrary - * axis back to it's original orientation. The first transforms - * Rz' and Ry' are considered inverses, since the data from the - * arbitrary axis gives you info on how to get to it, not how - * to get away from it, and an inverse must be applied. - * - * The basic calculation used is to recognize that the arbitrary - * axis vector (x, y, z), since it is of unit length, actually - * represents the sines and cosines of the angles to rotate the - * X-axis to the same orientation, with theta being the angle about - * Z and phi the angle about Y (in the order described above) - * as follows: - * - * cos ( theta ) = x / sqrt ( 1 - z^2 ) - * sin ( theta ) = y / sqrt ( 1 - z^2 ) - * - * cos ( phi ) = sqrt ( 1 - z^2 ) - * sin ( phi ) = z - * - * Note that cos ( phi ) can further be inserted to the above - * formulas: - * - * cos ( theta ) = x / cos ( phi ) - * sin ( theta ) = y / sin ( phi ) - * - * ...etc. Because of those relations and the standard trigonometric - * relations, it is pssible to reduce the transforms down to what - * is used below. It may be that any primary axis chosen will give the - * same results (modulo a sign convention) using thie method. - * - * Particularly nice is to notice that all divisions that might - * have caused trouble when parallel to certain planes or - * axis go away with care paid to reducing the expressions. - * After checking, it does perform correctly under all cases, since - * in all the cases of division where the denominator would have - * been zero, the numerator would have been zero as well, giving - * the expected result. - */ - - xx = x * x; - yy = y * y; - zz = z * z; - xy = x * y; - yz = y * z; - zx = z * x; - xs = x * s; - ys = y * s; - zs = z * s; - one_c = 1.0F - c; - - M(0,0) = (one_c * xx) + c; - M(0,1) = (one_c * xy) - zs; - M(0,2) = (one_c * zx) + ys; - M(0,3) = 0.0F; - - M(1,0) = (one_c * xy) + zs; - M(1,1) = (one_c * yy) + c; - M(1,2) = (one_c * yz) - xs; - M(1,3) = 0.0F; - - M(2,0) = (one_c * zx) - ys; - M(2,1) = (one_c * yz) + xs; - M(2,2) = (one_c * zz) + c; - M(2,3) = 0.0F; - - M(3,0) = 0.0F; - M(3,1) = 0.0F; - M(3,2) = 0.0F; - M(3,3) = 1.0F; - -#undef M -} - -#define ZERO(x) (1<<x) -#define ONE(x) (1<<(x+16)) - -#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) -#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) - -#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ - ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ - ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ - ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) - -#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ - ZERO(1) | ZERO(9) | \ - ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ - ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) - -#define MASK_2D ( ZERO(8) | \ - ZERO(9) | \ - ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ - ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) - - -#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ - ZERO(1) | ZERO(9) | \ - ZERO(2) | ZERO(6) | \ - ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) - -#define MASK_3D ( \ - \ - \ - ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) - - -#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ - ZERO(1) | ZERO(13) |\ - ZERO(2) | ZERO(6) | \ - ZERO(3) | ZERO(7) | ZERO(15) ) - -#define SQ(x) ((x)*(x)) - -/* Determine type and flags from scratch. This is expensive enough to - * only want to do it once. - */ -static void analyze_from_scratch( GLmatrix *mat ) -{ - const GLfloat *m = mat->m; - GLuint mask = 0; - GLuint i; - - for (i = 0 ; i < 16 ; i++) { - if (m[i] == 0.0) mask |= (1<<i); - } - - if (m[0] == 1.0F) mask |= (1<<16); - if (m[5] == 1.0F) mask |= (1<<21); - if (m[10] == 1.0F) mask |= (1<<26); - if (m[15] == 1.0F) mask |= (1<<31); - - mat->flags &= ~MAT_FLAGS_GEOMETRY; - - /* Check for translation - no-one really cares - */ - if ((mask & MASK_NO_TRX) != MASK_NO_TRX) - mat->flags |= MAT_FLAG_TRANSLATION; - - /* Do the real work - */ - if (mask == MASK_IDENTITY) { - mat->type = MATRIX_IDENTITY; - } - else if ((mask & MASK_2D_NO_ROT) == MASK_2D_NO_ROT) { - mat->type = MATRIX_2D_NO_ROT; - - if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) - mat->flags = MAT_FLAG_GENERAL_SCALE; - } - else if ((mask & MASK_2D) == MASK_2D) { - GLfloat mm = DOT2(m, m); - GLfloat m4m4 = DOT2(m+4,m+4); - GLfloat mm4 = DOT2(m,m+4); - - mat->type = MATRIX_2D; - - /* Check for scale */ - if (SQ(mm-1) > SQ(1e-6) || - SQ(m4m4-1) > SQ(1e-6)) - mat->flags |= MAT_FLAG_GENERAL_SCALE; - - /* Check for rotation */ - if (SQ(mm4) > SQ(1e-6)) - mat->flags |= MAT_FLAG_GENERAL_3D; - else - mat->flags |= MAT_FLAG_ROTATION; - - } - else if ((mask & MASK_3D_NO_ROT) == MASK_3D_NO_ROT) { - mat->type = MATRIX_3D_NO_ROT; - - /* Check for scale */ - if (SQ(m[0]-m[5]) < SQ(1e-6) && - SQ(m[0]-m[10]) < SQ(1e-6)) { - if (SQ(m[0]-1.0) > SQ(1e-6)) { - mat->flags |= MAT_FLAG_UNIFORM_SCALE; - } - } - else { - mat->flags |= MAT_FLAG_GENERAL_SCALE; - } - } - else if ((mask & MASK_3D) == MASK_3D) { - GLfloat c1 = DOT3(m,m); - GLfloat c2 = DOT3(m+4,m+4); - GLfloat c3 = DOT3(m+8,m+8); - GLfloat d1 = DOT3(m, m+4); - GLfloat cp[3]; - - mat->type = MATRIX_3D; - - /* Check for scale */ - if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) { - if (SQ(c1-1.0) > SQ(1e-6)) - mat->flags |= MAT_FLAG_UNIFORM_SCALE; - /* else no scale at all */ - } - else { - mat->flags |= MAT_FLAG_GENERAL_SCALE; - } - - /* Check for rotation */ - if (SQ(d1) < SQ(1e-6)) { - CROSS3( cp, m, m+4 ); - SUB_3V( cp, cp, (m+8) ); - if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) - mat->flags |= MAT_FLAG_ROTATION; - else - mat->flags |= MAT_FLAG_GENERAL_3D; - } - else { - mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ - } - } - else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { - mat->type = MATRIX_PERSPECTIVE; - mat->flags |= MAT_FLAG_GENERAL; - } - else { - mat->type = MATRIX_GENERAL; - mat->flags |= MAT_FLAG_GENERAL; - } -} - - -/* Analyse a matrix given that its flags are accurate - this is the - * more common operation, hopefully. - */ -static void analyze_from_flags( GLmatrix *mat ) -{ - const GLfloat *m = mat->m; - - if (TEST_MAT_FLAGS(mat, 0)) { - mat->type = MATRIX_IDENTITY; - } - else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | - MAT_FLAG_UNIFORM_SCALE | - MAT_FLAG_GENERAL_SCALE))) { - if ( m[10]==1.0F && m[14]==0.0F ) { - mat->type = MATRIX_2D_NO_ROT; - } - else { - mat->type = MATRIX_3D_NO_ROT; - } - } - else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { - if ( m[ 8]==0.0F - && m[ 9]==0.0F - && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { - mat->type = MATRIX_2D; - } - else { - mat->type = MATRIX_3D; - } - } - else if ( m[4]==0.0F && m[12]==0.0F - && m[1]==0.0F && m[13]==0.0F - && m[2]==0.0F && m[6]==0.0F - && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { - mat->type = MATRIX_PERSPECTIVE; - } - else { - mat->type = MATRIX_GENERAL; - } -} - - -void gl_matrix_analyze( GLmatrix *mat ) -{ - if (mat->flags & MAT_DIRTY_TYPE) { - if (mat->flags & MAT_DIRTY_FLAGS) - analyze_from_scratch( mat ); - else - analyze_from_flags( mat ); - } - - if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { - matrix_invert( mat ); - } - - mat->flags &= ~(MAT_DIRTY_FLAGS| - MAT_DIRTY_TYPE| - MAT_DIRTY_INVERSE); -} - - -static void matrix_copy( GLmatrix *to, const GLmatrix *from ) -{ - MEMCPY( to->m, from->m, sizeof(Identity) ); - to->flags = from->flags | MAT_DIRTY_DEPENDENTS; - to->type = from->type; - - if (to->inv != 0) { - if (from->inv == 0) { - matrix_invert( to ); - } - else { - MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16); - } - } -} - -/* - * Multiply a matrix by an array of floats with known properties. - */ -static void mat_mul_floats( GLmatrix *mat, const GLfloat *m, GLuint flags ) -{ - mat->flags |= (flags | - MAT_DIRTY_TYPE | - MAT_DIRTY_INVERSE | - MAT_DIRTY_DEPENDENTS); - - if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) - matmul34( mat->m, mat->m, m ); - else - matmul4( mat->m, mat->m, m ); - -} - - -void gl_matrix_ctr( GLmatrix *m ) -{ - if ( m->m == 0 ) { - m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); - } - MEMCPY( m->m, Identity, sizeof(Identity) ); - m->inv = 0; - m->type = MATRIX_IDENTITY; - m->flags = MAT_DIRTY_DEPENDENTS; -} - -void gl_matrix_dtr( GLmatrix *m ) -{ - if ( m->m != 0 ) { - ALIGN_FREE( m->m ); - m->m = 0; - } - if ( m->inv != 0 ) { - ALIGN_FREE( m->inv ); - m->inv = 0; - } -} - - -void gl_matrix_alloc_inv( GLmatrix *m ) -{ - if ( m->inv == 0 ) { - m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); - MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) ); - } -} - - -void gl_matrix_mul( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) -{ - dest->flags = (a->flags | - b->flags | - MAT_DIRTY_TYPE | - MAT_DIRTY_INVERSE | - MAT_DIRTY_DEPENDENTS); - - if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) - matmul34( dest->m, a->m, b->m ); - else - matmul4( dest->m, a->m, b->m ); -} +#include "math/m_matrix.h" +#endif /**********************************************************************/ @@ -1017,45 +90,21 @@ _mesa_Frustum( GLdouble left, GLdouble right, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); - GLfloat x, y, a, b, c, d; - GLfloat m[16]; GLmatrix *mat = 0; GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glFrustrum" ); - if ((nearval<=0.0 || farval<=0.0) || (nearval == farval) || (left == right) || (top == bottom)) { - gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" ); + if (nearval <= 0.0 || + farval <= 0.0 || + nearval == farval || + left == right || + top == bottom) + { + gl_error( ctx, GL_INVALID_VALUE, "glFrustum" ); return; } - - x = (2.0*nearval) / (right-left); - y = (2.0*nearval) / (top-bottom); - a = (right+left) / (right-left); - b = (top+bottom) / (top-bottom); - c = -(farval+nearval) / ( farval-nearval); - d = -(2.0*farval*nearval) / (farval-nearval); /* error? */ - -#define M(row,col) m[col*4+row] - M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; - M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; - M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; - M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; -#undef M - - mat_mul_floats( mat, m, MAT_FLAG_PERSPECTIVE ); - - if (ctx->Transform.MatrixMode == GL_PROJECTION) { - /* Need to keep a stack of near/far values in case the user push/pops - * the projection matrix stack so that we can call Driver.NearFar() - * after a pop. - */ - ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval; - ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval; - - if (ctx->Driver.NearFar) { - (*ctx->Driver.NearFar)( ctx, nearval, farval ); - } - } + + _math_matrix_frustrum( mat, left, right, bottom, top, nearval, farval ); } @@ -1065,38 +114,19 @@ _mesa_Ortho( GLdouble left, GLdouble right, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); - GLfloat x, y, z; - GLfloat tx, ty, tz; - GLfloat m[16]; GLmatrix *mat = 0; GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glOrtho" ); - if ((left == right) || (bottom == top) || (nearval == farval)) { - gl_error( ctx, GL_INVALID_VALUE, - "gl_Ortho((l = r) or (b = top) or (n=f)" ); + if (left == right || + bottom == top || + nearval == farval) + { + gl_error( ctx, GL_INVALID_VALUE, "gl_Ortho" ); return; } - x = 2.0 / (right-left); - y = 2.0 / (top-bottom); - z = -2.0 / (farval-nearval); - tx = -(right+left) / (right-left); - ty = -(top+bottom) / (top-bottom); - tz = -(farval+nearval) / (farval-nearval); - -#define M(row,col) m[col*4+row] - M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx; - M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty; - M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz; - M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F; -#undef M - - mat_mul_floats( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); - - if (ctx->Driver.NearFar) { - (*ctx->Driver.NearFar)( ctx, nearval, farval ); - } + _math_matrix_ortho( mat, left, right, bottom, top, nearval, farval ); } @@ -1135,7 +165,7 @@ _mesa_PushMatrix( void ) gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix"); return; } - matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++], + _math_matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++], &ctx->ModelView ); break; case GL_PROJECTION: @@ -1143,14 +173,8 @@ _mesa_PushMatrix( void ) gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix"); return; } - matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++], + _math_matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++], &ctx->ProjectionMatrix ); - - /* Save near and far projection values */ - ctx->NearFarStack[ctx->ProjectionStackDepth][0] - = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0]; - ctx->NearFarStack[ctx->ProjectionStackDepth][1] - = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1]; break; case GL_TEXTURE: { @@ -1159,7 +183,7 @@ _mesa_PushMatrix( void ) gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix"); return; } - matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++], + _math_matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++], &ctx->TextureMatrix[t] ); } break; @@ -1168,7 +192,7 @@ _mesa_PushMatrix( void ) gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix"); return; } - matrix_copy( &ctx->ColorStack[ctx->ColorStackDepth++], + _math_matrix_copy( &ctx->ColorStack[ctx->ColorStackDepth++], &ctx->ColorMatrix ); break; default: @@ -1194,8 +218,8 @@ _mesa_PopMatrix( void ) gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix"); return; } - matrix_copy( &ctx->ModelView, - &ctx->ModelViewStack[--ctx->ModelViewStackDepth] ); + _math_matrix_copy( &ctx->ModelView, + &ctx->ModelViewStack[--ctx->ModelViewStackDepth] ); ctx->NewState |= _NEW_MODELVIEW; break; case GL_PROJECTION: @@ -1204,18 +228,9 @@ _mesa_PopMatrix( void ) return; } - matrix_copy( &ctx->ProjectionMatrix, - &ctx->ProjectionStack[--ctx->ProjectionStackDepth] ); + _math_matrix_copy( &ctx->ProjectionMatrix, + &ctx->ProjectionStack[--ctx->ProjectionStackDepth] ); ctx->NewState |= _NEW_PROJECTION; - - /* Device driver near/far values */ - { - GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0]; - GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1]; - if (ctx->Driver.NearFar) { - (*ctx->Driver.NearFar)( ctx, nearVal, farVal ); - } - } break; case GL_TEXTURE: { @@ -1224,8 +239,8 @@ _mesa_PopMatrix( void ) gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix"); return; } - matrix_copy(&ctx->TextureMatrix[t], - &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]); + _math_matrix_copy(&ctx->TextureMatrix[t], + &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]); ctx->NewState |= _NEW_TEXTURE_MATRIX; } break; @@ -1234,8 +249,8 @@ _mesa_PopMatrix( void ) gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix"); return; } - matrix_copy(&ctx->ColorMatrix, - &ctx->ColorStack[--ctx->ColorStackDepth]); + _math_matrix_copy(&ctx->ColorMatrix, + &ctx->ColorStack[--ctx->ColorStackDepth]); ctx->NewState |= _NEW_COLOR_MATRIX; break; default: @@ -1251,19 +266,7 @@ _mesa_LoadIdentity( void ) GET_CURRENT_CONTEXT(ctx); GLmatrix *mat = 0; GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadIdentity"); - - MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) ); - - if (mat->inv) - MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) ); - - mat->type = MATRIX_IDENTITY; - - /* Have to set this to dirty to make sure we recalculate the - * combined matrix later. The update_matrix in this case is a - * shortcircuit anyway... - */ - mat->flags = MAT_DIRTY_DEPENDENTS; + _math_matrix_set_identity( mat ); } @@ -1273,38 +276,15 @@ _mesa_LoadMatrixf( const GLfloat *m ) GET_CURRENT_CONTEXT(ctx); GLmatrix *mat = 0; GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadMatrix"); - - MEMCPY( mat->m, m, 16*sizeof(GLfloat) ); - mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER); - - if (ctx->Transform.MatrixMode == GL_PROJECTION) { - -#define M(row,col) m[col*4+row] - GLfloat c = M(2,2); - GLfloat d = M(2,3); -#undef M - GLfloat n = (c == 1.0 ? 0.0 : d / (c - 1.0)); - GLfloat f = (c == -1.0 ? 1.0 : d / (c + 1.0)); - - /* Need to keep a stack of near/far values in case the user - * push/pops the projection matrix stack so that we can call - * Driver.NearFar() after a pop. - */ - ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n; - ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f; - - if (ctx->Driver.NearFar) { - (*ctx->Driver.NearFar)( ctx, n, f ); - } - } + _math_matrix_loadf( mat, m ); } void _mesa_LoadMatrixd( const GLdouble *m ) { - GLfloat f[16]; GLint i; + GLfloat f[16]; for (i = 0; i < 16; i++) f[i] = m[i]; _mesa_LoadMatrixf(f); @@ -1321,8 +301,7 @@ _mesa_MultMatrixf( const GLfloat *m ) GET_CURRENT_CONTEXT(ctx); GLmatrix *mat = 0; GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" ); - matmul4( mat->m, mat->m, m ); - mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER); + _math_matrix_mul_floats( mat, m ); } @@ -1332,11 +311,11 @@ _mesa_MultMatrixf( const GLfloat *m ) void _mesa_MultMatrixd( const GLdouble *m ) { - GET_CURRENT_CONTEXT(ctx); - GLmatrix *mat = 0; - GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" ); - matmul4fd( mat->m, mat->m, m ); - mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER); + GLint i; + GLfloat f[16]; + for (i = 0; i < 16; i++) + f[i] = m[i]; + _mesa_MultMatrixf( f ); } @@ -1349,13 +328,10 @@ void _mesa_Rotatef( GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); - GLfloat m[16]; if (angle != 0.0F) { GLmatrix *mat = 0; GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glRotate" ); - - gl_rotation_matrix( angle, x, y, z, m ); - mat_mul_floats( mat, m, MAT_FLAG_ROTATION ); + _math_matrix_rotate( mat, angle, x, y, z ); } } @@ -1374,23 +350,8 @@ _mesa_Scalef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); GLmatrix *mat = 0; - GLfloat *m; GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glScale"); - - m = mat->m; - m[0] *= x; m[4] *= y; m[8] *= z; - m[1] *= x; m[5] *= y; m[9] *= z; - m[2] *= x; m[6] *= y; m[10] *= z; - m[3] *= x; m[7] *= y; m[11] *= z; - - if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8) - mat->flags |= MAT_FLAG_UNIFORM_SCALE; - else - mat->flags |= MAT_FLAG_GENERAL_SCALE; - - mat->flags |= (MAT_DIRTY_TYPE | - MAT_DIRTY_INVERSE | - MAT_DIRTY_DEPENDENTS); + _math_matrix_scale( mat, x, y, z ); } @@ -1409,18 +370,8 @@ _mesa_Translatef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); GLmatrix *mat = 0; - GLfloat *m; GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glTranslate"); - m = mat->m; - m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; - m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; - m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; - m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; - - mat->flags |= (MAT_FLAG_TRANSLATION | - MAT_DIRTY_TYPE | - MAT_DIRTY_INVERSE | - MAT_DIRTY_DEPENDENTS); + _math_matrix_translate( mat, x, y, z ); } @@ -1431,12 +382,11 @@ _mesa_Translated( GLdouble x, GLdouble y, GLdouble z ) } - void _mesa_LoadTransposeMatrixfARB( const GLfloat *m ) { GLfloat tm[16]; - gl_matrix_transposef(tm, m); + _math_transposef(tm, m); _mesa_LoadMatrixf(tm); } @@ -1444,9 +394,9 @@ _mesa_LoadTransposeMatrixfARB( const GLfloat *m ) void _mesa_LoadTransposeMatrixdARB( const GLdouble *m ) { - GLdouble tm[16]; - gl_matrix_transposed(tm, m); - _mesa_LoadMatrixd(tm); + GLfloat tm[16]; + _math_transposefd(tm, m); + _mesa_LoadMatrixf(tm); } @@ -1454,7 +404,7 @@ void _mesa_MultTransposeMatrixfARB( const GLfloat *m ) { GLfloat tm[16]; - gl_matrix_transposef(tm, m); + _math_transposef(tm, m); _mesa_MultMatrixf(tm); } @@ -1462,9 +412,9 @@ _mesa_MultTransposeMatrixfARB( const GLfloat *m ) void _mesa_MultTransposeMatrixdARB( const GLdouble *m ) { - GLdouble tm[16]; - gl_matrix_transposed(tm, m); - _mesa_MultMatrixd(tm); + GLfloat tm[16]; + _math_transposefd(tm, m); + _mesa_MultMatrixf(tm); } @@ -1518,7 +468,6 @@ gl_Viewport( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height ) ctx->Viewport._WindowMap.m[MAT_TY] = ctx->Viewport._WindowMap.m[MAT_SY] + y; ctx->Viewport._WindowMap.m[MAT_SZ] = 0.5 * ctx->Visual.DepthMaxF; ctx->Viewport._WindowMap.m[MAT_TZ] = 0.5 * ctx->Visual.DepthMaxF; - ctx->Viewport._WindowMap.flags = MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION; ctx->Viewport._WindowMap.type = MATRIX_3D_NO_ROT; ctx->NewState |= _NEW_VIEWPORT; |