summaryrefslogtreecommitdiffstats
path: root/src/mesa/main/matrix.c
diff options
context:
space:
mode:
authorKeith Whitwell <[email protected]>2000-11-16 21:05:34 +0000
committerKeith Whitwell <[email protected]>2000-11-16 21:05:34 +0000
commit23caf20169ac38436ee9c13914f1d6aa7cf6bb5e (patch)
tree21307f7bbcaf9ee1e841d7e7bee130570a7b5b95 /src/mesa/main/matrix.c
parent179516673211a2350e479d5321840291f339f5dd (diff)
Move the transform and lighting code to two new directories
math: Provides basic matrix and vector functionality that might be useful to multiple software t&l implementations, and is used by core mesa to manage the Model, Project, etc matrices. tnl: The real transform & lighting code from core mesa, including everything from glVertex3f through vertex buffer handling, transformation, clipping, lighting and handoff to a driver for rasterization. The interfaces of these can be further tightened up, but the basic splitting up of state and code move is done.
Diffstat (limited to 'src/mesa/main/matrix.c')
-rw-r--r--src/mesa/main/matrix.c1151
1 files changed, 50 insertions, 1101 deletions
diff --git a/src/mesa/main/matrix.c b/src/mesa/main/matrix.c
index 7cf464e07bf..227f54b73d5 100644
--- a/src/mesa/main/matrix.c
+++ b/src/mesa/main/matrix.c
@@ -1,4 +1,4 @@
-/* $Id: matrix.c,v 1.25 2000/11/13 20:02:56 keithw Exp $ */
+/* $Id: matrix.c,v 1.26 2000/11/16 21:05:35 keithw Exp $ */
/*
* Mesa 3-D graphics library
@@ -47,936 +47,9 @@
#include "mem.h"
#include "mmath.h"
#include "types.h"
-#endif
-
-
-static const char *types[] = {
- "MATRIX_GENERAL",
- "MATRIX_IDENTITY",
- "MATRIX_3D_NO_ROT",
- "MATRIX_PERSPECTIVE",
- "MATRIX_2D",
- "MATRIX_2D_NO_ROT",
- "MATRIX_3D"
-};
-
-
-static GLfloat Identity[16] = {
- 1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 1.0, 0.0,
- 0.0, 0.0, 0.0, 1.0
-};
-
-
-
-static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b );
-
-
-static void print_matrix_floats( const GLfloat m[16] )
-{
- int i;
- for (i=0;i<4;i++) {
- fprintf(stderr,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
- }
-}
-
-void gl_print_matrix( const GLmatrix *m )
-{
- fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
- print_matrix_floats(m->m);
- fprintf(stderr, "Inverse: \n");
- if (m->inv) {
- GLfloat prod[16];
- print_matrix_floats(m->inv);
- matmul4(prod, m->m, m->inv);
- fprintf(stderr, "Mat * Inverse:\n");
- print_matrix_floats(prod);
- }
- else {
- fprintf(stderr, " - not available\n");
- }
-}
-
-
-
-/*
- * This matmul was contributed by Thomas Malik
- *
- * Perform a 4x4 matrix multiplication (product = a x b).
- * Input: a, b - matrices to multiply
- * Output: product - product of a and b
- * WARNING: (product != b) assumed
- * NOTE: (product == a) allowed
- *
- * KW: 4*16 = 64 muls
- */
-#define A(row,col) a[(col<<2)+row]
-#define B(row,col) b[(col<<2)+row]
-#define P(row,col) product[(col<<2)+row]
-
-static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
-{
- GLint i;
- for (i = 0; i < 4; i++) {
- const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
- P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
- P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
- P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
- P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
- }
-}
-
-
-/* Multiply two matrices known to occupy only the top three rows,
- * such as typical modelling matrices, and ortho matrices.
- */
-static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
-{
- GLint i;
- for (i = 0; i < 3; i++) {
- const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
- P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
- P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
- P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
- P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
- }
- P(3,0) = 0;
- P(3,1) = 0;
- P(3,2) = 0;
- P(3,3) = 1;
-}
-
-static void matmul4fd( GLfloat *product, const GLfloat *a, const GLdouble *b )
-{
- GLint i;
- for (i = 0; i < 4; i++) {
- const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
- P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
- P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
- P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
- P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
- }
-}
-
-#undef A
-#undef B
-#undef P
-
-
-#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
-#define MAT(m,r,c) (m)[(c)*4+(r)]
-
-/*
- * Compute inverse of 4x4 transformation matrix.
- * Code contributed by Jacques Leroy [email protected]
- * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
- */
-static GLboolean invert_matrix_general( GLmatrix *mat )
-{
- const GLfloat *m = mat->m;
- GLfloat *out = mat->inv;
- GLfloat wtmp[4][8];
- GLfloat m0, m1, m2, m3, s;
- GLfloat *r0, *r1, *r2, *r3;
-
- r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
-
- r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
- r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
- r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
-
- r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
- r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
- r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
-
- r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
- r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
- r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
-
- r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
- r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
- r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
-
- /* choose pivot - or die */
- if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
- if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
- if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
- if (0.0 == r0[0]) return GL_FALSE;
-
- /* eliminate first variable */
- m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
- s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
- s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
- s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
- s = r0[4];
- if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
- s = r0[5];
- if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
- s = r0[6];
- if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
- s = r0[7];
- if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
-
- /* choose pivot - or die */
- if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
- if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
- if (0.0 == r1[1]) return GL_FALSE;
-
- /* eliminate second variable */
- m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
- r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
- r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
- s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
- s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
- s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
- s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
-
- /* choose pivot - or die */
- if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
- if (0.0 == r2[2]) return GL_FALSE;
-
- /* eliminate third variable */
- m3 = r3[2]/r2[2];
- r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
- r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
- r3[7] -= m3 * r2[7];
-
- /* last check */
- if (0.0 == r3[3]) return GL_FALSE;
-
- s = 1.0/r3[3]; /* now back substitute row 3 */
- r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
-
- m2 = r2[3]; /* now back substitute row 2 */
- s = 1.0/r2[2];
- r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
- r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
- m1 = r1[3];
- r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
- r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
- m0 = r0[3];
- r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
- r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
-
- m1 = r1[2]; /* now back substitute row 1 */
- s = 1.0/r1[1];
- r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
- r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
- m0 = r0[2];
- r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
- r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
-
- m0 = r0[1]; /* now back substitute row 0 */
- s = 1.0/r0[0];
- r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
- r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
-
- MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
- MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
- MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
- MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
- MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
- MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
- MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
- MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
-
- return GL_TRUE;
-}
-#undef SWAP_ROWS
-
-
-/* Adapted from graphics gems II.
- */
-static GLboolean invert_matrix_3d_general( GLmatrix *mat )
-{
- const GLfloat *in = mat->m;
- GLfloat *out = mat->inv;
- GLfloat pos, neg, t;
- GLfloat det;
-
- /* Calculate the determinant of upper left 3x3 submatrix and
- * determine if the matrix is singular.
- */
- pos = neg = 0.0;
- t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
- if (t >= 0.0) pos += t; else neg += t;
-
- det = pos + neg;
-
- if (det*det < 1e-25)
- return GL_FALSE;
-
- det = 1.0 / det;
- MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
- MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
- MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
- MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
- MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
- MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
- MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
- MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
- MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
-
- /* Do the translation part */
- MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
- MAT(in,1,3) * MAT(out,0,1) +
- MAT(in,2,3) * MAT(out,0,2) );
- MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
- MAT(in,1,3) * MAT(out,1,1) +
- MAT(in,2,3) * MAT(out,1,2) );
- MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
- MAT(in,1,3) * MAT(out,2,1) +
- MAT(in,2,3) * MAT(out,2,2) );
-
- return GL_TRUE;
-}
-
-
-static GLboolean invert_matrix_3d( GLmatrix *mat )
-{
- const GLfloat *in = mat->m;
- GLfloat *out = mat->inv;
-
- if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
- return invert_matrix_3d_general( mat );
- }
-
- if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
- GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
- MAT(in,0,1) * MAT(in,0,1) +
- MAT(in,0,2) * MAT(in,0,2));
-
- if (scale == 0.0)
- return GL_FALSE;
-
- scale = 1.0 / scale;
-
- /* Transpose and scale the 3 by 3 upper-left submatrix. */
- MAT(out,0,0) = scale * MAT(in,0,0);
- MAT(out,1,0) = scale * MAT(in,0,1);
- MAT(out,2,0) = scale * MAT(in,0,2);
- MAT(out,0,1) = scale * MAT(in,1,0);
- MAT(out,1,1) = scale * MAT(in,1,1);
- MAT(out,2,1) = scale * MAT(in,1,2);
- MAT(out,0,2) = scale * MAT(in,2,0);
- MAT(out,1,2) = scale * MAT(in,2,1);
- MAT(out,2,2) = scale * MAT(in,2,2);
- }
- else if (mat->flags & MAT_FLAG_ROTATION) {
- /* Transpose the 3 by 3 upper-left submatrix. */
- MAT(out,0,0) = MAT(in,0,0);
- MAT(out,1,0) = MAT(in,0,1);
- MAT(out,2,0) = MAT(in,0,2);
- MAT(out,0,1) = MAT(in,1,0);
- MAT(out,1,1) = MAT(in,1,1);
- MAT(out,2,1) = MAT(in,1,2);
- MAT(out,0,2) = MAT(in,2,0);
- MAT(out,1,2) = MAT(in,2,1);
- MAT(out,2,2) = MAT(in,2,2);
- }
- else {
- /* pure translation */
- MEMCPY( out, Identity, sizeof(Identity) );
- MAT(out,0,3) = - MAT(in,0,3);
- MAT(out,1,3) = - MAT(in,1,3);
- MAT(out,2,3) = - MAT(in,2,3);
- return GL_TRUE;
- }
-
- if (mat->flags & MAT_FLAG_TRANSLATION) {
- /* Do the translation part */
- MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
- MAT(in,1,3) * MAT(out,0,1) +
- MAT(in,2,3) * MAT(out,0,2) );
- MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
- MAT(in,1,3) * MAT(out,1,1) +
- MAT(in,2,3) * MAT(out,1,2) );
- MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
- MAT(in,1,3) * MAT(out,2,1) +
- MAT(in,2,3) * MAT(out,2,2) );
- }
- else {
- MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
- }
-
- return GL_TRUE;
-}
-
-
-
-static GLboolean invert_matrix_identity( GLmatrix *mat )
-{
- MEMCPY( mat->inv, Identity, sizeof(Identity) );
- return GL_TRUE;
-}
-
-
-static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
-{
- const GLfloat *in = mat->m;
- GLfloat *out = mat->inv;
-
- if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
- return GL_FALSE;
-
- MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
- MAT(out,0,0) = 1.0 / MAT(in,0,0);
- MAT(out,1,1) = 1.0 / MAT(in,1,1);
- MAT(out,2,2) = 1.0 / MAT(in,2,2);
-
- if (mat->flags & MAT_FLAG_TRANSLATION) {
- MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
- MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
- MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
- }
-
- return GL_TRUE;
-}
-
-
-static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
-{
- const GLfloat *in = mat->m;
- GLfloat *out = mat->inv;
-
- if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
- return GL_FALSE;
-
- MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
- MAT(out,0,0) = 1.0 / MAT(in,0,0);
- MAT(out,1,1) = 1.0 / MAT(in,1,1);
-
- if (mat->flags & MAT_FLAG_TRANSLATION) {
- MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
- MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
- }
-
- return GL_TRUE;
-}
-
-
-static GLboolean invert_matrix_perspective( GLmatrix *mat )
-{
- const GLfloat *in = mat->m;
- GLfloat *out = mat->inv;
-
- if (MAT(in,2,3) == 0)
- return GL_FALSE;
-
- MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
-
- MAT(out,0,0) = 1.0 / MAT(in,0,0);
- MAT(out,1,1) = 1.0 / MAT(in,1,1);
-
- MAT(out,0,3) = MAT(in,0,2);
- MAT(out,1,3) = MAT(in,1,2);
-
- MAT(out,2,2) = 0;
- MAT(out,2,3) = -1;
-
- MAT(out,3,2) = 1.0 / MAT(in,2,3);
- MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
-
- return GL_TRUE;
-}
-
-
-typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
-
-
-static inv_mat_func inv_mat_tab[7] = {
- invert_matrix_general,
- invert_matrix_identity,
- invert_matrix_3d_no_rot,
- invert_matrix_perspective,
- invert_matrix_3d, /* lazy! */
- invert_matrix_2d_no_rot,
- invert_matrix_3d
-};
-
-
-static GLboolean matrix_invert( GLmatrix *mat )
-{
- if (inv_mat_tab[mat->type](mat)) {
- mat->flags &= ~MAT_FLAG_SINGULAR;
- return GL_TRUE;
- } else {
- mat->flags |= MAT_FLAG_SINGULAR;
- MEMCPY( mat->inv, Identity, sizeof(Identity) );
- return GL_FALSE;
- }
-}
-
-
-
-void gl_matrix_transposef( GLfloat to[16], const GLfloat from[16] )
-{
- to[0] = from[0];
- to[1] = from[4];
- to[2] = from[8];
- to[3] = from[12];
- to[4] = from[1];
- to[5] = from[5];
- to[6] = from[9];
- to[7] = from[13];
- to[8] = from[2];
- to[9] = from[6];
- to[10] = from[10];
- to[11] = from[14];
- to[12] = from[3];
- to[13] = from[7];
- to[14] = from[11];
- to[15] = from[15];
-}
-
-
-
-void gl_matrix_transposed( GLdouble to[16], const GLdouble from[16] )
-{
- to[0] = from[0];
- to[1] = from[4];
- to[2] = from[8];
- to[3] = from[12];
- to[4] = from[1];
- to[5] = from[5];
- to[6] = from[9];
- to[7] = from[13];
- to[8] = from[2];
- to[9] = from[6];
- to[10] = from[10];
- to[11] = from[14];
- to[12] = from[3];
- to[13] = from[7];
- to[14] = from[11];
- to[15] = from[15];
-}
-
-
-
-/*
- * Generate a 4x4 transformation matrix from glRotate parameters.
- */
-void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z,
- GLfloat m[] )
-{
- /* This function contributed by Erich Boleyn ([email protected]) */
- GLfloat mag, s, c;
- GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
-
- s = sin( angle * DEG2RAD );
- c = cos( angle * DEG2RAD );
-
- mag = GL_SQRT( x*x + y*y + z*z );
-
- if (mag <= 1.0e-4) {
- /* generate an identity matrix and return */
- MEMCPY(m, Identity, sizeof(GLfloat)*16);
- return;
- }
-
- x /= mag;
- y /= mag;
- z /= mag;
-
-#define M(row,col) m[col*4+row]
-
- /*
- * Arbitrary axis rotation matrix.
- *
- * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
- * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
- * (which is about the X-axis), and the two composite transforms
- * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
- * from the arbitrary axis to the X-axis then back. They are
- * all elementary rotations.
- *
- * Rz' is a rotation about the Z-axis, to bring the axis vector
- * into the x-z plane. Then Ry' is applied, rotating about the
- * Y-axis to bring the axis vector parallel with the X-axis. The
- * rotation about the X-axis is then performed. Ry and Rz are
- * simply the respective inverse transforms to bring the arbitrary
- * axis back to it's original orientation. The first transforms
- * Rz' and Ry' are considered inverses, since the data from the
- * arbitrary axis gives you info on how to get to it, not how
- * to get away from it, and an inverse must be applied.
- *
- * The basic calculation used is to recognize that the arbitrary
- * axis vector (x, y, z), since it is of unit length, actually
- * represents the sines and cosines of the angles to rotate the
- * X-axis to the same orientation, with theta being the angle about
- * Z and phi the angle about Y (in the order described above)
- * as follows:
- *
- * cos ( theta ) = x / sqrt ( 1 - z^2 )
- * sin ( theta ) = y / sqrt ( 1 - z^2 )
- *
- * cos ( phi ) = sqrt ( 1 - z^2 )
- * sin ( phi ) = z
- *
- * Note that cos ( phi ) can further be inserted to the above
- * formulas:
- *
- * cos ( theta ) = x / cos ( phi )
- * sin ( theta ) = y / sin ( phi )
- *
- * ...etc. Because of those relations and the standard trigonometric
- * relations, it is pssible to reduce the transforms down to what
- * is used below. It may be that any primary axis chosen will give the
- * same results (modulo a sign convention) using thie method.
- *
- * Particularly nice is to notice that all divisions that might
- * have caused trouble when parallel to certain planes or
- * axis go away with care paid to reducing the expressions.
- * After checking, it does perform correctly under all cases, since
- * in all the cases of division where the denominator would have
- * been zero, the numerator would have been zero as well, giving
- * the expected result.
- */
-
- xx = x * x;
- yy = y * y;
- zz = z * z;
- xy = x * y;
- yz = y * z;
- zx = z * x;
- xs = x * s;
- ys = y * s;
- zs = z * s;
- one_c = 1.0F - c;
-
- M(0,0) = (one_c * xx) + c;
- M(0,1) = (one_c * xy) - zs;
- M(0,2) = (one_c * zx) + ys;
- M(0,3) = 0.0F;
-
- M(1,0) = (one_c * xy) + zs;
- M(1,1) = (one_c * yy) + c;
- M(1,2) = (one_c * yz) - xs;
- M(1,3) = 0.0F;
-
- M(2,0) = (one_c * zx) - ys;
- M(2,1) = (one_c * yz) + xs;
- M(2,2) = (one_c * zz) + c;
- M(2,3) = 0.0F;
-
- M(3,0) = 0.0F;
- M(3,1) = 0.0F;
- M(3,2) = 0.0F;
- M(3,3) = 1.0F;
-
-#undef M
-}
-
-#define ZERO(x) (1<<x)
-#define ONE(x) (1<<(x+16))
-
-#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
-#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
-
-#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
- ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
- ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
- ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
-
-#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
- ZERO(1) | ZERO(9) | \
- ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
- ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
-
-#define MASK_2D ( ZERO(8) | \
- ZERO(9) | \
- ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
- ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
-
-
-#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
- ZERO(1) | ZERO(9) | \
- ZERO(2) | ZERO(6) | \
- ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
-
-#define MASK_3D ( \
- \
- \
- ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
-
-
-#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
- ZERO(1) | ZERO(13) |\
- ZERO(2) | ZERO(6) | \
- ZERO(3) | ZERO(7) | ZERO(15) )
-
-#define SQ(x) ((x)*(x))
-
-/* Determine type and flags from scratch. This is expensive enough to
- * only want to do it once.
- */
-static void analyze_from_scratch( GLmatrix *mat )
-{
- const GLfloat *m = mat->m;
- GLuint mask = 0;
- GLuint i;
-
- for (i = 0 ; i < 16 ; i++) {
- if (m[i] == 0.0) mask |= (1<<i);
- }
-
- if (m[0] == 1.0F) mask |= (1<<16);
- if (m[5] == 1.0F) mask |= (1<<21);
- if (m[10] == 1.0F) mask |= (1<<26);
- if (m[15] == 1.0F) mask |= (1<<31);
-
- mat->flags &= ~MAT_FLAGS_GEOMETRY;
-
- /* Check for translation - no-one really cares
- */
- if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
- mat->flags |= MAT_FLAG_TRANSLATION;
-
- /* Do the real work
- */
- if (mask == MASK_IDENTITY) {
- mat->type = MATRIX_IDENTITY;
- }
- else if ((mask & MASK_2D_NO_ROT) == MASK_2D_NO_ROT) {
- mat->type = MATRIX_2D_NO_ROT;
-
- if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
- mat->flags = MAT_FLAG_GENERAL_SCALE;
- }
- else if ((mask & MASK_2D) == MASK_2D) {
- GLfloat mm = DOT2(m, m);
- GLfloat m4m4 = DOT2(m+4,m+4);
- GLfloat mm4 = DOT2(m,m+4);
-
- mat->type = MATRIX_2D;
-
- /* Check for scale */
- if (SQ(mm-1) > SQ(1e-6) ||
- SQ(m4m4-1) > SQ(1e-6))
- mat->flags |= MAT_FLAG_GENERAL_SCALE;
-
- /* Check for rotation */
- if (SQ(mm4) > SQ(1e-6))
- mat->flags |= MAT_FLAG_GENERAL_3D;
- else
- mat->flags |= MAT_FLAG_ROTATION;
-
- }
- else if ((mask & MASK_3D_NO_ROT) == MASK_3D_NO_ROT) {
- mat->type = MATRIX_3D_NO_ROT;
-
- /* Check for scale */
- if (SQ(m[0]-m[5]) < SQ(1e-6) &&
- SQ(m[0]-m[10]) < SQ(1e-6)) {
- if (SQ(m[0]-1.0) > SQ(1e-6)) {
- mat->flags |= MAT_FLAG_UNIFORM_SCALE;
- }
- }
- else {
- mat->flags |= MAT_FLAG_GENERAL_SCALE;
- }
- }
- else if ((mask & MASK_3D) == MASK_3D) {
- GLfloat c1 = DOT3(m,m);
- GLfloat c2 = DOT3(m+4,m+4);
- GLfloat c3 = DOT3(m+8,m+8);
- GLfloat d1 = DOT3(m, m+4);
- GLfloat cp[3];
-
- mat->type = MATRIX_3D;
-
- /* Check for scale */
- if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
- if (SQ(c1-1.0) > SQ(1e-6))
- mat->flags |= MAT_FLAG_UNIFORM_SCALE;
- /* else no scale at all */
- }
- else {
- mat->flags |= MAT_FLAG_GENERAL_SCALE;
- }
-
- /* Check for rotation */
- if (SQ(d1) < SQ(1e-6)) {
- CROSS3( cp, m, m+4 );
- SUB_3V( cp, cp, (m+8) );
- if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
- mat->flags |= MAT_FLAG_ROTATION;
- else
- mat->flags |= MAT_FLAG_GENERAL_3D;
- }
- else {
- mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
- }
- }
- else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
- mat->type = MATRIX_PERSPECTIVE;
- mat->flags |= MAT_FLAG_GENERAL;
- }
- else {
- mat->type = MATRIX_GENERAL;
- mat->flags |= MAT_FLAG_GENERAL;
- }
-}
-
-
-/* Analyse a matrix given that its flags are accurate - this is the
- * more common operation, hopefully.
- */
-static void analyze_from_flags( GLmatrix *mat )
-{
- const GLfloat *m = mat->m;
-
- if (TEST_MAT_FLAGS(mat, 0)) {
- mat->type = MATRIX_IDENTITY;
- }
- else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
- MAT_FLAG_UNIFORM_SCALE |
- MAT_FLAG_GENERAL_SCALE))) {
- if ( m[10]==1.0F && m[14]==0.0F ) {
- mat->type = MATRIX_2D_NO_ROT;
- }
- else {
- mat->type = MATRIX_3D_NO_ROT;
- }
- }
- else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
- if ( m[ 8]==0.0F
- && m[ 9]==0.0F
- && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
- mat->type = MATRIX_2D;
- }
- else {
- mat->type = MATRIX_3D;
- }
- }
- else if ( m[4]==0.0F && m[12]==0.0F
- && m[1]==0.0F && m[13]==0.0F
- && m[2]==0.0F && m[6]==0.0F
- && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
- mat->type = MATRIX_PERSPECTIVE;
- }
- else {
- mat->type = MATRIX_GENERAL;
- }
-}
-
-
-void gl_matrix_analyze( GLmatrix *mat )
-{
- if (mat->flags & MAT_DIRTY_TYPE) {
- if (mat->flags & MAT_DIRTY_FLAGS)
- analyze_from_scratch( mat );
- else
- analyze_from_flags( mat );
- }
-
- if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
- matrix_invert( mat );
- }
-
- mat->flags &= ~(MAT_DIRTY_FLAGS|
- MAT_DIRTY_TYPE|
- MAT_DIRTY_INVERSE);
-}
-
-
-static void matrix_copy( GLmatrix *to, const GLmatrix *from )
-{
- MEMCPY( to->m, from->m, sizeof(Identity) );
- to->flags = from->flags | MAT_DIRTY_DEPENDENTS;
- to->type = from->type;
-
- if (to->inv != 0) {
- if (from->inv == 0) {
- matrix_invert( to );
- }
- else {
- MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16);
- }
- }
-}
-
-/*
- * Multiply a matrix by an array of floats with known properties.
- */
-static void mat_mul_floats( GLmatrix *mat, const GLfloat *m, GLuint flags )
-{
- mat->flags |= (flags |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE |
- MAT_DIRTY_DEPENDENTS);
-
- if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
- matmul34( mat->m, mat->m, m );
- else
- matmul4( mat->m, mat->m, m );
-
-}
-
-
-void gl_matrix_ctr( GLmatrix *m )
-{
- if ( m->m == 0 ) {
- m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
- }
- MEMCPY( m->m, Identity, sizeof(Identity) );
- m->inv = 0;
- m->type = MATRIX_IDENTITY;
- m->flags = MAT_DIRTY_DEPENDENTS;
-}
-
-void gl_matrix_dtr( GLmatrix *m )
-{
- if ( m->m != 0 ) {
- ALIGN_FREE( m->m );
- m->m = 0;
- }
- if ( m->inv != 0 ) {
- ALIGN_FREE( m->inv );
- m->inv = 0;
- }
-}
-
-
-void gl_matrix_alloc_inv( GLmatrix *m )
-{
- if ( m->inv == 0 ) {
- m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
- MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) );
- }
-}
-
-
-void gl_matrix_mul( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
-{
- dest->flags = (a->flags |
- b->flags |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE |
- MAT_DIRTY_DEPENDENTS);
-
- if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
- matmul34( dest->m, a->m, b->m );
- else
- matmul4( dest->m, a->m, b->m );
-}
+#include "math/m_matrix.h"
+#endif
/**********************************************************************/
@@ -1017,45 +90,21 @@ _mesa_Frustum( GLdouble left, GLdouble right,
GLdouble nearval, GLdouble farval )
{
GET_CURRENT_CONTEXT(ctx);
- GLfloat x, y, a, b, c, d;
- GLfloat m[16];
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glFrustrum" );
- if ((nearval<=0.0 || farval<=0.0) || (nearval == farval) || (left == right) || (top == bottom)) {
- gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
+ if (nearval <= 0.0 ||
+ farval <= 0.0 ||
+ nearval == farval ||
+ left == right ||
+ top == bottom)
+ {
+ gl_error( ctx, GL_INVALID_VALUE, "glFrustum" );
return;
}
-
- x = (2.0*nearval) / (right-left);
- y = (2.0*nearval) / (top-bottom);
- a = (right+left) / (right-left);
- b = (top+bottom) / (top-bottom);
- c = -(farval+nearval) / ( farval-nearval);
- d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
-
-#define M(row,col) m[col*4+row]
- M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
- M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
- M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
- M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
-#undef M
-
- mat_mul_floats( mat, m, MAT_FLAG_PERSPECTIVE );
-
- if (ctx->Transform.MatrixMode == GL_PROJECTION) {
- /* Need to keep a stack of near/far values in case the user push/pops
- * the projection matrix stack so that we can call Driver.NearFar()
- * after a pop.
- */
- ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
- ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
-
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearval, farval );
- }
- }
+
+ _math_matrix_frustrum( mat, left, right, bottom, top, nearval, farval );
}
@@ -1065,38 +114,19 @@ _mesa_Ortho( GLdouble left, GLdouble right,
GLdouble nearval, GLdouble farval )
{
GET_CURRENT_CONTEXT(ctx);
- GLfloat x, y, z;
- GLfloat tx, ty, tz;
- GLfloat m[16];
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glOrtho" );
- if ((left == right) || (bottom == top) || (nearval == farval)) {
- gl_error( ctx, GL_INVALID_VALUE,
- "gl_Ortho((l = r) or (b = top) or (n=f)" );
+ if (left == right ||
+ bottom == top ||
+ nearval == farval)
+ {
+ gl_error( ctx, GL_INVALID_VALUE, "gl_Ortho" );
return;
}
- x = 2.0 / (right-left);
- y = 2.0 / (top-bottom);
- z = -2.0 / (farval-nearval);
- tx = -(right+left) / (right-left);
- ty = -(top+bottom) / (top-bottom);
- tz = -(farval+nearval) / (farval-nearval);
-
-#define M(row,col) m[col*4+row]
- M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
- M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
- M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
- M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
-#undef M
-
- mat_mul_floats( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
-
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearval, farval );
- }
+ _math_matrix_ortho( mat, left, right, bottom, top, nearval, farval );
}
@@ -1135,7 +165,7 @@ _mesa_PushMatrix( void )
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
- matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++],
+ _math_matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++],
&ctx->ModelView );
break;
case GL_PROJECTION:
@@ -1143,14 +173,8 @@ _mesa_PushMatrix( void )
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
- matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++],
+ _math_matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++],
&ctx->ProjectionMatrix );
-
- /* Save near and far projection values */
- ctx->NearFarStack[ctx->ProjectionStackDepth][0]
- = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
- ctx->NearFarStack[ctx->ProjectionStackDepth][1]
- = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
break;
case GL_TEXTURE:
{
@@ -1159,7 +183,7 @@ _mesa_PushMatrix( void )
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
- matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++],
+ _math_matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++],
&ctx->TextureMatrix[t] );
}
break;
@@ -1168,7 +192,7 @@ _mesa_PushMatrix( void )
gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
return;
}
- matrix_copy( &ctx->ColorStack[ctx->ColorStackDepth++],
+ _math_matrix_copy( &ctx->ColorStack[ctx->ColorStackDepth++],
&ctx->ColorMatrix );
break;
default:
@@ -1194,8 +218,8 @@ _mesa_PopMatrix( void )
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
- matrix_copy( &ctx->ModelView,
- &ctx->ModelViewStack[--ctx->ModelViewStackDepth] );
+ _math_matrix_copy( &ctx->ModelView,
+ &ctx->ModelViewStack[--ctx->ModelViewStackDepth] );
ctx->NewState |= _NEW_MODELVIEW;
break;
case GL_PROJECTION:
@@ -1204,18 +228,9 @@ _mesa_PopMatrix( void )
return;
}
- matrix_copy( &ctx->ProjectionMatrix,
- &ctx->ProjectionStack[--ctx->ProjectionStackDepth] );
+ _math_matrix_copy( &ctx->ProjectionMatrix,
+ &ctx->ProjectionStack[--ctx->ProjectionStackDepth] );
ctx->NewState |= _NEW_PROJECTION;
-
- /* Device driver near/far values */
- {
- GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
- GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, nearVal, farVal );
- }
- }
break;
case GL_TEXTURE:
{
@@ -1224,8 +239,8 @@ _mesa_PopMatrix( void )
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
- matrix_copy(&ctx->TextureMatrix[t],
- &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]);
+ _math_matrix_copy(&ctx->TextureMatrix[t],
+ &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]);
ctx->NewState |= _NEW_TEXTURE_MATRIX;
}
break;
@@ -1234,8 +249,8 @@ _mesa_PopMatrix( void )
gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
return;
}
- matrix_copy(&ctx->ColorMatrix,
- &ctx->ColorStack[--ctx->ColorStackDepth]);
+ _math_matrix_copy(&ctx->ColorMatrix,
+ &ctx->ColorStack[--ctx->ColorStackDepth]);
ctx->NewState |= _NEW_COLOR_MATRIX;
break;
default:
@@ -1251,19 +266,7 @@ _mesa_LoadIdentity( void )
GET_CURRENT_CONTEXT(ctx);
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadIdentity");
-
- MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
-
- if (mat->inv)
- MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
-
- mat->type = MATRIX_IDENTITY;
-
- /* Have to set this to dirty to make sure we recalculate the
- * combined matrix later. The update_matrix in this case is a
- * shortcircuit anyway...
- */
- mat->flags = MAT_DIRTY_DEPENDENTS;
+ _math_matrix_set_identity( mat );
}
@@ -1273,38 +276,15 @@ _mesa_LoadMatrixf( const GLfloat *m )
GET_CURRENT_CONTEXT(ctx);
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadMatrix");
-
- MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
- mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
-
- if (ctx->Transform.MatrixMode == GL_PROJECTION) {
-
-#define M(row,col) m[col*4+row]
- GLfloat c = M(2,2);
- GLfloat d = M(2,3);
-#undef M
- GLfloat n = (c == 1.0 ? 0.0 : d / (c - 1.0));
- GLfloat f = (c == -1.0 ? 1.0 : d / (c + 1.0));
-
- /* Need to keep a stack of near/far values in case the user
- * push/pops the projection matrix stack so that we can call
- * Driver.NearFar() after a pop.
- */
- ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n;
- ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f;
-
- if (ctx->Driver.NearFar) {
- (*ctx->Driver.NearFar)( ctx, n, f );
- }
- }
+ _math_matrix_loadf( mat, m );
}
void
_mesa_LoadMatrixd( const GLdouble *m )
{
- GLfloat f[16];
GLint i;
+ GLfloat f[16];
for (i = 0; i < 16; i++)
f[i] = m[i];
_mesa_LoadMatrixf(f);
@@ -1321,8 +301,7 @@ _mesa_MultMatrixf( const GLfloat *m )
GET_CURRENT_CONTEXT(ctx);
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
- matmul4( mat->m, mat->m, m );
- mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
+ _math_matrix_mul_floats( mat, m );
}
@@ -1332,11 +311,11 @@ _mesa_MultMatrixf( const GLfloat *m )
void
_mesa_MultMatrixd( const GLdouble *m )
{
- GET_CURRENT_CONTEXT(ctx);
- GLmatrix *mat = 0;
- GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
- matmul4fd( mat->m, mat->m, m );
- mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
+ GLint i;
+ GLfloat f[16];
+ for (i = 0; i < 16; i++)
+ f[i] = m[i];
+ _mesa_MultMatrixf( f );
}
@@ -1349,13 +328,10 @@ void
_mesa_Rotatef( GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
{
GET_CURRENT_CONTEXT(ctx);
- GLfloat m[16];
if (angle != 0.0F) {
GLmatrix *mat = 0;
GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glRotate" );
-
- gl_rotation_matrix( angle, x, y, z, m );
- mat_mul_floats( mat, m, MAT_FLAG_ROTATION );
+ _math_matrix_rotate( mat, angle, x, y, z );
}
}
@@ -1374,23 +350,8 @@ _mesa_Scalef( GLfloat x, GLfloat y, GLfloat z )
{
GET_CURRENT_CONTEXT(ctx);
GLmatrix *mat = 0;
- GLfloat *m;
GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glScale");
-
- m = mat->m;
- m[0] *= x; m[4] *= y; m[8] *= z;
- m[1] *= x; m[5] *= y; m[9] *= z;
- m[2] *= x; m[6] *= y; m[10] *= z;
- m[3] *= x; m[7] *= y; m[11] *= z;
-
- if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
- mat->flags |= MAT_FLAG_UNIFORM_SCALE;
- else
- mat->flags |= MAT_FLAG_GENERAL_SCALE;
-
- mat->flags |= (MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE |
- MAT_DIRTY_DEPENDENTS);
+ _math_matrix_scale( mat, x, y, z );
}
@@ -1409,18 +370,8 @@ _mesa_Translatef( GLfloat x, GLfloat y, GLfloat z )
{
GET_CURRENT_CONTEXT(ctx);
GLmatrix *mat = 0;
- GLfloat *m;
GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glTranslate");
- m = mat->m;
- m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
- m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
- m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
- m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
-
- mat->flags |= (MAT_FLAG_TRANSLATION |
- MAT_DIRTY_TYPE |
- MAT_DIRTY_INVERSE |
- MAT_DIRTY_DEPENDENTS);
+ _math_matrix_translate( mat, x, y, z );
}
@@ -1431,12 +382,11 @@ _mesa_Translated( GLdouble x, GLdouble y, GLdouble z )
}
-
void
_mesa_LoadTransposeMatrixfARB( const GLfloat *m )
{
GLfloat tm[16];
- gl_matrix_transposef(tm, m);
+ _math_transposef(tm, m);
_mesa_LoadMatrixf(tm);
}
@@ -1444,9 +394,9 @@ _mesa_LoadTransposeMatrixfARB( const GLfloat *m )
void
_mesa_LoadTransposeMatrixdARB( const GLdouble *m )
{
- GLdouble tm[16];
- gl_matrix_transposed(tm, m);
- _mesa_LoadMatrixd(tm);
+ GLfloat tm[16];
+ _math_transposefd(tm, m);
+ _mesa_LoadMatrixf(tm);
}
@@ -1454,7 +404,7 @@ void
_mesa_MultTransposeMatrixfARB( const GLfloat *m )
{
GLfloat tm[16];
- gl_matrix_transposef(tm, m);
+ _math_transposef(tm, m);
_mesa_MultMatrixf(tm);
}
@@ -1462,9 +412,9 @@ _mesa_MultTransposeMatrixfARB( const GLfloat *m )
void
_mesa_MultTransposeMatrixdARB( const GLdouble *m )
{
- GLdouble tm[16];
- gl_matrix_transposed(tm, m);
- _mesa_MultMatrixd(tm);
+ GLfloat tm[16];
+ _math_transposefd(tm, m);
+ _mesa_MultMatrixf(tm);
}
@@ -1518,7 +468,6 @@ gl_Viewport( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height )
ctx->Viewport._WindowMap.m[MAT_TY] = ctx->Viewport._WindowMap.m[MAT_SY] + y;
ctx->Viewport._WindowMap.m[MAT_SZ] = 0.5 * ctx->Visual.DepthMaxF;
ctx->Viewport._WindowMap.m[MAT_TZ] = 0.5 * ctx->Visual.DepthMaxF;
-
ctx->Viewport._WindowMap.flags = MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION;
ctx->Viewport._WindowMap.type = MATRIX_3D_NO_ROT;
ctx->NewState |= _NEW_VIEWPORT;