diff options
author | Jerome Glisse <[email protected]> | 2006-07-04 20:50:49 +0000 |
---|---|---|
committer | Jerome Glisse <[email protected]> | 2006-07-04 20:50:49 +0000 |
commit | 1ad914575a89f3fdbfa5bce863e14f8d4679ed3b (patch) | |
tree | 6599dc1834711de843fb26dd40b74443977b7590 /src/mesa/drivers/dri | |
parent | 525eb0b621f660d7b310d277c3feea35b7cf3d22 (diff) |
Add R300_VAP_CNTL 0x2140 and cosmetic cleanup.
Diffstat (limited to 'src/mesa/drivers/dri')
-rw-r--r-- | src/mesa/drivers/dri/r300/r300_reg.h | 893 |
1 files changed, 498 insertions, 395 deletions
diff --git a/src/mesa/drivers/dri/r300/r300_reg.h b/src/mesa/drivers/dri/r300/r300_reg.h index b2fe46979fd..f7cdfbe3c4e 100644 --- a/src/mesa/drivers/dri/r300/r300_reg.h +++ b/src/mesa/drivers/dri/r300/r300_reg.h @@ -48,12 +48,12 @@ USE OR OTHER DEALINGS IN THE SOFTWARE. # define R300_MC_MISC__MC_GLOBW_FULL_LAT_SHIFT 28 /* -This file contains registers and constants for the R300. They have been -found mostly by examining command buffers captured using glxtest, as well -as by extrapolating some known registers and constants from the R200. - -I am fairly certain that they are correct unless stated otherwise in comments. -*/ + * This file contains registers and constants for the R300. They have been + * found mostly by examining command buffers captured using glxtest, as well + * as by extrapolating some known registers and constants from the R200. + * I am fairly certain that they are correct unless stated otherwise + * in comments. + */ #define R300_SE_VPORT_XSCALE 0x1D98 #define R300_SE_VPORT_XOFFSET 0x1D9C @@ -63,46 +63,48 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_SE_VPORT_ZOFFSET 0x1DAC -/* This register is written directly and also starts data section in many 3d CP_PACKET3's */ +/* This register is written directly and also starts data section + * in many 3d CP_PACKET3's + */ #define R300_VAP_VF_CNTL 0x2084 - -# define R300_VAP_VF_CNTL__PRIM_TYPE__SHIFT 0 -# define R300_VAP_VF_CNTL__PRIM_NONE (0<<0) -# define R300_VAP_VF_CNTL__PRIM_POINTS (1<<0) -# define R300_VAP_VF_CNTL__PRIM_LINES (2<<0) -# define R300_VAP_VF_CNTL__PRIM_LINE_STRIP (3<<0) -# define R300_VAP_VF_CNTL__PRIM_TRIANGLES (4<<0) -# define R300_VAP_VF_CNTL__PRIM_TRIANGLE_FAN (5<<0) -# define R300_VAP_VF_CNTL__PRIM_TRIANGLE_STRIP (6<<0) -# define R300_VAP_VF_CNTL__PRIM_LINE_LOOP (12<<0) -# define R300_VAP_VF_CNTL__PRIM_QUADS (13<<0) -# define R300_VAP_VF_CNTL__PRIM_QUAD_STRIP (14<<0) -# define R300_VAP_VF_CNTL__PRIM_POLYGON (15<<0) - -# define R300_VAP_VF_CNTL__PRIM_WALK__SHIFT 4 - /* State based - direct writes to registers trigger vertex generation */ -# define R300_VAP_VF_CNTL__PRIM_WALK_STATE_BASED (0<<4) -# define R300_VAP_VF_CNTL__PRIM_WALK_INDICES (1<<4) -# define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_LIST (2<<4) -# define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_EMBEDDED (3<<4) - - /* I don't think I saw these three used.. */ -# define R300_VAP_VF_CNTL__COLOR_ORDER__SHIFT 6 -# define R300_VAP_VF_CNTL__TCL_OUTPUT_CTL_ENA__SHIFT 9 -# define R300_VAP_VF_CNTL__PROG_STREAM_ENA__SHIFT 10 - - /* index size - when not set the indices are assumed to be 16 bit */ -# define R300_VAP_VF_CNTL__INDEX_SIZE_32bit (1<<11) - /* number of vertices */ -# define R300_VAP_VF_CNTL__NUM_VERTICES__SHIFT 16 +# define R300_VAP_VF_CNTL__PRIM_TYPE__SHIFT 0 +# define R300_VAP_VF_CNTL__PRIM_NONE (0<<0) +# define R300_VAP_VF_CNTL__PRIM_POINTS (1<<0) +# define R300_VAP_VF_CNTL__PRIM_LINES (2<<0) +# define R300_VAP_VF_CNTL__PRIM_LINE_STRIP (3<<0) +# define R300_VAP_VF_CNTL__PRIM_TRIANGLES (4<<0) +# define R300_VAP_VF_CNTL__PRIM_TRIANGLE_FAN (5<<0) +# define R300_VAP_VF_CNTL__PRIM_TRIANGLE_STRIP (6<<0) +# define R300_VAP_VF_CNTL__PRIM_LINE_LOOP (12<<0) +# define R300_VAP_VF_CNTL__PRIM_QUADS (13<<0) +# define R300_VAP_VF_CNTL__PRIM_QUAD_STRIP (14<<0) +# define R300_VAP_VF_CNTL__PRIM_POLYGON (15<<0) + +# define R300_VAP_VF_CNTL__PRIM_WALK__SHIFT 4 + /* State based - direct writes to registers trigger vertex + generation */ +# define R300_VAP_VF_CNTL__PRIM_WALK_STATE_BASED (0<<4) +# define R300_VAP_VF_CNTL__PRIM_WALK_INDICES (1<<4) +# define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_LIST (2<<4) +# define R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_EMBEDDED (3<<4) + + /* I don't think I saw these three used.. */ +# define R300_VAP_VF_CNTL__COLOR_ORDER__SHIFT 6 +# define R300_VAP_VF_CNTL__TCL_OUTPUT_CTL_ENA__SHIFT 9 +# define R300_VAP_VF_CNTL__PROG_STREAM_ENA__SHIFT 10 + + /* index size - when not set the indices are assumed to be 16 bit */ +# define R300_VAP_VF_CNTL__INDEX_SIZE_32bit (1<<11) + /* number of vertices */ +# define R300_VAP_VF_CNTL__NUM_VERTICES__SHIFT 16 /* BEGIN: Wild guesses */ #define R300_VAP_OUTPUT_VTX_FMT_0 0x2090 # define R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT (1<<0) # define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_PRESENT (1<<1) -# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_1_PRESENT (1<<2) /* GUESS */ -# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_2_PRESENT (1<<3) /* GUESS */ -# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_3_PRESENT (1<<4) /* GUESS */ +# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_1_PRESENT (1<<2) /* GUESS */ +# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_2_PRESENT (1<<3) /* GUESS */ +# define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_3_PRESENT (1<<4) /* GUESS */ # define R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT (1<<16) /* GUESS */ #define R300_VAP_OUTPUT_VTX_FMT_1 0x2094 @@ -114,7 +116,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_5_COMP_CNT_SHIFT 15 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_6_COMP_CNT_SHIFT 18 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_7_COMP_CNT_SHIFT 21 -/* END */ +/* END: Wild guesses */ #define R300_SE_VTE_CNTL 0x20b0 # define R300_VPORT_X_SCALE_ENA 0x00000001 @@ -130,29 +132,39 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_VTX_ST_DENORMALIZED 0x00001000 /* BEGIN: Vertex data assembly - lots of uncertainties */ + /* gap */ + +#define R300_VAP_CNTL 0x2140 +# define R300_VC_NO_SWAP (0 << 0) +# define R300_VC_16BIT_SWAP (1 << 0) +# define R300_VC_32BIT_SWAP (2 << 0) + +/* gap */ + /* Where do we get our vertex data? -// -// Vertex data either comes either from immediate mode registers or from -// vertex arrays. -// There appears to be no mixed mode (though we can force the pitch of -// vertex arrays to 0, effectively reusing the same element over and over -// again). -// -// Immediate mode is controlled by the INPUT_CNTL registers. I am not sure -// if these registers influence vertex array processing. -// -// Vertex arrays are controlled via the 3D_LOAD_VBPNTR packet3. -// -// In both cases, vertex attributes are then passed through INPUT_ROUTE. - -// Beginning with INPUT_ROUTE_0_0 is a list of WORDs that route vertex data -// into the vertex processor's input registers. -// The first word routes the first input, the second word the second, etc. -// The corresponding input is routed into the register with the given index. -// The list is ended by a word with INPUT_ROUTE_END set. -// -// Always set COMPONENTS_4 in immediate mode. */ + * + * Vertex data either comes either from immediate mode registers or from + * vertex arrays. + * There appears to be no mixed mode (though we can force the pitch of + * vertex arrays to 0, effectively reusing the same element over and over + * again). + * + * Immediate mode is controlled by the INPUT_CNTL registers. I am not sure + * if these registers influence vertex array processing. + * + * Vertex arrays are controlled via the 3D_LOAD_VBPNTR packet3. + * + * In both cases, vertex attributes are then passed through INPUT_ROUTE. + * + * Beginning with INPUT_ROUTE_0_0 is a list of WORDs that route vertex data + * into the vertex processor's input registers. + * The first word routes the first input, the second word the second, etc. + * The corresponding input is routed into the register with the given index. + * The list is ended by a word with INPUT_ROUTE_END set. + * + * Always set COMPONENTS_4 in immediate mode. + */ #define R300_VAP_INPUT_ROUTE_0_0 0x2150 # define R300_INPUT_ROUTE_COMPONENTS_1 (0 << 0) @@ -176,10 +188,12 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VAP_INPUT_ROUTE_0_7 0x216C /* gap */ + /* Notes: -// - always set up to produce at least two attributes: -// if vertex program uses only position, fglrx will set normal, too -// - INPUT_CNTL_0_COLOR and INPUT_CNTL_COLOR bits are always equal */ + * - always set up to produce at least two attributes: + * if vertex program uses only position, fglrx will set normal, too + * - INPUT_CNTL_0_COLOR and INPUT_CNTL_COLOR bits are always equal. + */ #define R300_VAP_INPUT_CNTL_0 0x2180 # define R300_INPUT_CNTL_0_COLOR 0x00000001 #define R300_VAP_INPUT_CNTL_1 0x2184 @@ -196,12 +210,14 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_INPUT_CNTL_TC7 0x00020000 /* GUESS */ /* gap */ + /* Words parallel to INPUT_ROUTE_0; All words that are active in INPUT_ROUTE_0 -// are set to a swizzling bit pattern, other words are 0. -// -// In immediate mode, the pattern is always set to xyzw. In vertex array -// mode, the swizzling pattern is e.g. used to set zw components in texture -// coordinates with only tweo components. */ + * are set to a swizzling bit pattern, other words are 0. + * + * In immediate mode, the pattern is always set to xyzw. In vertex array + * mode, the swizzling pattern is e.g. used to set zw components in texture + * coordinates with only tweo components. + */ #define R300_VAP_INPUT_ROUTE_1_0 0x21E0 # define R300_INPUT_ROUTE_SELECT_X 0 # define R300_INPUT_ROUTE_SELECT_Y 1 @@ -210,11 +226,11 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_INPUT_ROUTE_SELECT_ZERO 4 # define R300_INPUT_ROUTE_SELECT_ONE 5 # define R300_INPUT_ROUTE_SELECT_MASK 7 -# define R300_INPUT_ROUTE_X_SHIFT 0 -# define R300_INPUT_ROUTE_Y_SHIFT 3 -# define R300_INPUT_ROUTE_Z_SHIFT 6 -# define R300_INPUT_ROUTE_W_SHIFT 9 -# define R300_INPUT_ROUTE_ENABLE (15 << 12) +# define R300_INPUT_ROUTE_X_SHIFT 0 +# define R300_INPUT_ROUTE_Y_SHIFT 3 +# define R300_INPUT_ROUTE_Z_SHIFT 6 +# define R300_INPUT_ROUTE_W_SHIFT 9 +# define R300_INPUT_ROUTE_ENABLE (15 << 12) #define R300_VAP_INPUT_ROUTE_1_1 0x21E4 #define R300_VAP_INPUT_ROUTE_1_2 0x21E8 #define R300_VAP_INPUT_ROUTE_1_3 0x21EC @@ -223,53 +239,64 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VAP_INPUT_ROUTE_1_6 0x21F8 #define R300_VAP_INPUT_ROUTE_1_7 0x21FC -/* END */ +/* END: Vertex data assembly */ /* gap */ -/* BEGIN: Upload vertex program and data -// The programmable vertex shader unit has a memory bank of unknown size -// that can be written to in 16 byte units by writing the address into -// UPLOAD_ADDRESS, followed by data in UPLOAD_DATA (multiples of 4 DWORDs). -// -// Pointers into the memory bank are always in multiples of 16 bytes. -// -// The memory bank is divided into areas with fixed meaning. -// -// Starting at address UPLOAD_PROGRAM: Vertex program instructions. -// Native limits reported by drivers from ATI suggest size 256 (i.e. 4KB), -// whereas the difference between known addresses suggests size 512. -// -// Starting at address UPLOAD_PARAMETERS: Vertex program parameters. -// Native reported limits and the VPI layout suggest size 256, whereas -// difference between known addresses suggests size 512. -// -// At address UPLOAD_POINTSIZE is a vector (0, 0, ps, 0), where ps is the -// floating point pointsize. The exact purpose of this state is uncertain, -// as there is also the R300_RE_POINTSIZE register. -// -// Multiple vertex programs and parameter sets can be loaded at once, -// which could explain the size discrepancy. */ + +/* BEGIN: Upload vertex program and data */ + +/* + * The programmable vertex shader unit has a memory bank of unknown size + * that can be written to in 16 byte units by writing the address into + * UPLOAD_ADDRESS, followed by data in UPLOAD_DATA (multiples of 4 DWORDs). + * + * Pointers into the memory bank are always in multiples of 16 bytes. + * + * The memory bank is divided into areas with fixed meaning. + * + * Starting at address UPLOAD_PROGRAM: Vertex program instructions. + * Native limits reported by drivers from ATI suggest size 256 (i.e. 4KB), + * whereas the difference between known addresses suggests size 512. + * + * Starting at address UPLOAD_PARAMETERS: Vertex program parameters. + * Native reported limits and the VPI layout suggest size 256, whereas + * difference between known addresses suggests size 512. + * + * At address UPLOAD_POINTSIZE is a vector (0, 0, ps, 0), where ps is the + * floating point pointsize. The exact purpose of this state is uncertain, + * as there is also the R300_RE_POINTSIZE register. + * + * Multiple vertex programs and parameter sets can be loaded at once, + * which could explain the size discrepancy. + */ #define R300_VAP_PVS_UPLOAD_ADDRESS 0x2200 # define R300_PVS_UPLOAD_PROGRAM 0x00000000 # define R300_PVS_UPLOAD_PARAMETERS 0x00000200 # define R300_PVS_UPLOAD_POINTSIZE 0x00000406 + /* gap */ + #define R300_VAP_PVS_UPLOAD_DATA 0x2208 -/* END */ + +/* END: Upload vertex program and data */ /* gap */ + /* I do not know the purpose of this register. However, I do know that -// it is set to 221C_CLEAR for clear operations and to 221C_NORMAL -// for normal rendering. */ + * it is set to 221C_CLEAR for clear operations and to 221C_NORMAL + * for normal rendering. + */ #define R300_VAP_UNKNOWN_221C 0x221C # define R300_221C_NORMAL 0x00000000 # define R300_221C_CLEAR 0x0001C000 /* gap */ + /* Sometimes, END_OF_PKT and 0x2284=0 are the only commands sent between -// rendering commands and overwriting vertex program parameters. -// Therefore, I suspect writing zero to 0x2284 synchronizes the engine and -// avoids bugs caused by still running shaders reading bad data from memory. */ + * rendering commands and overwriting vertex program parameters. + * Therefore, I suspect writing zero to 0x2284 synchronizes the engine and + * avoids bugs caused by still running shaders reading bad data from memory. + */ #define R300_VAP_PVS_WAITIDLE 0x2284 /* GUESS */ /* Absolutely no clue what this register is about. */ @@ -278,19 +305,22 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_2288_RV350 0x0000FFFF /* -- Vladimir */ /* gap */ + /* Addresses are relative to the vertex program instruction area of the -// memory bank. PROGRAM_END points to the last instruction of the active -// program -// -// The meaning of the two UNKNOWN fields is obviously not known. However, -// experiments so far have shown that both *must* point to an instruction -// inside the vertex program, otherwise the GPU locks up. -// fglrx usually sets CNTL_3_UNKNOWN to the end of the program and -// CNTL_1_UNKNOWN points to instruction where last write to position takes place. -// Most likely this is used to ignore rest of the program in cases where group of verts arent visible. -// For some reason this "section" is sometimes accepted other instruction that have -// no relationship with position calculations. -*/ + * memory bank. PROGRAM_END points to the last instruction of the active + * program + * + * The meaning of the two UNKNOWN fields is obviously not known. However, + * experiments so far have shown that both *must* point to an instruction + * inside the vertex program, otherwise the GPU locks up. + * fglrx usually sets CNTL_3_UNKNOWN to the end of the program and + * CNTL_1_UNKNOWN points to instruction where last write to position takes + * place. + * Most likely this is used to ignore rest of the program in cases + * where group of verts arent visible. For some reason this "section" + * is sometimes accepted other instruction that have no relationship with + *position calculations. + */ #define R300_VAP_PVS_CNTL_1 0x22D0 # define R300_PVS_CNTL_1_PROGRAM_START_SHIFT 0 # define R300_PVS_CNTL_1_POS_END_SHIFT 10 @@ -304,7 +334,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_PVS_CNTL_3_PROGRAM_UNKNOWN2_SHIFT 0 /* The entire range from 0x2300 to 0x2AC inclusive seems to be used for -// immediate vertices */ + * immediate vertices + */ #define R300_VAP_VTX_COLOR_R 0x2464 #define R300_VAP_VTX_COLOR_G 0x2468 #define R300_VAP_VTX_COLOR_B 0x246C @@ -314,13 +345,15 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VAP_VTX_POS_0_X_2 0x24A0 /* used for glVertex3*() */ #define R300_VAP_VTX_POS_0_Y_2 0x24A4 #define R300_VAP_VTX_POS_0_Z_2 0x24A8 -#define R300_VAP_VTX_END_OF_PKT 0x24AC /* write 0 to indicate end of packet? */ +/* write 0 to indicate end of packet? */ +#define R300_VAP_VTX_END_OF_PKT 0x24AC /* gap */ /* These are values from r300_reg/r300_reg.h - they are known to be correct - and are here so we can use one register file instead of several - - Vladimir */ + * and are here so we can use one register file instead of several + * - Vladimir + */ #define R300_GB_VAP_RASTER_VTX_FMT_0 0x4000 # define R300_GB_VAP_RASTER_VTX_FMT_0__POS_PRESENT (1<<0) # define R300_GB_VAP_RASTER_VTX_FMT_0__COLOR_0_PRESENT (1<<1) @@ -343,8 +376,10 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_GB_VAP_RASTER_VTX_FMT_1__TEX_7_COMP_CNT_SHIFT 21 /* UNK30 seems to enables point to quad transformation on textures - (or something closely related to that). - This bit is rather fatal at the time being due to lackings at pixel shader side */ + * (or something closely related to that). + * This bit is rather fatal at the time being due to lackings at pixel + * shader side + */ #define R300_GB_ENABLE 0x4008 # define R300_GB_POINT_STUFF_ENABLE (1<<0) # define R300_GB_LINE_STUFF_ENABLE (1<<1) @@ -452,9 +487,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_AA_SUBSAMPLES_4 (2<<1) # define R300_AA_SUBSAMPLES_6 (3<<1) -/* END */ - /* gap */ + /* Zero to flush caches. */ #define R300_TX_CNTL 0x4100 @@ -478,8 +512,9 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TX_ENABLE_15 (1 << 15) /* The pointsize is given in multiples of 6. The pointsize can be -// enormous: Clear() renders a single point that fills the entire -// framebuffer. */ + * enormous: Clear() renders a single point that fills the entire + * framebuffer. + */ #define R300_RE_POINTSIZE 0x421C # define R300_POINTSIZE_Y_SHIFT 0 # define R300_POINTSIZE_Y_MASK (0xFFFF << 0) /* GUESS */ @@ -488,11 +523,11 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_POINTSIZE_MAX (R300_POINTSIZE_Y_MASK / 6) /* The line width is given in multiples of 6. - In default mode lines are classified as vertical lines. - HO: horizontal - VE: vertical or horizontal - HO & VE: no classification -*/ + * In default mode lines are classified as vertical lines. + * HO: horizontal + * VE: vertical or horizontal + * HO & VE: no classification + */ #define R300_RE_LINE_CNT 0x4234 # define R300_LINESIZE_SHIFT 0 # define R300_LINESIZE_MASK (0xFFFF << 0) /* GUESS */ @@ -522,23 +557,25 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_RE_FOG_START 0x4298 /* Not sure why there are duplicate of factor and constant values. - My best guess so far is that there are seperate zbiases for test and write. - Ordering might be wrong. - Some of the tests indicate that fgl has a fallback implementation of zbias - via pixel shaders. */ + * My best guess so far is that there are seperate zbiases for test and write. + * Ordering might be wrong. + * Some of the tests indicate that fgl has a fallback implementation of zbias + * via pixel shaders. + */ #define R300_RE_ZBIAS_T_FACTOR 0x42A4 #define R300_RE_ZBIAS_T_CONSTANT 0x42A8 #define R300_RE_ZBIAS_W_FACTOR 0x42AC #define R300_RE_ZBIAS_W_CONSTANT 0x42B0 /* This register needs to be set to (1<<1) for RV350 to correctly - perform depth test (see --vb-triangles in r300_demo) - Don't know about other chips. - Vladimir - This is set to 3 when GL_POLYGON_OFFSET_FILL is on. - My guess is that there are two bits for each zbias primitive (FILL, LINE, POINT). - One to enable depth test and one for depth write. - Yet this doesnt explain why depth writes work ... - */ + * perform depth test (see --vb-triangles in r300_demo) + * Don't know about other chips. - Vladimir + * This is set to 3 when GL_POLYGON_OFFSET_FILL is on. + * My guess is that there are two bits for each zbias primitive + * (FILL, LINE, POINT). + * One to enable depth test and one for depth write. + * Yet this doesnt explain why depth writes work ... + */ #define R300_RE_OCCLUSION_CNTL 0x42B4 # define R300_OCCLUSION_ON (1<<1) @@ -549,30 +586,37 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_FRONT_FACE_CW (1 << 2) -/* BEGIN: Rasterization / Interpolators - many guesses -// 0_UNKNOWN_18 has always been set except for clear operations. -// TC_CNT is the number of incoming texture coordinate sets (i.e. it depends -// on the vertex program, *not* the fragment program) */ +/* BEGIN: Rasterization / Interpolators - many guesses */ + +/* 0_UNKNOWN_18 has always been set except for clear operations. + * TC_CNT is the number of incoming texture coordinate sets (i.e. it depends + * on the vertex program, *not* the fragment program) + */ #define R300_RS_CNTL_0 0x4300 # define R300_RS_CNTL_TC_CNT_SHIFT 2 # define R300_RS_CNTL_TC_CNT_MASK (7 << 2) -# define R300_RS_CNTL_CI_CNT_SHIFT 7 /* number of color interpolators used */ + /* number of color interpolators used */ +# define R300_RS_CNTL_CI_CNT_SHIFT 7 # define R300_RS_CNTL_0_UNKNOWN_18 (1 << 18) -/* Guess: RS_CNTL_1 holds the index of the highest used RS_ROUTE_n register. */ + /* Guess: RS_CNTL_1 holds the index of the highest used RS_ROUTE_n + register. */ #define R300_RS_CNTL_1 0x4304 /* gap */ + /* Only used for texture coordinates. -// Use the source field to route texture coordinate input from the vertex program -// to the desired interpolator. Note that the source field is relative to the -// outputs the vertex program *actually* writes. If a vertex program only writes -// texcoord[1], this will be source index 0. -// Set INTERP_USED on all interpolators that produce data used by the -// fragment program. INTERP_USED looks like a swizzling mask, but -// I haven't seen it used that way. -// -// Note: The _UNKNOWN constants are always set in their respective register. -// I don't know if this is necessary. */ + * Use the source field to route texture coordinate input from the + * vertex program to the desired interpolator. Note that the source + * field is relative to the outputs the vertex program *actually* + * writes. If a vertex program only writes texcoord[1], this will + * be source index 0. + * Set INTERP_USED on all interpolators that produce data used by + * the fragment program. INTERP_USED looks like a swizzling mask, + * but I haven't seen it used that way. + * + * Note: The _UNKNOWN constants are always set in their respective + * register. I don't know if this is necessary. + */ #define R300_RS_INTERP_0 0x4310 #define R300_RS_INTERP_1 0x4314 # define R300_RS_INTERP_1_UNKNOWN 0x40 @@ -589,7 +633,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_RS_INTERP_USED 0x00D10000 /* These DWORDs control how vertex data is routed into fragment program -// registers, after interpolators. */ + * registers, after interpolators. + */ #define R300_RS_ROUTE_0 0x4330 #define R300_RS_ROUTE_1 0x4334 #define R300_RS_ROUTE_2 0x4338 @@ -611,8 +656,9 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_RS_ROUTE_DEST_MASK (31 << 6) /* GUESS */ /* Special handling for color: When the fragment program uses color, -// the ROUTE_0_COLOR bit is set and ROUTE_0_COLOR_DEST contains the -// color register index. */ + * the ROUTE_0_COLOR bit is set and ROUTE_0_COLOR_DEST contains the + * color register index. + */ # define R300_RS_ROUTE_0_COLOR (1 << 14) # define R300_RS_ROUTE_0_COLOR_DEST_SHIFT 17 # define R300_RS_ROUTE_0_COLOR_DEST_MASK (31 << 17) /* GUESS */ @@ -621,22 +667,24 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_RS_ROUTE_1_COLOR1_DEST_SHIFT 17 # define R300_RS_ROUTE_1_COLOR1_DEST_MASK (31 << 17) # define R300_RS_ROUTE_1_UNKNOWN11 (1 << 11) -/* END */ - -/* BEGIN: Scissors and cliprects -// There are four clipping rectangles. Their corner coordinates are inclusive. -// Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending -// on whether the pixel is inside cliprects 0-3, respectively. For example, -// if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned -// the number 3 (binary 0011). -// Iff the bit corresponding to the pixel's number in RE_CLIPRECT_CNTL is set, -// the pixel is rasterized. -// -// In addition to this, there is a scissors rectangle. Only pixels inside the -// scissors rectangle are drawn. (coordinates are inclusive) -// -// For some reason, the top-left corner of the framebuffer is at (1440, 1440) -// for the purpose of clipping and scissors. */ +/* END: Rasterization / Interpolators - many guesses */ + +/* BEGIN: Scissors and cliprects */ + +/* There are four clipping rectangles. Their corner coordinates are inclusive. + * Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending + * on whether the pixel is inside cliprects 0-3, respectively. For example, + * if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned + * the number 3 (binary 0011). + * Iff the bit corresponding to the pixel's number in RE_CLIPRECT_CNTL is set, + * the pixel is rasterized. + * + * In addition to this, there is a scissors rectangle. Only pixels inside the + * scissors rectangle are drawn. (coordinates are inclusive) + * + * For some reason, the top-left corner of the framebuffer is at (1440, 1440) + * for the purpose of clipping and scissors. + */ #define R300_RE_CLIPRECT_TL_0 0x43B0 #define R300_RE_CLIPRECT_BR_0 0x43B4 #define R300_RE_CLIPRECT_TL_1 0x43B8 @@ -670,6 +718,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_CLIP_3210 (1 << 15) /* gap */ + #define R300_RE_SCISSORS_TL 0x43E0 #define R300_RE_SCISSORS_BR 0x43E4 # define R300_SCISSORS_OFFSET 1440 @@ -677,12 +726,15 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_SCISSORS_X_MASK (0x1FFF << 0) # define R300_SCISSORS_Y_SHIFT 13 # define R300_SCISSORS_Y_MASK (0x1FFF << 13) -/* END */ +/* END: Scissors and cliprects */ -/* BEGIN: Texture specification -// The texture specification dwords are grouped by meaning and not by texture unit. -// This means that e.g. the offset for texture image unit N is found in register -// TX_OFFSET_0 + (4*N) */ +/* BEGIN: Texture specification */ + +/* + * The texture specification dwords are grouped by meaning and not by texture + * unit. This means that e.g. the offset for texture image unit N is found in + * register TX_OFFSET_0 + (4*N) + */ #define R300_TX_FILTER_0 0x4400 # define R300_TX_REPEAT 0 # define R300_TX_MIRRORED 1 @@ -706,13 +758,14 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TX_MIN_FILTER_LINEAR_MIP_LINEAR (10 << 11) /* NOTE: NEAREST doesnt seem to exist. - Im not seting MAG_FILTER_MASK and (3 << 11) on for all - anisotropy modes because that would void selected mag filter */ -# define R300_TX_MIN_FILTER_ANISO_NEAREST ((0 << 13) /*|R300_TX_MAG_FILTER_MASK|(3<<11)*/) -# define R300_TX_MIN_FILTER_ANISO_LINEAR ((0 << 13) /*|R300_TX_MAG_FILTER_MASK|(3<<11)*/) -# define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_NEAREST ((1 << 13) /*|R300_TX_MAG_FILTER_MASK|(3<<11)*/) -# define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_LINEAR ((2 << 13) /*|R300_TX_MAG_FILTER_MASK|(3<<11)*/) -# define R300_TX_MIN_FILTER_MASK ( (15 << 11) | (3 << 13) ) + * Im not seting MAG_FILTER_MASK and (3 << 11) on for all + * anisotropy modes because that would void selected mag filter + */ +# define R300_TX_MIN_FILTER_ANISO_NEAREST (0 << 13) +# define R300_TX_MIN_FILTER_ANISO_LINEAR (0 << 13) +# define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_NEAREST (1 << 13) +# define R300_TX_MIN_FILTER_ANISO_NEAREST_MIP_LINEAR (2 << 13) +# define R300_TX_MIN_FILTER_MASK ( (15 << 11) | (3 << 13) ) # define R300_TX_MAX_ANISO_1_TO_1 (0 << 21) # define R300_TX_MAX_ANISO_2_TO_1 (2 << 21) # define R300_TX_MAX_ANISO_4_TO_1 (4 << 21) @@ -745,8 +798,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TX_UNK23 (1 << 23) # define R300_TX_MAX_MIP_LEVEL_SHIFT 26 # define R300_TX_MAX_MIP_LEVEL_MASK (0xf << 26) -# define R300_TX_SIZE_PROJECTED (1<<30) -# define R300_TX_SIZE_TXPITCH_EN (1<<31) +# define R300_TX_SIZE_PROJECTED (1<<30) +# define R300_TX_SIZE_TXPITCH_EN (1<<31) #define R300_TX_FORMAT_0 0x44C0 /* The interpretation of the format word by Wladimir van der Laan */ /* The X, Y, Z and W refer to the layout of the components. @@ -774,7 +827,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TX_FORMAT_A8R8G8B8 0x13 /* no swizzle */ # define R300_TX_FORMAT_B8G8_B8G8 0x14 /* no swizzle */ # define R300_TX_FORMAT_G8R8_G8B8 0x15 /* no swizzle */ - /* 0x16 - some 16 bit green format.. ?? */ + /* 0x16 - some 16 bit green format.. ?? */ # define R300_TX_FORMAT_UNK25 (1 << 25) /* no swizzle */ # define R300_TX_FORMAT_CUBIC_MAP (1 << 26) @@ -802,23 +855,26 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TX_FORMAT_W 3 # define R300_TX_FORMAT_ZERO 4 # define R300_TX_FORMAT_ONE 5 -# define R300_TX_FORMAT_CUT_Z 6 /* 2.0*Z, everything above 1.0 is set to 0.0 */ -# define R300_TX_FORMAT_CUT_W 7 /* 2.0*W, everything above 1.0 is set to 0.0 */ + /* 2.0*Z, everything above 1.0 is set to 0.0 */ +# define R300_TX_FORMAT_CUT_Z 6 + /* 2.0*W, everything above 1.0 is set to 0.0 */ +# define R300_TX_FORMAT_CUT_W 7 # define R300_TX_FORMAT_B_SHIFT 18 # define R300_TX_FORMAT_G_SHIFT 15 # define R300_TX_FORMAT_R_SHIFT 12 # define R300_TX_FORMAT_A_SHIFT 9 /* Convenience macro to take care of layout and swizzling */ -# define R300_EASY_TX_FORMAT(B, G, R, A, FMT) (\ - ((R300_TX_FORMAT_##B)<<R300_TX_FORMAT_B_SHIFT) \ - | ((R300_TX_FORMAT_##G)<<R300_TX_FORMAT_G_SHIFT) \ - | ((R300_TX_FORMAT_##R)<<R300_TX_FORMAT_R_SHIFT) \ - | ((R300_TX_FORMAT_##A)<<R300_TX_FORMAT_A_SHIFT) \ - | (R300_TX_FORMAT_##FMT) \ - ) - /* These can be ORed with result of R300_EASY_TX_FORMAT() */ - /* We don't really know what they do. Take values from a constant color ? */ +# define R300_EASY_TX_FORMAT(B, G, R, A, FMT) ( \ + ((R300_TX_FORMAT_##B)<<R300_TX_FORMAT_B_SHIFT) \ + | ((R300_TX_FORMAT_##G)<<R300_TX_FORMAT_G_SHIFT) \ + | ((R300_TX_FORMAT_##R)<<R300_TX_FORMAT_R_SHIFT) \ + | ((R300_TX_FORMAT_##A)<<R300_TX_FORMAT_A_SHIFT) \ + | (R300_TX_FORMAT_##FMT) \ + ) + /* These can be ORed with result of R300_EASY_TX_FORMAT() + We don't really know what they do. Take values from a + constant color ? */ # define R300_TX_FORMAT_CONST_X (1<<5) # define R300_TX_FORMAT_CONST_Y (2<<5) # define R300_TX_FORMAT_CONST_Z (4<<5) @@ -828,6 +884,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_TX_PITCH_0 0x4500 /* obvious missing in gap */ #define R300_TX_OFFSET_0 0x4540 + /* BEGIN: Guess from R200 */ # define R300_TXO_ENDIAN_NO_SWAP (0 << 0) # define R300_TXO_ENDIAN_BYTE_SWAP (1 << 0) @@ -837,35 +894,42 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_TXO_MICRO_TILE (1 << 3) # define R300_TXO_OFFSET_MASK 0xffffffe0 # define R300_TXO_OFFSET_SHIFT 5 -/* END */ -#define R300_TX_CHROMA_KEY_0 0x4580 /* 32 bit chroma key */ -#define R300_TX_BORDER_COLOR_0 0x45C0 //ff00ff00 == { 0, 1.0, 0, 1.0 } - -/* END */ - -/* BEGIN: Fragment program instruction set -// Fragment programs are written directly into register space. -// There are separate instruction streams for texture instructions and ALU -// instructions. -// In order to synchronize these streams, the program is divided into up -// to 4 nodes. Each node begins with a number of TEX operations, followed -// by a number of ALU operations. -// The first node can have zero TEX ops, all subsequent nodes must have at least -// one TEX ops. -// All nodes must have at least one ALU op. -// -// The index of the last node is stored in PFS_CNTL_0: A value of 0 means -// 1 node, a value of 3 means 4 nodes. -// The total amount of instructions is defined in PFS_CNTL_2. The offsets are -// offsets into the respective instruction streams, while *_END points to the -// last instruction relative to this offset. */ +/* END: Guess from R200 */ + +/* 32 bit chroma key */ +#define R300_TX_CHROMA_KEY_0 0x4580 +/* ff00ff00 == { 0, 1.0, 0, 1.0 } */ +#define R300_TX_BORDER_COLOR_0 0x45C0 + +/* END: Texture specification */ + +/* BEGIN: Fragment program instruction set */ + +/* Fragment programs are written directly into register space. + * There are separate instruction streams for texture instructions and ALU + * instructions. + * In order to synchronize these streams, the program is divided into up + * to 4 nodes. Each node begins with a number of TEX operations, followed + * by a number of ALU operations. + * The first node can have zero TEX ops, all subsequent nodes must have at + * least + * one TEX ops. + * All nodes must have at least one ALU op. + * + * The index of the last node is stored in PFS_CNTL_0: A value of 0 means + * 1 node, a value of 3 means 4 nodes. + * The total amount of instructions is defined in PFS_CNTL_2. The offsets are + * offsets into the respective instruction streams, while *_END points to the + * last instruction relative to this offset. + */ #define R300_PFS_CNTL_0 0x4600 # define R300_PFS_CNTL_LAST_NODES_SHIFT 0 # define R300_PFS_CNTL_LAST_NODES_MASK (3 << 0) # define R300_PFS_CNTL_FIRST_NODE_HAS_TEX (1 << 3) #define R300_PFS_CNTL_1 0x4604 /* There is an unshifted value here which has so far always been equal to the -// index of the highest used temporary register. */ + * index of the highest used temporary register. + */ #define R300_PFS_CNTL_2 0x4608 # define R300_PFS_CNTL_ALU_OFFSET_SHIFT 0 # define R300_PFS_CNTL_ALU_OFFSET_MASK (63 << 0) @@ -877,13 +941,15 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_PFS_CNTL_TEX_END_MASK (31 << 18) /* GUESS */ /* gap */ + /* Nodes are stored backwards. The last active node is always stored in -// PFS_NODE_3. -// Example: In a 2-node program, NODE_0 and NODE_1 are set to 0. The -// first node is stored in NODE_2, the second node is stored in NODE_3. -// -// Offsets are relative to the master offset from PFS_CNTL_2. -// LAST_NODE is set for the last node, and only for the last node. */ + * PFS_NODE_3. + * Example: In a 2-node program, NODE_0 and NODE_1 are set to 0. The + * first node is stored in NODE_2, the second node is stored in NODE_3. + * + * Offsets are relative to the master offset from PFS_CNTL_2. + * LAST_NODE is set for the last node, and only for the last node. + */ #define R300_PFS_NODE_0 0x4610 #define R300_PFS_NODE_1 0x4614 #define R300_PFS_NODE_2 0x4618 @@ -901,86 +967,92 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_PFS_NODE_OUTPUT_DEPTH (1 << 23) /* TEX -// As far as I can tell, texture instructions cannot write into output -// registers directly. A subsequent ALU instruction is always necessary, -// even if it's just MAD o0, r0, 1, 0 */ + * As far as I can tell, texture instructions cannot write into output + * registers directly. A subsequent ALU instruction is always necessary, + * even if it's just MAD o0, r0, 1, 0 + */ #define R300_PFS_TEXI_0 0x4620 -# define R300_FPITX_SRC_SHIFT 0 -# define R300_FPITX_SRC_MASK (31 << 0) -# define R300_FPITX_SRC_CONST (1 << 5) /* GUESS */ -# define R300_FPITX_DST_SHIFT 6 -# define R300_FPITX_DST_MASK (31 << 6) -# define R300_FPITX_IMAGE_SHIFT 11 -# define R300_FPITX_IMAGE_MASK (15 << 11) /* GUESS based on layout and native limits */ +# define R300_FPITX_SRC_SHIFT 0 +# define R300_FPITX_SRC_MASK (31 << 0) + /* GUESS */ +# define R300_FPITX_SRC_CONST (1 << 5) +# define R300_FPITX_DST_SHIFT 6 +# define R300_FPITX_DST_MASK (31 << 6) +# define R300_FPITX_IMAGE_SHIFT 11 + /* GUESS based on layout and native limits */ +# define R300_FPITX_IMAGE_MASK (15 << 11) /* Unsure if these are opcodes, or some kind of bitfield, but this is how * they were set when I checked */ -# define R300_FPITX_OPCODE_SHIFT 15 -# define R300_FPITX_OP_TEX 1 -# define R300_FPITX_OP_KIL 2 -# define R300_FPITX_OP_TXP 3 -# define R300_FPITX_OP_TXB 4 +# define R300_FPITX_OPCODE_SHIFT 15 +# define R300_FPITX_OP_TEX 1 +# define R300_FPITX_OP_KIL 2 +# define R300_FPITX_OP_TXP 3 +# define R300_FPITX_OP_TXB 4 /* ALU -// The ALU instructions register blocks are enumerated according to the order -// in which fglrx. I assume there is space for 64 instructions, since -// each block has space for a maximum of 64 DWORDs, and this matches reported -// native limits. -// -// The basic functional block seems to be one MAD for each color and alpha, -// and an adder that adds all components after the MUL. -// - ADD, MUL, MAD etc.: use MAD with appropriate neutral operands -// - DP4: Use OUTC_DP4, OUTA_DP4 -// - DP3: Use OUTC_DP3, OUTA_DP4, appropriate alpha operands -// - DPH: Use OUTC_DP4, OUTA_DP4, appropriate alpha operands -// - CMP: If ARG2 < 0, return ARG1, else return ARG0 -// - FLR: use FRC+MAD -// - XPD: use MAD+MAD -// - SGE, SLT: use MAD+CMP -// - RSQ: use ABS modifier for argument -// - Use OUTC_REPL_ALPHA to write results of an alpha-only operation (e.g. RCP) -// into color register -// - apparently, there's no quick DST operation -// - fglrx set FPI2_UNKNOWN_31 on a "MAD fragment.color, tmp0, tmp1, tmp2" -// - fglrx set FPI2_UNKNOWN_31 on a "MAX r2, r1, c0" -// - fglrx once set FPI0_UNKNOWN_31 on a "FRC r1, r1" -// -// Operand selection -// First stage selects three sources from the available registers and -// constant parameters. This is defined in INSTR1 (color) and INSTR3 (alpha). -// fglrx sorts the three source fields: Registers before constants, -// lower indices before higher indices; I do not know whether this is necessary. -// fglrx fills unused sources with "read constant 0" -// According to specs, you cannot select more than two different constants. -// -// Second stage selects the operands from the sources. This is defined in -// INSTR0 (color) and INSTR2 (alpha). You can also select the special constants -// zero and one. -// Swizzling and negation happens in this stage, as well. -// -// Important: Color and alpha seem to be mostly separate, i.e. their sources -// selection appears to be fully independent (the register storage is probably -// physically split into a color and an alpha section). -// However (because of the apparent physical split), there is some interaction -// WRT swizzling. If, for example, you want to load an R component into an -// Alpha operand, this R component is taken from a *color* source, not from -// an alpha source. The corresponding register doesn't even have to appear in -// the alpha sources list. (I hope this alll makes sense to you) -// -// Destination selection -// The destination register index is in FPI1 (color) and FPI3 (alpha) together -// with enable bits. -// There are separate enable bits for writing into temporary registers -// (DSTC_REG_* /DSTA_REG) and and program output registers (DSTC_OUTPUT_* /DSTA_OUTPUT). -// You can write to both at once, or not write at all (the same index -// must be used for both). -// -// Note: There is a special form for LRP -// - Argument order is the same as in ARB_fragment_program. -// - Operation is MAD -// - ARG1 is set to ARGC_SRC1C_LRP/ARGC_SRC1A_LRP -// - Set FPI0/FPI2_SPECIAL_LRP -// Arbitrary LRP (including support for swizzling) requires vanilla MAD+MAD */ + * The ALU instructions register blocks are enumerated according to the order + * in which fglrx. I assume there is space for 64 instructions, since + * each block has space for a maximum of 64 DWORDs, and this matches reported + * native limits. + * + * The basic functional block seems to be one MAD for each color and alpha, + * and an adder that adds all components after the MUL. + * - ADD, MUL, MAD etc.: use MAD with appropriate neutral operands + * - DP4: Use OUTC_DP4, OUTA_DP4 + * - DP3: Use OUTC_DP3, OUTA_DP4, appropriate alpha operands + * - DPH: Use OUTC_DP4, OUTA_DP4, appropriate alpha operands + * - CMP: If ARG2 < 0, return ARG1, else return ARG0 + * - FLR: use FRC+MAD + * - XPD: use MAD+MAD + * - SGE, SLT: use MAD+CMP + * - RSQ: use ABS modifier for argument + * - Use OUTC_REPL_ALPHA to write results of an alpha-only operation + * (e.g. RCP) into color register + * - apparently, there's no quick DST operation + * - fglrx set FPI2_UNKNOWN_31 on a "MAD fragment.color, tmp0, tmp1, tmp2" + * - fglrx set FPI2_UNKNOWN_31 on a "MAX r2, r1, c0" + * - fglrx once set FPI0_UNKNOWN_31 on a "FRC r1, r1" + * + * Operand selection + * First stage selects three sources from the available registers and + * constant parameters. This is defined in INSTR1 (color) and INSTR3 (alpha). + * fglrx sorts the three source fields: Registers before constants, + * lower indices before higher indices; I do not know whether this is + * necessary. + * + * fglrx fills unused sources with "read constant 0" + * According to specs, you cannot select more than two different constants. + * + * Second stage selects the operands from the sources. This is defined in + * INSTR0 (color) and INSTR2 (alpha). You can also select the special constants + * zero and one. + * Swizzling and negation happens in this stage, as well. + * + * Important: Color and alpha seem to be mostly separate, i.e. their sources + * selection appears to be fully independent (the register storage is probably + * physically split into a color and an alpha section). + * However (because of the apparent physical split), there is some interaction + * WRT swizzling. If, for example, you want to load an R component into an + * Alpha operand, this R component is taken from a *color* source, not from + * an alpha source. The corresponding register doesn't even have to appear in + * the alpha sources list. (I hope this alll makes sense to you) + * + * Destination selection + * The destination register index is in FPI1 (color) and FPI3 (alpha) + * together with enable bits. + * There are separate enable bits for writing into temporary registers + * (DSTC_REG_* /DSTA_REG) and and program output registers (DSTC_OUTPUT_* + * /DSTA_OUTPUT). You can write to both at once, or not write at all (the + * same index must be used for both). + * + * Note: There is a special form for LRP + * - Argument order is the same as in ARB_fragment_program. + * - Operation is MAD + * - ARG1 is set to ARGC_SRC1C_LRP/ARGC_SRC1A_LRP + * - Set FPI0/FPI2_SPECIAL_LRP + * Arbitrary LRP (including support for swizzling) requires vanilla MAD+MAD + */ #define R300_PFS_INSTR1_0 0x46C0 # define R300_FPI1_SRC0C_SHIFT 0 # define R300_FPI1_SRC0C_MASK (31 << 0) @@ -1037,7 +1109,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_FPI0_ARGC_SRC1C_LRP 15 # define R300_FPI0_ARGC_ZERO 20 # define R300_FPI0_ARGC_ONE 21 -# define R300_FPI0_ARGC_HALF 22 /* GUESS */ + /* GUESS */ +# define R300_FPI0_ARGC_HALF 22 # define R300_FPI0_ARGC_SRC0C_YZX 23 # define R300_FPI0_ARGC_SRC1C_YZX 24 # define R300_FPI0_ARGC_SRC2C_YZX 25 @@ -1088,20 +1161,23 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_FPI2_ARGA_SRC1A_LRP 15 # define R300_FPI2_ARGA_ZERO 16 # define R300_FPI2_ARGA_ONE 17 -# define R300_FPI2_ARGA_HALF 18 /* GUESS */ - + /* GUESS */ +# define R300_FPI2_ARGA_HALF 18 # define R300_FPI2_ARG0A_SHIFT 0 # define R300_FPI2_ARG0A_MASK (31 << 0) # define R300_FPI2_ARG0A_NEG (1 << 5) -# define R300_FPI2_ARG0A_ABS (1 << 6) /* GUESS */ + /* GUESS */ +# define R300_FPI2_ARG0A_ABS (1 << 6) # define R300_FPI2_ARG1A_SHIFT 7 # define R300_FPI2_ARG1A_MASK (31 << 7) # define R300_FPI2_ARG1A_NEG (1 << 12) -# define R300_FPI2_ARG1A_ABS (1 << 13) /* GUESS */ + /* GUESS */ +# define R300_FPI2_ARG1A_ABS (1 << 13) # define R300_FPI2_ARG2A_SHIFT 14 # define R300_FPI2_ARG2A_MASK (31 << 14) # define R300_FPI2_ARG2A_NEG (1 << 19) -# define R300_FPI2_ARG2A_ABS (1 << 20) /* GUESS */ + /* GUESS */ +# define R300_FPI2_ARG2A_ABS (1 << 20) # define R300_FPI2_SPECIAL_LRP (1 << 21) # define R300_FPI2_OUTA_MAD (0 << 23) # define R300_FPI2_OUTA_DP4 (1 << 23) @@ -1115,7 +1191,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_FPI2_OUTA_RSQ (11 << 23) # define R300_FPI2_OUTA_SAT (1 << 30) # define R300_FPI2_UNKNOWN_31 (1 << 31) -/* END */ +/* END: Fragment program instruction set */ /* Fog state and color */ #define R300_RE_FOG_STATE 0x4BC0 @@ -1142,6 +1218,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_ALPHA_TEST_ENABLE (1 << 11) /* gap */ + /* Fragment program parameters in 7.16 floating point */ #define R300_PFS_PARAM_0_X 0x4C00 #define R300_PFS_PARAM_0_Y 0x4C04 @@ -1154,13 +1231,16 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_PFS_PARAM_31_W 0x4DFC /* Notes: -// - AFAIK fglrx always sets BLEND_UNKNOWN when blending is used in the application -// - AFAIK fglrx always sets BLEND_NO_SEPARATE when CBLEND and ABLEND are set to the same -// function (both registers are always set up completely in any case) -// - Most blend flags are simply copied from R200 and not tested yet */ + * - AFAIK fglrx always sets BLEND_UNKNOWN when blending is used in + * the application + * - AFAIK fglrx always sets BLEND_NO_SEPARATE when CBLEND and ABLEND + * are set to the same + * function (both registers are always set up completely in any case) + * - Most blend flags are simply copied from R200 and not tested yet + */ #define R300_RB3D_CBLEND 0x4E04 #define R300_RB3D_ABLEND 0x4E08 - /* the following only appear in CBLEND */ +/* the following only appear in CBLEND */ # define R300_BLEND_ENABLE (1 << 0) # define R300_BLEND_UNKNOWN (3 << 1) # define R300_BLEND_NO_SEPARATE (1 << 3) @@ -1200,15 +1280,19 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_COLORMASK0_A (1<<3) /* gap */ + #define R300_RB3D_COLOROFFSET0 0x4E28 # define R300_COLOROFFSET_MASK 0xFFFFFFF0 /* GUESS */ #define R300_RB3D_COLOROFFSET1 0x4E2C /* GUESS */ #define R300_RB3D_COLOROFFSET2 0x4E30 /* GUESS */ #define R300_RB3D_COLOROFFSET3 0x4E34 /* GUESS */ + /* gap */ + /* Bit 16: Larger tiles -// Bit 17: 4x2 tiles -// Bit 18: Extremely weird tile like, but some pixels duplicated? */ + * Bit 17: 4x2 tiles + * Bit 18: Extremely weird tile like, but some pixels duplicated? + */ #define R300_RB3D_COLORPITCH0 0x4E38 # define R300_COLORPITCH_MASK 0x00001FF8 /* GUESS */ # define R300_COLOR_TILE_ENABLE (1 << 16) /* GUESS */ @@ -1223,18 +1307,22 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_RB3D_COLORPITCH3 0x4E44 /* GUESS */ /* gap */ + /* Guess by Vladimir. -// Set to 0A before 3D operations, set to 02 afterwards. */ + * Set to 0A before 3D operations, set to 02 afterwards. + */ #define R300_RB3D_DSTCACHE_CTLSTAT 0x4E4C # define R300_RB3D_DSTCACHE_02 0x00000002 # define R300_RB3D_DSTCACHE_0A 0x0000000A /* gap */ -/* There seems to be no "write only" setting, so use Z-test = ALWAYS for this. */ -/* Bit (1<<8) is the "test" bit. so plain write is 6 - vd */ +/* There seems to be no "write only" setting, so use Z-test = ALWAYS + * for this. + * Bit (1<<8) is the "test" bit. so plain write is 6 - vd + */ #define R300_RB3D_ZSTENCIL_CNTL_0 0x4F00 -# define R300_RB3D_Z_DISABLED_1 0x00000010 /* GUESS */ -# define R300_RB3D_Z_DISABLED_2 0x00000014 /* GUESS */ +# define R300_RB3D_Z_DISABLED_1 0x00000010 +# define R300_RB3D_Z_DISABLED_2 0x00000014 # define R300_RB3D_Z_TEST 0x00000012 # define R300_RB3D_Z_TEST_AND_WRITE 0x00000016 # define R300_RB3D_Z_WRITE_ONLY 0x00000006 @@ -1245,7 +1333,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_RB3D_STENCIL_ENABLE 0x00000001 #define R300_RB3D_ZSTENCIL_CNTL_1 0x4F04 - /* functions */ + /* functions */ # define R300_ZS_NEVER 0 # define R300_ZS_LESS 1 # define R300_ZS_LEQUAL 2 @@ -1255,7 +1343,7 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_ZS_NOTEQUAL 6 # define R300_ZS_ALWAYS 7 # define R300_ZS_MASK 7 - /* operations */ + /* operations */ # define R300_ZS_KEEP 0 # define R300_ZS_ZERO 1 # define R300_ZS_REPLACE 2 @@ -1264,9 +1352,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_ZS_INVERT 5 # define R300_ZS_INCR_WRAP 6 # define R300_ZS_DECR_WRAP 7 - - /* front and back refer to operations done for front - and back faces, i.e. separate stencil function support */ + /* front and back refer to operations done for front + and back faces, i.e. separate stencil function support */ # define R300_RB3D_ZS1_DEPTH_FUNC_SHIFT 0 # define R300_RB3D_ZS1_FRONT_FUNC_SHIFT 3 # define R300_RB3D_ZS1_FRONT_FAIL_OP_SHIFT 6 @@ -1277,8 +1364,6 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_RB3D_ZS1_BACK_ZPASS_OP_SHIFT 21 # define R300_RB3D_ZS1_BACK_ZFAIL_OP_SHIFT 24 - - #define R300_RB3D_ZSTENCIL_CNTL_2 0x4F08 # define R300_RB3D_ZS2_STENCIL_REF_SHIFT 0 # define R300_RB3D_ZS2_STENCIL_MASK 0xFF @@ -1290,10 +1375,11 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_RB3D_ZSTENCIL_FORMAT 0x4F10 # define R300_DEPTH_FORMAT_16BIT_INT_Z (0 << 0) # define R300_DEPTH_FORMAT_24BIT_INT_Z (2 << 0) - /* 16 bit format or some aditional bit ? */ + /* 16 bit format or some aditional bit ? */ # define R300_DEPTH_FORMAT_UNK32 (32 << 0) /* gap */ + #define R300_RB3D_DEPTHOFFSET 0x4F20 #define R300_RB3D_DEPTHPITCH 0x4F24 # define R300_DEPTHPITCH_MASK 0x00001FF8 /* GUESS */ @@ -1303,34 +1389,40 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_DEPTH_ENDIAN_WORD_SWAP (1 << 18) /* GUESS */ # define R300_DEPTH_ENDIAN_DWORD_SWAP (2 << 18) /* GUESS */ -/* BEGIN: Vertex program instruction set -// Every instruction is four dwords long: -// DWORD 0: output and opcode -// DWORD 1: first argument -// DWORD 2: second argument -// DWORD 3: third argument -// -// Notes: -// - ABS r, a is implemented as MAX r, a, -a -// - MOV is implemented as ADD to zero -// - XPD is implemented as MUL + MAD -// - FLR is implemented as FRC + ADD -// - apparently, fglrx tries to schedule instructions so that there is at least -// one instruction between the write to a temporary and the first read -// from said temporary; however, violations of this scheduling are allowed -// - register indices seem to be unrelated with OpenGL aliasing to conventional state -// - only one attribute and one parameter can be loaded at a time; however, the -// same attribute/parameter can be used for more than one argument -// - the second software argument for POW is the third hardware argument (no idea why) -// - MAD with only temporaries as input seems to use VPI_OUT_SELECT_MAD_2 -// -// There is some magic surrounding LIT: -// The single argument is replicated across all three inputs, but swizzled: -// First argument: xyzy -// Second argument: xyzx -// Third argument: xyzw -// Whenever the result is used later in the fragment program, fglrx forces x and w -// to be 1.0 in the input selection; I don't know whether this is strictly necessary */ +/* BEGIN: Vertex program instruction set */ + +/* Every instruction is four dwords long: + * DWORD 0: output and opcode + * DWORD 1: first argument + * DWORD 2: second argument + * DWORD 3: third argument + * + * Notes: + * - ABS r, a is implemented as MAX r, a, -a + * - MOV is implemented as ADD to zero + * - XPD is implemented as MUL + MAD + * - FLR is implemented as FRC + ADD + * - apparently, fglrx tries to schedule instructions so that there is at + * least one instruction between the write to a temporary and the first + * read from said temporary; however, violations of this scheduling are + * allowed + * - register indices seem to be unrelated with OpenGL aliasing to + * conventional state + * - only one attribute and one parameter can be loaded at a time; however, + * the same attribute/parameter can be used for more than one argument + * - the second software argument for POW is the third hardware argument + * (no idea why) + * - MAD with only temporaries as input seems to use VPI_OUT_SELECT_MAD_2 + * + * There is some magic surrounding LIT: + * The single argument is replicated across all three inputs, but swizzled: + * First argument: xyzy + * Second argument: xyzx + * Third argument: xyzw + * Whenever the result is used later in the fragment program, fglrx forces + * x and w to be 1.0 in the input selection; I don't know whether this is + * strictly necessary + */ #define R300_VPI_OUT_OP_DOT (1 << 0) #define R300_VPI_OUT_OP_MUL (2 << 0) #define R300_VPI_OUT_OP_ADD (3 << 0) @@ -1341,20 +1433,24 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VPI_OUT_OP_MIN (8 << 0) #define R300_VPI_OUT_OP_SGE (9 << 0) #define R300_VPI_OUT_OP_SLT (10 << 0) -#define R300_VPI_OUT_OP_UNK12 (12 << 0) /* Used in GL_POINT_DISTANCE_ATTENUATION_ARB, vector(scalar, vector) */ + /* Used in GL_POINT_DISTANCE_ATTENUATION_ARB, vector(scalar, vector) */ +#define R300_VPI_OUT_OP_UNK12 (12 << 0) #define R300_VPI_OUT_OP_ARL (13 << 0) #define R300_VPI_OUT_OP_EXP (65 << 0) #define R300_VPI_OUT_OP_LOG (66 << 0) -#define R300_VPI_OUT_OP_UNK67 (67 << 0) /* Used in fog computations, scalar(scalar) */ + /* Used in fog computations, scalar(scalar) */ +#define R300_VPI_OUT_OP_UNK67 (67 << 0) #define R300_VPI_OUT_OP_LIT (68 << 0) #define R300_VPI_OUT_OP_POW (69 << 0) #define R300_VPI_OUT_OP_RCP (70 << 0) #define R300_VPI_OUT_OP_RSQ (72 << 0) -#define R300_VPI_OUT_OP_UNK73 (73 << 0) /* Used in GL_POINT_DISTANCE_ATTENUATION_ARB, scalar(scalar) */ + /* Used in GL_POINT_DISTANCE_ATTENUATION_ARB, scalar(scalar) */ +#define R300_VPI_OUT_OP_UNK73 (73 << 0) #define R300_VPI_OUT_OP_EX2 (75 << 0) #define R300_VPI_OUT_OP_LG2 (76 << 0) #define R300_VPI_OUT_OP_MAD_2 (128 << 0) -#define R300_VPI_OUT_OP_UNK129 (129 << 0) /* all temps, vector(scalar, vector, vector) */ + /* all temps, vector(scalar, vector, vector) */ +#define R300_VPI_OUT_OP_UNK129 (129 << 0) #define R300_VPI_OUT_REG_CLASS_TEMPORARY (0 << 8) #define R300_VPI_OUT_REG_CLASS_ADDR (1 << 8) @@ -1362,7 +1458,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VPI_OUT_REG_CLASS_MASK (31 << 8) #define R300_VPI_OUT_REG_INDEX_SHIFT 13 -#define R300_VPI_OUT_REG_INDEX_MASK (31 << 13) /* GUESS based on fglrx native limits */ + /* GUESS based on fglrx native limits */ +#define R300_VPI_OUT_REG_INDEX_MASK (31 << 13) #define R300_VPI_OUT_WRITE_X (1 << 20) #define R300_VPI_OUT_WRITE_Y (1 << 21) @@ -1373,14 +1470,16 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VPI_IN_REG_CLASS_ATTRIBUTE (1 << 0) #define R300_VPI_IN_REG_CLASS_PARAMETER (2 << 0) #define R300_VPI_IN_REG_CLASS_NONE (9 << 0) -#define R300_VPI_IN_REG_CLASS_MASK (31 << 0) /* GUESS */ +#define R300_VPI_IN_REG_CLASS_MASK (31 << 0) #define R300_VPI_IN_REG_INDEX_SHIFT 5 -#define R300_VPI_IN_REG_INDEX_MASK (255 << 5) /* GUESS based on fglrx native limits */ + /* GUESS based on fglrx native limits */ +#define R300_VPI_IN_REG_INDEX_MASK (255 << 5) /* The R300 can select components from the input register arbitrarily. -// Use the following constants, shifted by the component shift you -// want to select */ + * Use the following constants, shifted by the component shift you + * want to select + */ #define R300_VPI_IN_SELECT_X 0 #define R300_VPI_IN_SELECT_Y 1 #define R300_VPI_IN_SELECT_Z 2 @@ -1398,11 +1497,11 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_VPI_IN_NEG_Y (1 << 26) #define R300_VPI_IN_NEG_Z (1 << 27) #define R300_VPI_IN_NEG_W (1 << 28) -/* END */ +/* END: Vertex program instruction set */ -//BEGIN: Packet 3 commands +/* BEGIN: Packet 3 commands */ -// A primitive emission dword. +/* A primitive emission dword. */ #define R300_PRIM_TYPE_NONE (0 << 0) #define R300_PRIM_TYPE_POINT (1 << 0) #define R300_PRIM_TYPE_LINE (2 << 0) @@ -1414,7 +1513,8 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_PRIM_TYPE_RECT_LIST (8 << 0) #define R300_PRIM_TYPE_3VRT_POINT_LIST (9 << 0) #define R300_PRIM_TYPE_3VRT_LINE_LIST (10 << 0) -#define R300_PRIM_TYPE_POINT_SPRITES (11 << 0) // GUESS (based on r200) + /* GUESS (based on r200) */ +#define R300_PRIM_TYPE_POINT_SPRITES (11 << 0) #define R300_PRIM_TYPE_LINE_LOOP (12 << 0) #define R300_PRIM_TYPE_QUADS (13 << 0) #define R300_PRIM_TYPE_QUAD_STRIP (14 << 0) @@ -1424,29 +1524,32 @@ I am fairly certain that they are correct unless stated otherwise in comments. #define R300_PRIM_WALK_LIST (2 << 4) #define R300_PRIM_WALK_RING (3 << 4) #define R300_PRIM_WALK_MASK (3 << 4) -#define R300_PRIM_COLOR_ORDER_BGRA (0 << 6) // GUESS (based on r200) -#define R300_PRIM_COLOR_ORDER_RGBA (1 << 6) // GUESS + /* GUESS (based on r200) */ +#define R300_PRIM_COLOR_ORDER_BGRA (0 << 6) +#define R300_PRIM_COLOR_ORDER_RGBA (1 << 6) #define R300_PRIM_NUM_VERTICES_SHIFT 16 -// Draw a primitive from vertex data in arrays loaded via 3D_LOAD_VBPNTR. -// Two parameter dwords: -// 0. The first parameter appears to be always 0 -// 1. The second parameter is a standard primitive emission dword. +/* Draw a primitive from vertex data in arrays loaded via 3D_LOAD_VBPNTR. + * Two parameter dwords: + * 0. The first parameter appears to be always 0 + * 1. The second parameter is a standard primitive emission dword. + */ #define R300_PACKET3_3D_DRAW_VBUF 0x00002800 -// Specify the full set of vertex arrays as (address, stride). -// The first parameter is the number of vertex arrays specified. -// The rest of the command is a variable length list of blocks, where -// each block is three dwords long and specifies two arrays. -// The first dword of a block is split into two words, the lower significant -// word refers to the first array, the more significant word to the second -// array in the block. -// The low byte of each word contains the size of an array entry in dwords, -// the high byte contains the stride of the array. -// The second dword of a block contains the pointer to the first array, -// the third dword of a block contains the pointer to the second array. -// Note that if the total number of arrays is odd, the third dword of -// the last block is omitted. +/* Specify the full set of vertex arrays as (address, stride). + * The first parameter is the number of vertex arrays specified. + * The rest of the command is a variable length list of blocks, where + * each block is three dwords long and specifies two arrays. + * The first dword of a block is split into two words, the lower significant + * word refers to the first array, the more significant word to the second + * array in the block. + * The low byte of each word contains the size of an array entry in dwords, + * the high byte contains the stride of the array. + * The second dword of a block contains the pointer to the first array, + * the third dword of a block contains the pointer to the second array. + * Note that if the total number of arrays is odd, the third dword of + * the last block is omitted. + */ #define R300_PACKET3_3D_LOAD_VBPNTR 0x00002F00 #define R300_PACKET3_INDX_BUFFER 0x00003300 @@ -1455,6 +1558,6 @@ I am fairly certain that they are correct unless stated otherwise in comments. # define R300_EB_UNK2 0x0810 #define R300_PACKET3_3D_DRAW_INDX_2 0x00003600 -//END +/* END: Packet 3 commands */ #endif /* _R300_REG_H */ |