summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_allocator.c
diff options
context:
space:
mode:
authorJason Ekstrand <[email protected]>2016-02-18 10:37:59 -0800
committerJason Ekstrand <[email protected]>2016-02-18 10:37:59 -0800
commit9851c8285f7bf70a6cb4bede2ee94110c14acc19 (patch)
treea14cdf60da6797d1f92ac937c8ecb594622d5072 /src/intel/vulkan/anv_allocator.c
parent47b8b08612d44a43e43c3f6e95fe509ee3348723 (diff)
Move the intel vulkan driver to src/intel/vulkan
Diffstat (limited to 'src/intel/vulkan/anv_allocator.c')
-rw-r--r--src/intel/vulkan/anv_allocator.c862
1 files changed, 862 insertions, 0 deletions
diff --git a/src/intel/vulkan/anv_allocator.c b/src/intel/vulkan/anv_allocator.c
new file mode 100644
index 00000000000..a7ae975656b
--- /dev/null
+++ b/src/intel/vulkan/anv_allocator.c
@@ -0,0 +1,862 @@
+/*
+ * Copyright © 2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#define _DEFAULT_SOURCE
+
+#include <stdint.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <values.h>
+#include <assert.h>
+#include <linux/futex.h>
+#include <linux/memfd.h>
+#include <sys/time.h>
+#include <sys/mman.h>
+#include <sys/syscall.h>
+
+#include "anv_private.h"
+
+#ifdef HAVE_VALGRIND
+#define VG_NOACCESS_READ(__ptr) ({ \
+ VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
+ __typeof(*(__ptr)) __val = *(__ptr); \
+ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
+ __val; \
+})
+#define VG_NOACCESS_WRITE(__ptr, __val) ({ \
+ VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
+ *(__ptr) = (__val); \
+ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
+})
+#else
+#define VG_NOACCESS_READ(__ptr) (*(__ptr))
+#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
+#endif
+
+/* Design goals:
+ *
+ * - Lock free (except when resizing underlying bos)
+ *
+ * - Constant time allocation with typically only one atomic
+ *
+ * - Multiple allocation sizes without fragmentation
+ *
+ * - Can grow while keeping addresses and offset of contents stable
+ *
+ * - All allocations within one bo so we can point one of the
+ * STATE_BASE_ADDRESS pointers at it.
+ *
+ * The overall design is a two-level allocator: top level is a fixed size, big
+ * block (8k) allocator, which operates out of a bo. Allocation is done by
+ * either pulling a block from the free list or growing the used range of the
+ * bo. Growing the range may run out of space in the bo which we then need to
+ * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
+ * we need to keep all pointers and contents in the old map valid. GEM bos in
+ * general can't grow, but we use a trick: we create a memfd and use ftruncate
+ * to grow it as necessary. We mmap the new size and then create a gem bo for
+ * it using the new gem userptr ioctl. Without heavy-handed locking around
+ * our allocation fast-path, there isn't really a way to munmap the old mmap,
+ * so we just keep it around until garbage collection time. While the block
+ * allocator is lockless for normal operations, we block other threads trying
+ * to allocate while we're growing the map. It sholdn't happen often, and
+ * growing is fast anyway.
+ *
+ * At the next level we can use various sub-allocators. The state pool is a
+ * pool of smaller, fixed size objects, which operates much like the block
+ * pool. It uses a free list for freeing objects, but when it runs out of
+ * space it just allocates a new block from the block pool. This allocator is
+ * intended for longer lived state objects such as SURFACE_STATE and most
+ * other persistent state objects in the API. We may need to track more info
+ * with these object and a pointer back to the CPU object (eg VkImage). In
+ * those cases we just allocate a slightly bigger object and put the extra
+ * state after the GPU state object.
+ *
+ * The state stream allocator works similar to how the i965 DRI driver streams
+ * all its state. Even with Vulkan, we need to emit transient state (whether
+ * surface state base or dynamic state base), and for that we can just get a
+ * block and fill it up. These cases are local to a command buffer and the
+ * sub-allocator need not be thread safe. The streaming allocator gets a new
+ * block when it runs out of space and chains them together so they can be
+ * easily freed.
+ */
+
+/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
+ * We use it to indicate the free list is empty. */
+#define EMPTY 1
+
+struct anv_mmap_cleanup {
+ void *map;
+ size_t size;
+ uint32_t gem_handle;
+};
+
+#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
+
+static inline long
+sys_futex(void *addr1, int op, int val1,
+ struct timespec *timeout, void *addr2, int val3)
+{
+ return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
+}
+
+static inline int
+futex_wake(uint32_t *addr, int count)
+{
+ return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
+}
+
+static inline int
+futex_wait(uint32_t *addr, int32_t value)
+{
+ return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
+}
+
+static inline int
+memfd_create(const char *name, unsigned int flags)
+{
+ return syscall(SYS_memfd_create, name, flags);
+}
+
+static inline uint32_t
+ilog2_round_up(uint32_t value)
+{
+ assert(value != 0);
+ return 32 - __builtin_clz(value - 1);
+}
+
+static inline uint32_t
+round_to_power_of_two(uint32_t value)
+{
+ return 1 << ilog2_round_up(value);
+}
+
+static bool
+anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
+{
+ union anv_free_list current, new, old;
+
+ current.u64 = list->u64;
+ while (current.offset != EMPTY) {
+ /* We have to add a memory barrier here so that the list head (and
+ * offset) gets read before we read the map pointer. This way we
+ * know that the map pointer is valid for the given offset at the
+ * point where we read it.
+ */
+ __sync_synchronize();
+
+ int32_t *next_ptr = *map + current.offset;
+ new.offset = VG_NOACCESS_READ(next_ptr);
+ new.count = current.count + 1;
+ old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
+ if (old.u64 == current.u64) {
+ *offset = current.offset;
+ return true;
+ }
+ current = old;
+ }
+
+ return false;
+}
+
+static void
+anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
+{
+ union anv_free_list current, old, new;
+ int32_t *next_ptr = map + offset;
+
+ old = *list;
+ do {
+ current = old;
+ VG_NOACCESS_WRITE(next_ptr, current.offset);
+ new.offset = offset;
+ new.count = current.count + 1;
+ old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
+ } while (old.u64 != current.u64);
+}
+
+/* All pointers in the ptr_free_list are assumed to be page-aligned. This
+ * means that the bottom 12 bits should all be zero.
+ */
+#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
+#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
+#define PFL_PACK(ptr, count) ({ \
+ assert(((uintptr_t)(ptr) & 0xfff) == 0); \
+ (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
+})
+
+static bool
+anv_ptr_free_list_pop(void **list, void **elem)
+{
+ void *current = *list;
+ while (PFL_PTR(current) != NULL) {
+ void **next_ptr = PFL_PTR(current);
+ void *new_ptr = VG_NOACCESS_READ(next_ptr);
+ unsigned new_count = PFL_COUNT(current) + 1;
+ void *new = PFL_PACK(new_ptr, new_count);
+ void *old = __sync_val_compare_and_swap(list, current, new);
+ if (old == current) {
+ *elem = PFL_PTR(current);
+ return true;
+ }
+ current = old;
+ }
+
+ return false;
+}
+
+static void
+anv_ptr_free_list_push(void **list, void *elem)
+{
+ void *old, *current;
+ void **next_ptr = elem;
+
+ old = *list;
+ do {
+ current = old;
+ VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
+ unsigned new_count = PFL_COUNT(current) + 1;
+ void *new = PFL_PACK(elem, new_count);
+ old = __sync_val_compare_and_swap(list, current, new);
+ } while (old != current);
+}
+
+static uint32_t
+anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state);
+
+void
+anv_block_pool_init(struct anv_block_pool *pool,
+ struct anv_device *device, uint32_t block_size)
+{
+ assert(util_is_power_of_two(block_size));
+
+ pool->device = device;
+ pool->bo.gem_handle = 0;
+ pool->bo.offset = 0;
+ pool->bo.size = 0;
+ pool->block_size = block_size;
+ pool->free_list = ANV_FREE_LIST_EMPTY;
+ pool->back_free_list = ANV_FREE_LIST_EMPTY;
+
+ pool->fd = memfd_create("block pool", MFD_CLOEXEC);
+ if (pool->fd == -1)
+ return;
+
+ /* Just make it 2GB up-front. The Linux kernel won't actually back it
+ * with pages until we either map and fault on one of them or we use
+ * userptr and send a chunk of it off to the GPU.
+ */
+ if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1)
+ return;
+
+ anv_vector_init(&pool->mmap_cleanups,
+ round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
+
+ pool->state.next = 0;
+ pool->state.end = 0;
+ pool->back_state.next = 0;
+ pool->back_state.end = 0;
+
+ /* Immediately grow the pool so we'll have a backing bo. */
+ pool->state.end = anv_block_pool_grow(pool, &pool->state);
+}
+
+void
+anv_block_pool_finish(struct anv_block_pool *pool)
+{
+ struct anv_mmap_cleanup *cleanup;
+
+ anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
+ if (cleanup->map)
+ munmap(cleanup->map, cleanup->size);
+ if (cleanup->gem_handle)
+ anv_gem_close(pool->device, cleanup->gem_handle);
+ }
+
+ anv_vector_finish(&pool->mmap_cleanups);
+
+ close(pool->fd);
+}
+
+#define PAGE_SIZE 4096
+
+/** Grows and re-centers the block pool.
+ *
+ * We grow the block pool in one or both directions in such a way that the
+ * following conditions are met:
+ *
+ * 1) The size of the entire pool is always a power of two.
+ *
+ * 2) The pool only grows on both ends. Neither end can get
+ * shortened.
+ *
+ * 3) At the end of the allocation, we have about twice as much space
+ * allocated for each end as we have used. This way the pool doesn't
+ * grow too far in one direction or the other.
+ *
+ * 4) If the _alloc_back() has never been called, then the back portion of
+ * the pool retains a size of zero. (This makes it easier for users of
+ * the block pool that only want a one-sided pool.)
+ *
+ * 5) We have enough space allocated for at least one more block in
+ * whichever side `state` points to.
+ *
+ * 6) The center of the pool is always aligned to both the block_size of
+ * the pool and a 4K CPU page.
+ */
+static uint32_t
+anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
+{
+ size_t size;
+ void *map;
+ uint32_t gem_handle;
+ struct anv_mmap_cleanup *cleanup;
+
+ pthread_mutex_lock(&pool->device->mutex);
+
+ assert(state == &pool->state || state == &pool->back_state);
+
+ /* Gather a little usage information on the pool. Since we may have
+ * threadsd waiting in queue to get some storage while we resize, it's
+ * actually possible that total_used will be larger than old_size. In
+ * particular, block_pool_alloc() increments state->next prior to
+ * calling block_pool_grow, so this ensures that we get enough space for
+ * which ever side tries to grow the pool.
+ *
+ * We align to a page size because it makes it easier to do our
+ * calculations later in such a way that we state page-aigned.
+ */
+ uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
+ uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
+ uint32_t total_used = front_used + back_used;
+
+ assert(state == &pool->state || back_used > 0);
+
+ size_t old_size = pool->bo.size;
+
+ if (old_size != 0 &&
+ back_used * 2 <= pool->center_bo_offset &&
+ front_used * 2 <= (old_size - pool->center_bo_offset)) {
+ /* If we're in this case then this isn't the firsta allocation and we
+ * already have enough space on both sides to hold double what we
+ * have allocated. There's nothing for us to do.
+ */
+ goto done;
+ }
+
+ if (old_size == 0) {
+ /* This is the first allocation */
+ size = MAX2(32 * pool->block_size, PAGE_SIZE);
+ } else {
+ size = old_size * 2;
+ }
+
+ /* We can't have a block pool bigger than 1GB because we use signed
+ * 32-bit offsets in the free list and we don't want overflow. We
+ * should never need a block pool bigger than 1GB anyway.
+ */
+ assert(size <= (1u << 31));
+
+ /* We compute a new center_bo_offset such that, when we double the size
+ * of the pool, we maintain the ratio of how much is used by each side.
+ * This way things should remain more-or-less balanced.
+ */
+ uint32_t center_bo_offset;
+ if (back_used == 0) {
+ /* If we're in this case then we have never called alloc_back(). In
+ * this case, we want keep the offset at 0 to make things as simple
+ * as possible for users that don't care about back allocations.
+ */
+ center_bo_offset = 0;
+ } else {
+ /* Try to "center" the allocation based on how much is currently in
+ * use on each side of the center line.
+ */
+ center_bo_offset = ((uint64_t)size * back_used) / total_used;
+
+ /* Align down to a multiple of both the block size and page size */
+ uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE);
+ assert(util_is_power_of_two(granularity));
+ center_bo_offset &= ~(granularity - 1);
+
+ assert(center_bo_offset >= back_used);
+
+ /* Make sure we don't shrink the back end of the pool */
+ if (center_bo_offset < pool->back_state.end)
+ center_bo_offset = pool->back_state.end;
+
+ /* Make sure that we don't shrink the front end of the pool */
+ if (size - center_bo_offset < pool->state.end)
+ center_bo_offset = size - pool->state.end;
+ }
+
+ assert(center_bo_offset % pool->block_size == 0);
+ assert(center_bo_offset % PAGE_SIZE == 0);
+
+ /* Assert that we only ever grow the pool */
+ assert(center_bo_offset >= pool->back_state.end);
+ assert(size - center_bo_offset >= pool->state.end);
+
+ cleanup = anv_vector_add(&pool->mmap_cleanups);
+ if (!cleanup)
+ goto fail;
+ *cleanup = ANV_MMAP_CLEANUP_INIT;
+
+ /* Just leak the old map until we destroy the pool. We can't munmap it
+ * without races or imposing locking on the block allocate fast path. On
+ * the whole the leaked maps adds up to less than the size of the
+ * current map. MAP_POPULATE seems like the right thing to do, but we
+ * should try to get some numbers.
+ */
+ map = mmap(NULL, size, PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_POPULATE, pool->fd,
+ BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
+ cleanup->map = map;
+ cleanup->size = size;
+
+ if (map == MAP_FAILED)
+ goto fail;
+
+ gem_handle = anv_gem_userptr(pool->device, map, size);
+ if (gem_handle == 0)
+ goto fail;
+ cleanup->gem_handle = gem_handle;
+
+#if 0
+ /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
+ * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
+ * always created as I915_CACHING_CACHED, which on non-LLC means
+ * snooped. That can be useful but comes with a bit of overheard. Since
+ * we're eplicitly clflushing and don't want the overhead we need to turn
+ * it off. */
+ if (!pool->device->info.has_llc) {
+ anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
+ anv_gem_set_domain(pool->device, gem_handle,
+ I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
+ }
+#endif
+
+ /* Now that we successfull allocated everything, we can write the new
+ * values back into pool. */
+ pool->map = map + center_bo_offset;
+ pool->center_bo_offset = center_bo_offset;
+ pool->bo.gem_handle = gem_handle;
+ pool->bo.size = size;
+ pool->bo.map = map;
+ pool->bo.index = 0;
+
+done:
+ pthread_mutex_unlock(&pool->device->mutex);
+
+ /* Return the appropreate new size. This function never actually
+ * updates state->next. Instead, we let the caller do that because it
+ * needs to do so in order to maintain its concurrency model.
+ */
+ if (state == &pool->state) {
+ return pool->bo.size - pool->center_bo_offset;
+ } else {
+ assert(pool->center_bo_offset > 0);
+ return pool->center_bo_offset;
+ }
+
+fail:
+ pthread_mutex_unlock(&pool->device->mutex);
+
+ return 0;
+}
+
+static uint32_t
+anv_block_pool_alloc_new(struct anv_block_pool *pool,
+ struct anv_block_state *pool_state)
+{
+ struct anv_block_state state, old, new;
+
+ while (1) {
+ state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
+ if (state.next < state.end) {
+ assert(pool->map);
+ return state.next;
+ } else if (state.next == state.end) {
+ /* We allocated the first block outside the pool, we have to grow it.
+ * pool_state->next acts a mutex: threads who try to allocate now will
+ * get block indexes above the current limit and hit futex_wait
+ * below. */
+ new.next = state.next + pool->block_size;
+ new.end = anv_block_pool_grow(pool, pool_state);
+ assert(new.end >= new.next && new.end % pool->block_size == 0);
+ old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
+ if (old.next != state.next)
+ futex_wake(&pool_state->end, INT_MAX);
+ return state.next;
+ } else {
+ futex_wait(&pool_state->end, state.end);
+ continue;
+ }
+ }
+}
+
+int32_t
+anv_block_pool_alloc(struct anv_block_pool *pool)
+{
+ int32_t offset;
+
+ /* Try free list first. */
+ if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
+ assert(offset >= 0);
+ assert(pool->map);
+ return offset;
+ }
+
+ return anv_block_pool_alloc_new(pool, &pool->state);
+}
+
+/* Allocates a block out of the back of the block pool.
+ *
+ * This will allocated a block earlier than the "start" of the block pool.
+ * The offsets returned from this function will be negative but will still
+ * be correct relative to the block pool's map pointer.
+ *
+ * If you ever use anv_block_pool_alloc_back, then you will have to do
+ * gymnastics with the block pool's BO when doing relocations.
+ */
+int32_t
+anv_block_pool_alloc_back(struct anv_block_pool *pool)
+{
+ int32_t offset;
+
+ /* Try free list first. */
+ if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) {
+ assert(offset < 0);
+ assert(pool->map);
+ return offset;
+ }
+
+ offset = anv_block_pool_alloc_new(pool, &pool->back_state);
+
+ /* The offset we get out of anv_block_pool_alloc_new() is actually the
+ * number of bytes downwards from the middle to the end of the block.
+ * We need to turn it into a (negative) offset from the middle to the
+ * start of the block.
+ */
+ assert(offset >= 0);
+ return -(offset + pool->block_size);
+}
+
+void
+anv_block_pool_free(struct anv_block_pool *pool, int32_t offset)
+{
+ if (offset < 0) {
+ anv_free_list_push(&pool->back_free_list, pool->map, offset);
+ } else {
+ anv_free_list_push(&pool->free_list, pool->map, offset);
+ }
+}
+
+static void
+anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
+ size_t state_size)
+{
+ /* At least a cache line and must divide the block size. */
+ assert(state_size >= 64 && util_is_power_of_two(state_size));
+
+ pool->state_size = state_size;
+ pool->free_list = ANV_FREE_LIST_EMPTY;
+ pool->block.next = 0;
+ pool->block.end = 0;
+}
+
+static uint32_t
+anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
+ struct anv_block_pool *block_pool)
+{
+ int32_t offset;
+ struct anv_block_state block, old, new;
+
+ /* Try free list first. */
+ if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
+ assert(offset >= 0);
+ return offset;
+ }
+
+ /* If free list was empty (or somebody raced us and took the items) we
+ * allocate a new item from the end of the block */
+ restart:
+ block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
+
+ if (block.next < block.end) {
+ return block.next;
+ } else if (block.next == block.end) {
+ offset = anv_block_pool_alloc(block_pool);
+ new.next = offset + pool->state_size;
+ new.end = offset + block_pool->block_size;
+ old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
+ if (old.next != block.next)
+ futex_wake(&pool->block.end, INT_MAX);
+ return offset;
+ } else {
+ futex_wait(&pool->block.end, block.end);
+ goto restart;
+ }
+}
+
+static void
+anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
+ struct anv_block_pool *block_pool,
+ uint32_t offset)
+{
+ anv_free_list_push(&pool->free_list, block_pool->map, offset);
+}
+
+void
+anv_state_pool_init(struct anv_state_pool *pool,
+ struct anv_block_pool *block_pool)
+{
+ pool->block_pool = block_pool;
+ for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
+ size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
+ anv_fixed_size_state_pool_init(&pool->buckets[i], size);
+ }
+ VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
+}
+
+void
+anv_state_pool_finish(struct anv_state_pool *pool)
+{
+ VG(VALGRIND_DESTROY_MEMPOOL(pool));
+}
+
+struct anv_state
+anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
+{
+ unsigned size_log2 = ilog2_round_up(size < align ? align : size);
+ assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
+ if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
+ size_log2 = ANV_MIN_STATE_SIZE_LOG2;
+ unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
+
+ struct anv_state state;
+ state.alloc_size = 1 << size_log2;
+ state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
+ pool->block_pool);
+ state.map = pool->block_pool->map + state.offset;
+ VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
+ return state;
+}
+
+void
+anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
+{
+ assert(util_is_power_of_two(state.alloc_size));
+ unsigned size_log2 = ilog2_round_up(state.alloc_size);
+ assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
+ size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
+ unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
+
+ VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
+ anv_fixed_size_state_pool_free(&pool->buckets[bucket],
+ pool->block_pool, state.offset);
+}
+
+#define NULL_BLOCK 1
+struct anv_state_stream_block {
+ /* The next block */
+ struct anv_state_stream_block *next;
+
+ /* The offset into the block pool at which this block starts */
+ uint32_t offset;
+
+#ifdef HAVE_VALGRIND
+ /* A pointer to the first user-allocated thing in this block. This is
+ * what valgrind sees as the start of the block.
+ */
+ void *_vg_ptr;
+#endif
+};
+
+/* The state stream allocator is a one-shot, single threaded allocator for
+ * variable sized blocks. We use it for allocating dynamic state.
+ */
+void
+anv_state_stream_init(struct anv_state_stream *stream,
+ struct anv_block_pool *block_pool)
+{
+ stream->block_pool = block_pool;
+ stream->block = NULL;
+
+ /* Ensure that next + whatever > end. This way the first call to
+ * state_stream_alloc fetches a new block.
+ */
+ stream->next = 1;
+ stream->end = 0;
+
+ VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
+}
+
+void
+anv_state_stream_finish(struct anv_state_stream *stream)
+{
+ VG(const uint32_t block_size = stream->block_pool->block_size);
+
+ struct anv_state_stream_block *next = stream->block;
+ while (next != NULL) {
+ VG(VALGRIND_MAKE_MEM_DEFINED(next, sizeof(*next)));
+ struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
+ VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
+ VG(VALGRIND_MAKE_MEM_UNDEFINED(next, block_size));
+ anv_block_pool_free(stream->block_pool, sb.offset);
+ next = sb.next;
+ }
+
+ VG(VALGRIND_DESTROY_MEMPOOL(stream));
+}
+
+struct anv_state
+anv_state_stream_alloc(struct anv_state_stream *stream,
+ uint32_t size, uint32_t alignment)
+{
+ struct anv_state_stream_block *sb = stream->block;
+
+ struct anv_state state;
+
+ state.offset = align_u32(stream->next, alignment);
+ if (state.offset + size > stream->end) {
+ uint32_t block = anv_block_pool_alloc(stream->block_pool);
+ sb = stream->block_pool->map + block;
+
+ VG(VALGRIND_MAKE_MEM_UNDEFINED(sb, sizeof(*sb)));
+ sb->next = stream->block;
+ sb->offset = block;
+ VG(sb->_vg_ptr = NULL);
+ VG(VALGRIND_MAKE_MEM_NOACCESS(sb, stream->block_pool->block_size));
+
+ stream->block = sb;
+ stream->start = block;
+ stream->next = block + sizeof(*sb);
+ stream->end = block + stream->block_pool->block_size;
+
+ state.offset = align_u32(stream->next, alignment);
+ assert(state.offset + size <= stream->end);
+ }
+
+ assert(state.offset > stream->start);
+ state.map = (void *)sb + (state.offset - stream->start);
+ state.alloc_size = size;
+
+#ifdef HAVE_VALGRIND
+ void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
+ if (vg_ptr == NULL) {
+ vg_ptr = state.map;
+ VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
+ VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
+ } else {
+ void *state_end = state.map + state.alloc_size;
+ /* This only updates the mempool. The newly allocated chunk is still
+ * marked as NOACCESS. */
+ VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
+ /* Mark the newly allocated chunk as undefined */
+ VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
+ }
+#endif
+
+ stream->next = state.offset + size;
+
+ return state;
+}
+
+struct bo_pool_bo_link {
+ struct bo_pool_bo_link *next;
+ struct anv_bo bo;
+};
+
+void
+anv_bo_pool_init(struct anv_bo_pool *pool,
+ struct anv_device *device, uint32_t bo_size)
+{
+ pool->device = device;
+ pool->bo_size = bo_size;
+ pool->free_list = NULL;
+
+ VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
+}
+
+void
+anv_bo_pool_finish(struct anv_bo_pool *pool)
+{
+ struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
+ while (link != NULL) {
+ struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
+
+ anv_gem_munmap(link_copy.bo.map, pool->bo_size);
+ anv_gem_close(pool->device, link_copy.bo.gem_handle);
+ link = link_copy.next;
+ }
+
+ VG(VALGRIND_DESTROY_MEMPOOL(pool));
+}
+
+VkResult
+anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
+{
+ VkResult result;
+
+ void *next_free_void;
+ if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
+ struct bo_pool_bo_link *next_free = next_free_void;
+ *bo = VG_NOACCESS_READ(&next_free->bo);
+ assert(bo->map == next_free);
+ assert(bo->size == pool->bo_size);
+
+ VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
+
+ return VK_SUCCESS;
+ }
+
+ struct anv_bo new_bo;
+
+ result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
+ if (result != VK_SUCCESS)
+ return result;
+
+ assert(new_bo.size == pool->bo_size);
+
+ new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size, 0);
+ if (new_bo.map == NULL) {
+ anv_gem_close(pool->device, new_bo.gem_handle);
+ return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
+ }
+
+ *bo = new_bo;
+
+ VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
+
+ return VK_SUCCESS;
+}
+
+void
+anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
+{
+ struct bo_pool_bo_link *link = bo->map;
+ link->bo = *bo;
+
+ VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
+ anv_ptr_free_list_push(&pool->free_list, link);
+}