summaryrefslogtreecommitdiffstats
path: root/src/intel/isl/isl_tiled_memcpy.c
diff options
context:
space:
mode:
authorTapani Pälli <[email protected]>2018-12-17 14:17:15 +0200
committerTapani Pälli <[email protected]>2019-01-10 08:02:30 +0200
commit864cc419eb0a418827620afd42879698cb149088 (patch)
tree605050e71cb7ff460e88d35f70790169c0892891 /src/intel/isl/isl_tiled_memcpy.c
parent406f603b347f554f9f796d22cb74dde48d6551d3 (diff)
intel/isl: move tiled_memcpy static libs from i965 to isl
Patch moves intel_tiled_memcpy[_sse41] libraries to isl, renames some functions and types and makes the required build system changes for meson, automake and Android. No functional changes are introduced. v2: code cleanups, move isl_get_memcpy_type to i965 (Jason) v3: move isl_mem_copy_fn to priv header, cleanups (Jason, Dylan) Signed-off-by: Tapani Pälli <[email protected]> Reviewed-by: Jason Ekstrand <[email protected]> Reviewed-by: Dylan Baker <[email protected]> Acked-by: Kenneth Graunke <[email protected]>
Diffstat (limited to 'src/intel/isl/isl_tiled_memcpy.c')
-rw-r--r--src/intel/isl/isl_tiled_memcpy.c1005
1 files changed, 1005 insertions, 0 deletions
diff --git a/src/intel/isl/isl_tiled_memcpy.c b/src/intel/isl/isl_tiled_memcpy.c
new file mode 100644
index 00000000000..7df7835f9ab
--- /dev/null
+++ b/src/intel/isl/isl_tiled_memcpy.c
@@ -0,0 +1,1005 @@
+/*
+ * Mesa 3-D graphics library
+ *
+ * Copyright 2012 Intel Corporation
+ * Copyright 2013 Google
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Authors:
+ * Chad Versace <[email protected]>
+ * Frank Henigman <[email protected]>
+ */
+
+#include <string.h>
+
+#include "util/macros.h"
+#include "main/macros.h"
+
+#include "isl_priv.h"
+
+#if defined(__SSSE3__)
+#include <tmmintrin.h>
+#elif defined(__SSE2__)
+#include <emmintrin.h>
+#endif
+
+#define FILE_DEBUG_FLAG DEBUG_TEXTURE
+
+#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
+#define ALIGN_UP(a, b) ALIGN(a, b)
+
+/* Tile dimensions. Width and span are in bytes, height is in pixels (i.e.
+ * unitless). A "span" is the most number of bytes we can copy from linear
+ * to tiled without needing to calculate a new destination address.
+ */
+static const uint32_t xtile_width = 512;
+static const uint32_t xtile_height = 8;
+static const uint32_t xtile_span = 64;
+static const uint32_t ytile_width = 128;
+static const uint32_t ytile_height = 32;
+static const uint32_t ytile_span = 16;
+
+static inline uint32_t
+ror(uint32_t n, uint32_t d)
+{
+ return (n >> d) | (n << (32 - d));
+}
+
+static inline uint32_t
+bswap32(uint32_t n)
+{
+#if defined(HAVE___BUILTIN_BSWAP32)
+ return __builtin_bswap32(n);
+#else
+ return (n >> 24) |
+ ((n >> 8) & 0x0000ff00) |
+ ((n << 8) & 0x00ff0000) |
+ (n << 24);
+#endif
+}
+
+/**
+ * Copy RGBA to BGRA - swap R and B.
+ */
+static inline void *
+rgba8_copy(void *dst, const void *src, size_t bytes)
+{
+ uint32_t *d = dst;
+ uint32_t const *s = src;
+
+ assert(bytes % 4 == 0);
+
+ while (bytes >= 4) {
+ *d = ror(bswap32(*s), 8);
+ d += 1;
+ s += 1;
+ bytes -= 4;
+ }
+ return dst;
+}
+
+#ifdef __SSSE3__
+static const uint8_t rgba8_permutation[16] =
+ { 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
+
+static inline void
+rgba8_copy_16_aligned_dst(void *dst, const void *src)
+{
+ _mm_store_si128(dst,
+ _mm_shuffle_epi8(_mm_loadu_si128(src),
+ *(__m128i *)rgba8_permutation));
+}
+
+static inline void
+rgba8_copy_16_aligned_src(void *dst, const void *src)
+{
+ _mm_storeu_si128(dst,
+ _mm_shuffle_epi8(_mm_load_si128(src),
+ *(__m128i *)rgba8_permutation));
+}
+
+#elif defined(__SSE2__)
+static inline void
+rgba8_copy_16_aligned_dst(void *dst, const void *src)
+{
+ __m128i srcreg, dstreg, agmask, ag, rb, br;
+
+ agmask = _mm_set1_epi32(0xFF00FF00);
+ srcreg = _mm_loadu_si128((__m128i *)src);
+
+ rb = _mm_andnot_si128(agmask, srcreg);
+ ag = _mm_and_si128(agmask, srcreg);
+ br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)),
+ _MM_SHUFFLE(2, 3, 0, 1));
+ dstreg = _mm_or_si128(ag, br);
+
+ _mm_store_si128((__m128i *)dst, dstreg);
+}
+
+static inline void
+rgba8_copy_16_aligned_src(void *dst, const void *src)
+{
+ __m128i srcreg, dstreg, agmask, ag, rb, br;
+
+ agmask = _mm_set1_epi32(0xFF00FF00);
+ srcreg = _mm_load_si128((__m128i *)src);
+
+ rb = _mm_andnot_si128(agmask, srcreg);
+ ag = _mm_and_si128(agmask, srcreg);
+ br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)),
+ _MM_SHUFFLE(2, 3, 0, 1));
+ dstreg = _mm_or_si128(ag, br);
+
+ _mm_storeu_si128((__m128i *)dst, dstreg);
+}
+#endif
+
+/**
+ * Copy RGBA to BGRA - swap R and B, with the destination 16-byte aligned.
+ */
+static inline void *
+rgba8_copy_aligned_dst(void *dst, const void *src, size_t bytes)
+{
+ assert(bytes == 0 || !(((uintptr_t)dst) & 0xf));
+
+#if defined(__SSSE3__) || defined(__SSE2__)
+ if (bytes == 64) {
+ rgba8_copy_16_aligned_dst(dst + 0, src + 0);
+ rgba8_copy_16_aligned_dst(dst + 16, src + 16);
+ rgba8_copy_16_aligned_dst(dst + 32, src + 32);
+ rgba8_copy_16_aligned_dst(dst + 48, src + 48);
+ return dst;
+ }
+
+ while (bytes >= 16) {
+ rgba8_copy_16_aligned_dst(dst, src);
+ src += 16;
+ dst += 16;
+ bytes -= 16;
+ }
+#endif
+
+ rgba8_copy(dst, src, bytes);
+
+ return dst;
+}
+
+/**
+ * Copy RGBA to BGRA - swap R and B, with the source 16-byte aligned.
+ */
+static inline void *
+rgba8_copy_aligned_src(void *dst, const void *src, size_t bytes)
+{
+ assert(bytes == 0 || !(((uintptr_t)src) & 0xf));
+
+#if defined(__SSSE3__) || defined(__SSE2__)
+ if (bytes == 64) {
+ rgba8_copy_16_aligned_src(dst + 0, src + 0);
+ rgba8_copy_16_aligned_src(dst + 16, src + 16);
+ rgba8_copy_16_aligned_src(dst + 32, src + 32);
+ rgba8_copy_16_aligned_src(dst + 48, src + 48);
+ return dst;
+ }
+
+ while (bytes >= 16) {
+ rgba8_copy_16_aligned_src(dst, src);
+ src += 16;
+ dst += 16;
+ bytes -= 16;
+ }
+#endif
+
+ rgba8_copy(dst, src, bytes);
+
+ return dst;
+}
+
+/**
+ * Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
+ * These ranges are in bytes, i.e. pixels * bytes-per-pixel.
+ * The first and last ranges must be shorter than a "span" (the longest linear
+ * stretch within a tile) and the middle must equal a whole number of spans.
+ * Ranges may be empty. The region copied must land entirely within one tile.
+ * 'dst' is the start of the tile and 'src' is the corresponding
+ * address to copy from, though copying begins at (x0, y0).
+ * To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
+ * Swizzling flips bit 6 in the copy destination offset, when certain other
+ * bits are set in it.
+ */
+typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t linear_pitch,
+ uint32_t swizzle_bit,
+ isl_memcpy_type copy_type);
+
+/**
+ * Copy texture data from linear to X tile layout.
+ *
+ * \copydoc tile_copy_fn
+ *
+ * The mem_copy parameters allow the user to specify an alternative mem_copy
+ * function that, for instance, may do RGBA -> BGRA swizzling. The first
+ * function must handle any memory alignment while the second function must
+ * only handle 16-byte alignment in whichever side (source or destination) is
+ * tiled.
+ */
+static inline void
+linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t src_pitch,
+ uint32_t swizzle_bit,
+ isl_mem_copy_fn mem_copy,
+ isl_mem_copy_fn mem_copy_align16)
+{
+ /* The copy destination offset for each range copied is the sum of
+ * an X offset 'x0' or 'xo' and a Y offset 'yo.'
+ */
+ uint32_t xo, yo;
+
+ src += (ptrdiff_t)y0 * src_pitch;
+
+ for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
+ /* Bits 9 and 10 of the copy destination offset control swizzling.
+ * Only 'yo' contributes to those bits in the total offset,
+ * so calculate 'swizzle' just once per row.
+ * Move bits 9 and 10 three and four places respectively down
+ * to bit 6 and xor them.
+ */
+ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
+
+ mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
+
+ for (xo = x1; xo < x2; xo += xtile_span) {
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
+ }
+
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
+
+ src += src_pitch;
+ }
+}
+
+/**
+ * Copy texture data from linear to Y tile layout.
+ *
+ * \copydoc tile_copy_fn
+ */
+static inline void
+linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y3,
+ char *dst, const char *src,
+ int32_t src_pitch,
+ uint32_t swizzle_bit,
+ isl_mem_copy_fn mem_copy,
+ isl_mem_copy_fn mem_copy_align16)
+{
+ /* Y tiles consist of columns that are 'ytile_span' wide (and the same height
+ * as the tile). Thus the destination offset for (x,y) is the sum of:
+ * (x % column_width) // position within column
+ * (x / column_width) * bytes_per_column // column number * bytes per column
+ * y * column_width
+ *
+ * The copy destination offset for each range copied is the sum of
+ * an X offset 'xo0' or 'xo' and a Y offset 'yo.'
+ */
+ const uint32_t column_width = ytile_span;
+ const uint32_t bytes_per_column = column_width * ytile_height;
+
+ uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4));
+ uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4));
+
+ uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
+ uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
+
+ /* Bit 9 of the destination offset control swizzling.
+ * Only the X offset contributes to bit 9 of the total offset,
+ * so swizzle can be calculated in advance for these X positions.
+ * Move bit 9 three places down to bit 6.
+ */
+ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
+ uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
+
+ uint32_t x, yo;
+
+ src += (ptrdiff_t)y0 * src_pitch;
+
+ if (y0 != y1) {
+ for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
+
+ src += src_pitch;
+ }
+ }
+
+ for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ if (x0 != x1) {
+ mem_copy(dst + ((xo0 + yo + 0 * column_width) ^ swizzle0), src + x0 + 0 * src_pitch, x1 - x0);
+ mem_copy(dst + ((xo0 + yo + 1 * column_width) ^ swizzle0), src + x0 + 1 * src_pitch, x1 - x0);
+ mem_copy(dst + ((xo0 + yo + 2 * column_width) ^ swizzle0), src + x0 + 2 * src_pitch, x1 - x0);
+ mem_copy(dst + ((xo0 + yo + 3 * column_width) ^ swizzle0), src + x0 + 3 * src_pitch, x1 - x0);
+ }
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x + 0 * src_pitch, ytile_span);
+ mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x + 1 * src_pitch, ytile_span);
+ mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x + 2 * src_pitch, ytile_span);
+ mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x + 3 * src_pitch, ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ if (x2 != x3) {
+ mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x2 + 0 * src_pitch, x3 - x2);
+ mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x2 + 1 * src_pitch, x3 - x2);
+ mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x2 + 2 * src_pitch, x3 - x2);
+ mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x2 + 3 * src_pitch, x3 - x2);
+ }
+
+ src += 4 * src_pitch;
+ }
+
+ if (y2 != y3) {
+ for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
+
+ src += src_pitch;
+ }
+ }
+}
+
+/**
+ * Copy texture data from X tile layout to linear.
+ *
+ * \copydoc tile_copy_fn
+ */
+static inline void
+xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t dst_pitch,
+ uint32_t swizzle_bit,
+ isl_mem_copy_fn mem_copy,
+ isl_mem_copy_fn mem_copy_align16)
+{
+ /* The copy destination offset for each range copied is the sum of
+ * an X offset 'x0' or 'xo' and a Y offset 'yo.'
+ */
+ uint32_t xo, yo;
+
+ dst += (ptrdiff_t)y0 * dst_pitch;
+
+ for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
+ /* Bits 9 and 10 of the copy destination offset control swizzling.
+ * Only 'yo' contributes to those bits in the total offset,
+ * so calculate 'swizzle' just once per row.
+ * Move bits 9 and 10 three and four places respectively down
+ * to bit 6 and xor them.
+ */
+ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
+
+ mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0);
+
+ for (xo = x1; xo < x2; xo += xtile_span) {
+ mem_copy_align16(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span);
+ }
+
+ mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
+
+ dst += dst_pitch;
+ }
+}
+
+ /**
+ * Copy texture data from Y tile layout to linear.
+ *
+ * \copydoc tile_copy_fn
+ */
+static inline void
+ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y3,
+ char *dst, const char *src,
+ int32_t dst_pitch,
+ uint32_t swizzle_bit,
+ isl_mem_copy_fn mem_copy,
+ isl_mem_copy_fn mem_copy_align16)
+{
+ /* Y tiles consist of columns that are 'ytile_span' wide (and the same height
+ * as the tile). Thus the destination offset for (x,y) is the sum of:
+ * (x % column_width) // position within column
+ * (x / column_width) * bytes_per_column // column number * bytes per column
+ * y * column_width
+ *
+ * The copy destination offset for each range copied is the sum of
+ * an X offset 'xo0' or 'xo' and a Y offset 'yo.'
+ */
+ const uint32_t column_width = ytile_span;
+ const uint32_t bytes_per_column = column_width * ytile_height;
+
+ uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4));
+ uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4));
+
+ uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
+ uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
+
+ /* Bit 9 of the destination offset control swizzling.
+ * Only the X offset contributes to bit 9 of the total offset,
+ * so swizzle can be calculated in advance for these X positions.
+ * Move bit 9 three places down to bit 6.
+ */
+ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
+ uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
+
+ uint32_t x, yo;
+
+ dst += (ptrdiff_t)y0 * dst_pitch;
+
+ if (y0 != y1) {
+ for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
+
+ dst += dst_pitch;
+ }
+ }
+
+ for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ if (x0 != x1) {
+ mem_copy(dst + x0 + 0 * dst_pitch, src + ((xo0 + yo + 0 * column_width) ^ swizzle0), x1 - x0);
+ mem_copy(dst + x0 + 1 * dst_pitch, src + ((xo0 + yo + 1 * column_width) ^ swizzle0), x1 - x0);
+ mem_copy(dst + x0 + 2 * dst_pitch, src + ((xo0 + yo + 2 * column_width) ^ swizzle0), x1 - x0);
+ mem_copy(dst + x0 + 3 * dst_pitch, src + ((xo0 + yo + 3 * column_width) ^ swizzle0), x1 - x0);
+ }
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + x + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), ytile_span);
+ mem_copy_align16(dst + x + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), ytile_span);
+ mem_copy_align16(dst + x + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), ytile_span);
+ mem_copy_align16(dst + x + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ if (x2 != x3) {
+ mem_copy_align16(dst + x2 + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), x3 - x2);
+ mem_copy_align16(dst + x2 + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), x3 - x2);
+ mem_copy_align16(dst + x2 + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), x3 - x2);
+ mem_copy_align16(dst + x2 + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), x3 - x2);
+ }
+
+ dst += 4 * dst_pitch;
+ }
+
+ if (y2 != y3) {
+ for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
+
+ dst += dst_pitch;
+ }
+ }
+}
+
+#if defined(INLINE_SSE41)
+static ALWAYS_INLINE void *
+_memcpy_streaming_load(void *dest, const void *src, size_t count)
+{
+ if (count == 16) {
+ __m128i val = _mm_stream_load_si128((__m128i *)src);
+ _mm_storeu_si128((__m128i *)dest, val);
+ return dest;
+ } else if (count == 64) {
+ __m128i val0 = _mm_stream_load_si128(((__m128i *)src) + 0);
+ __m128i val1 = _mm_stream_load_si128(((__m128i *)src) + 1);
+ __m128i val2 = _mm_stream_load_si128(((__m128i *)src) + 2);
+ __m128i val3 = _mm_stream_load_si128(((__m128i *)src) + 3);
+ _mm_storeu_si128(((__m128i *)dest) + 0, val0);
+ _mm_storeu_si128(((__m128i *)dest) + 1, val1);
+ _mm_storeu_si128(((__m128i *)dest) + 2, val2);
+ _mm_storeu_si128(((__m128i *)dest) + 3, val3);
+ return dest;
+ } else {
+ assert(count < 64); /* and (count < 16) for ytiled */
+ return memcpy(dest, src, count);
+ }
+}
+#endif
+
+static isl_mem_copy_fn
+choose_copy_function(isl_memcpy_type copy_type)
+{
+ switch(copy_type) {
+ case ISL_MEMCPY:
+ return memcpy;
+ case ISL_MEMCPY_BGRA8:
+ return rgba8_copy;
+ case ISL_MEMCPY_STREAMING_LOAD:
+#if defined(INLINE_SSE41)
+ return _memcpy_streaming_load;
+#else
+ unreachable("ISL_MEMCOPY_STREAMING_LOAD requires sse4.1");
+#endif
+ case ISL_MEMCPY_INVALID:
+ unreachable("invalid copy_type");
+ }
+ unreachable("unhandled copy_type");
+ return NULL;
+}
+
+/**
+ * Copy texture data from linear to X tile layout, faster.
+ *
+ * Same as \ref linear_to_xtiled but faster, because it passes constant
+ * parameters for common cases, allowing the compiler to inline code
+ * optimized for those cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static FLATTEN void
+linear_to_xtiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t src_pitch,
+ uint32_t swizzle_bit,
+ isl_memcpy_type copy_type)
+{
+ isl_mem_copy_fn mem_copy = choose_copy_function(copy_type);
+
+ if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
+ if (mem_copy == memcpy)
+ return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, src_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_dst);
+ else
+ unreachable("not reached");
+ } else {
+ if (mem_copy == memcpy)
+ return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit,
+ memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_dst);
+ else
+ unreachable("not reached");
+ }
+ linear_to_xtiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy);
+}
+
+/**
+ * Copy texture data from linear to Y tile layout, faster.
+ *
+ * Same as \ref linear_to_ytiled but faster, because it passes constant
+ * parameters for common cases, allowing the compiler to inline code
+ * optimized for those cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static FLATTEN void
+linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t src_pitch,
+ uint32_t swizzle_bit,
+ isl_memcpy_type copy_type)
+{
+ isl_mem_copy_fn mem_copy = choose_copy_function(copy_type);
+
+ if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
+ if (mem_copy == memcpy)
+ return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, src_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_dst);
+ else
+ unreachable("not reached");
+ } else {
+ if (mem_copy == memcpy)
+ return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_dst);
+ else
+ unreachable("not reached");
+ }
+ linear_to_ytiled(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy);
+}
+
+/**
+ * Copy texture data from X tile layout to linear, faster.
+ *
+ * Same as \ref xtile_to_linear but faster, because it passes constant
+ * parameters for common cases, allowing the compiler to inline code
+ * optimized for those cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static FLATTEN void
+xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t dst_pitch,
+ uint32_t swizzle_bit,
+ isl_memcpy_type copy_type)
+{
+ isl_mem_copy_fn mem_copy = choose_copy_function(copy_type);
+
+ if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
+ if (mem_copy == memcpy)
+ return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, dst_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_src);
+#if defined(INLINE_SSE41)
+ else if (mem_copy == _memcpy_streaming_load)
+ return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, dst_pitch, swizzle_bit,
+ memcpy, _memcpy_streaming_load);
+#endif
+ else
+ unreachable("not reached");
+ } else {
+ if (mem_copy == memcpy)
+ return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_src);
+#if defined(INLINE_SSE41)
+ else if (mem_copy == _memcpy_streaming_load)
+ return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit,
+ memcpy, _memcpy_streaming_load);
+#endif
+ else
+ unreachable("not reached");
+ }
+ xtiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy);
+}
+
+/**
+ * Copy texture data from Y tile layout to linear, faster.
+ *
+ * Same as \ref ytile_to_linear but faster, because it passes constant
+ * parameters for common cases, allowing the compiler to inline code
+ * optimized for those cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static FLATTEN void
+ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ int32_t dst_pitch,
+ uint32_t swizzle_bit,
+ isl_memcpy_type copy_type)
+{
+ isl_mem_copy_fn mem_copy = choose_copy_function(copy_type);
+
+ if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
+ if (mem_copy == memcpy)
+ return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, dst_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_src);
+#if defined(INLINE_SSE41)
+ else if (copy_type == ISL_MEMCPY_STREAMING_LOAD)
+ return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, dst_pitch, swizzle_bit,
+ memcpy, _memcpy_streaming_load);
+#endif
+ else
+ unreachable("not reached");
+ } else {
+ if (mem_copy == memcpy)
+ return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit, memcpy, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit,
+ rgba8_copy, rgba8_copy_aligned_src);
+#if defined(INLINE_SSE41)
+ else if (copy_type == ISL_MEMCPY_STREAMING_LOAD)
+ return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit,
+ memcpy, _memcpy_streaming_load);
+#endif
+ else
+ unreachable("not reached");
+ }
+ ytiled_to_linear(x0, x1, x2, x3, y0, y1,
+ dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy);
+}
+
+/**
+ * Copy from linear to tiled texture.
+ *
+ * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
+ * pieces that do not cross tile boundaries and copy each piece with a tile
+ * copy function (\ref tile_copy_fn).
+ * The X range is in bytes, i.e. pixels * bytes-per-pixel.
+ * The Y range is in pixels (i.e. unitless).
+ * 'dst' is the address of (0, 0) in the destination tiled texture.
+ * 'src' is the address of (xt1, yt1) in the source linear texture.
+ */
+static void
+intel_linear_to_tiled(uint32_t xt1, uint32_t xt2,
+ uint32_t yt1, uint32_t yt2,
+ char *dst, const char *src,
+ uint32_t dst_pitch, int32_t src_pitch,
+ bool has_swizzling,
+ enum isl_tiling tiling,
+ isl_memcpy_type copy_type)
+{
+ tile_copy_fn tile_copy;
+ uint32_t xt0, xt3;
+ uint32_t yt0, yt3;
+ uint32_t xt, yt;
+ uint32_t tw, th, span;
+ uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
+
+ if (tiling == ISL_TILING_X) {
+ tw = xtile_width;
+ th = xtile_height;
+ span = xtile_span;
+ tile_copy = linear_to_xtiled_faster;
+ } else if (tiling == ISL_TILING_Y0) {
+ tw = ytile_width;
+ th = ytile_height;
+ span = ytile_span;
+ tile_copy = linear_to_ytiled_faster;
+ } else {
+ unreachable("unsupported tiling");
+ }
+
+ /* Round out to tile boundaries. */
+ xt0 = ALIGN_DOWN(xt1, tw);
+ xt3 = ALIGN_UP (xt2, tw);
+ yt0 = ALIGN_DOWN(yt1, th);
+ yt3 = ALIGN_UP (yt2, th);
+
+ /* Loop over all tiles to which we have something to copy.
+ * 'xt' and 'yt' are the origin of the destination tile, whether copying
+ * copying a full or partial tile.
+ * tile_copy() copies one tile or partial tile.
+ * Looping x inside y is the faster memory access pattern.
+ */
+ for (yt = yt0; yt < yt3; yt += th) {
+ for (xt = xt0; xt < xt3; xt += tw) {
+ /* The area to update is [x0,x3) x [y0,y1).
+ * May not want the whole tile, hence the min and max.
+ */
+ uint32_t x0 = MAX2(xt1, xt);
+ uint32_t y0 = MAX2(yt1, yt);
+ uint32_t x3 = MIN2(xt2, xt + tw);
+ uint32_t y1 = MIN2(yt2, yt + th);
+
+ /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
+ * the middle interval is the longest span-aligned part.
+ * The sub-ranges could be empty.
+ */
+ uint32_t x1, x2;
+ x1 = ALIGN_UP(x0, span);
+ if (x1 > x3)
+ x1 = x2 = x3;
+ else
+ x2 = ALIGN_DOWN(x3, span);
+
+ assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
+ assert(x1 - x0 < span && x3 - x2 < span);
+ assert(x3 - x0 <= tw);
+ assert((x2 - x1) % span == 0);
+
+ /* Translate by (xt,yt) for single-tile copier. */
+ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
+ y0-yt, y1-yt,
+ dst + (ptrdiff_t)xt * th + (ptrdiff_t)yt * dst_pitch,
+ src + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * src_pitch,
+ src_pitch,
+ swizzle_bit,
+ copy_type);
+ }
+ }
+}
+
+/**
+ * Copy from tiled to linear texture.
+ *
+ * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
+ * pieces that do not cross tile boundaries and copy each piece with a tile
+ * copy function (\ref tile_copy_fn).
+ * The X range is in bytes, i.e. pixels * bytes-per-pixel.
+ * The Y range is in pixels (i.e. unitless).
+ * 'dst' is the address of (xt1, yt1) in the destination linear texture.
+ * 'src' is the address of (0, 0) in the source tiled texture.
+ */
+static void
+intel_tiled_to_linear(uint32_t xt1, uint32_t xt2,
+ uint32_t yt1, uint32_t yt2,
+ char *dst, const char *src,
+ int32_t dst_pitch, uint32_t src_pitch,
+ bool has_swizzling,
+ enum isl_tiling tiling,
+ isl_memcpy_type copy_type)
+{
+ tile_copy_fn tile_copy;
+ uint32_t xt0, xt3;
+ uint32_t yt0, yt3;
+ uint32_t xt, yt;
+ uint32_t tw, th, span;
+ uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
+
+ if (tiling == ISL_TILING_X) {
+ tw = xtile_width;
+ th = xtile_height;
+ span = xtile_span;
+ tile_copy = xtiled_to_linear_faster;
+ } else if (tiling == ISL_TILING_Y0) {
+ tw = ytile_width;
+ th = ytile_height;
+ span = ytile_span;
+ tile_copy = ytiled_to_linear_faster;
+ } else {
+ unreachable("unsupported tiling");
+ }
+
+#if defined(INLINE_SSE41)
+ if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
+ /* The hidden cacheline sized register used by movntdqa can apparently
+ * give you stale data, so do an mfence to invalidate it.
+ */
+ _mm_mfence();
+ }
+#endif
+
+ /* Round out to tile boundaries. */
+ xt0 = ALIGN_DOWN(xt1, tw);
+ xt3 = ALIGN_UP (xt2, tw);
+ yt0 = ALIGN_DOWN(yt1, th);
+ yt3 = ALIGN_UP (yt2, th);
+
+ /* Loop over all tiles to which we have something to copy.
+ * 'xt' and 'yt' are the origin of the destination tile, whether copying
+ * copying a full or partial tile.
+ * tile_copy() copies one tile or partial tile.
+ * Looping x inside y is the faster memory access pattern.
+ */
+ for (yt = yt0; yt < yt3; yt += th) {
+ for (xt = xt0; xt < xt3; xt += tw) {
+ /* The area to update is [x0,x3) x [y0,y1).
+ * May not want the whole tile, hence the min and max.
+ */
+ uint32_t x0 = MAX2(xt1, xt);
+ uint32_t y0 = MAX2(yt1, yt);
+ uint32_t x3 = MIN2(xt2, xt + tw);
+ uint32_t y1 = MIN2(yt2, yt + th);
+
+ /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
+ * the middle interval is the longest span-aligned part.
+ * The sub-ranges could be empty.
+ */
+ uint32_t x1, x2;
+ x1 = ALIGN_UP(x0, span);
+ if (x1 > x3)
+ x1 = x2 = x3;
+ else
+ x2 = ALIGN_DOWN(x3, span);
+
+ assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
+ assert(x1 - x0 < span && x3 - x2 < span);
+ assert(x3 - x0 <= tw);
+ assert((x2 - x1) % span == 0);
+
+ /* Translate by (xt,yt) for single-tile copier. */
+ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
+ y0-yt, y1-yt,
+ dst + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * dst_pitch,
+ src + (ptrdiff_t)xt * th + (ptrdiff_t)yt * src_pitch,
+ dst_pitch,
+ swizzle_bit,
+ copy_type);
+ }
+ }
+}