diff options
author | Jason Ekstrand <[email protected]> | 2017-02-28 09:10:43 -0800 |
---|---|---|
committer | Emil Velikov <[email protected]> | 2017-03-13 11:16:34 +0000 |
commit | 700bebb958e93f4d472c383de62ced9db8e64bec (patch) | |
tree | 0075c098c56c338f38ba0db80b9dba3e7e268a17 /src/intel/compiler/brw_schedule_instructions.cpp | |
parent | d0d4a5f43b4dd79bd7bfff7c7deaade10bfebf7c (diff) |
i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts:
- With the earlier header cleanups, nothing in src/intel depends
files from src/mesa/drivers/dri/i965/
- Both Autoconf and Android builds are addressed. Thanks to Mauro and
Tapani for the fixups in the latter
- brw_util.[ch] is not really compiler specific, so it's moved to i965.
v2:
- move brw_eu_defines.h instead of brw_defines.h
- remove no-longer applicable includes
- add missing vulkan/ prefix in the Android build (thanks Tapani)
v3:
- don't list brw_defines.h in src/intel/Makefile.sources (Jason)
- rebase on top of the oa patches
[Emil Velikov: commit message, various small fixes througout]
Signed-off-by: Emil Velikov <[email protected]>
Reviewed-by: Jason Ekstrand <[email protected]>
Diffstat (limited to 'src/intel/compiler/brw_schedule_instructions.cpp')
-rw-r--r-- | src/intel/compiler/brw_schedule_instructions.cpp | 1753 |
1 files changed, 1753 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_schedule_instructions.cpp b/src/intel/compiler/brw_schedule_instructions.cpp new file mode 100644 index 00000000000..b3f7e877c80 --- /dev/null +++ b/src/intel/compiler/brw_schedule_instructions.cpp @@ -0,0 +1,1753 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Eric Anholt <[email protected]> + * + */ + +#include "brw_fs.h" +#include "brw_fs_live_variables.h" +#include "brw_vec4.h" +#include "brw_cfg.h" +#include "brw_shader.h" + +using namespace brw; + +/** @file brw_fs_schedule_instructions.cpp + * + * List scheduling of FS instructions. + * + * The basic model of the list scheduler is to take a basic block, + * compute a DAG of the dependencies (RAW ordering with latency, WAW + * ordering with latency, WAR ordering), and make a list of the DAG heads. + * Heuristically pick a DAG head, then put all the children that are + * now DAG heads into the list of things to schedule. + * + * The heuristic is the important part. We're trying to be cheap, + * since actually computing the optimal scheduling is NP complete. + * What we do is track a "current clock". When we schedule a node, we + * update the earliest-unblocked clock time of its children, and + * increment the clock. Then, when trying to schedule, we just pick + * the earliest-unblocked instruction to schedule. + * + * Note that often there will be many things which could execute + * immediately, and there are a range of heuristic options to choose + * from in picking among those. + */ + +static bool debug = false; + +class instruction_scheduler; + +class schedule_node : public exec_node +{ +public: + schedule_node(backend_instruction *inst, instruction_scheduler *sched); + void set_latency_gen4(); + void set_latency_gen7(bool is_haswell); + + backend_instruction *inst; + schedule_node **children; + int *child_latency; + int child_count; + int parent_count; + int child_array_size; + int unblocked_time; + int latency; + + /** + * Which iteration of pushing groups of children onto the candidates list + * this node was a part of. + */ + unsigned cand_generation; + + /** + * This is the sum of the instruction's latency plus the maximum delay of + * its children, or just the issue_time if it's a leaf node. + */ + int delay; + + /** + * Preferred exit node among the (direct or indirect) successors of this + * node. Among the scheduler nodes blocked by this node, this will be the + * one that may cause earliest program termination, or NULL if none of the + * successors is an exit node. + */ + schedule_node *exit; + + bool is_barrier; +}; + +/** + * Lower bound of the scheduling time after which one of the instructions + * blocked by this node may lead to program termination. + * + * exit_unblocked_time() determines a strict partial ordering relation '«' on + * the set of scheduler nodes as follows: + * + * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m) + * + * which can be used to heuristically order nodes according to how early they + * can unblock an exit node and lead to program termination. + */ +static inline int +exit_unblocked_time(const schedule_node *n) +{ + return n->exit ? n->exit->unblocked_time : INT_MAX; +} + +void +schedule_node::set_latency_gen4() +{ + int chans = 8; + int math_latency = 22; + + switch (inst->opcode) { + case SHADER_OPCODE_RCP: + this->latency = 1 * chans * math_latency; + break; + case SHADER_OPCODE_RSQ: + this->latency = 2 * chans * math_latency; + break; + case SHADER_OPCODE_INT_QUOTIENT: + case SHADER_OPCODE_SQRT: + case SHADER_OPCODE_LOG2: + /* full precision log. partial is 2. */ + this->latency = 3 * chans * math_latency; + break; + case SHADER_OPCODE_INT_REMAINDER: + case SHADER_OPCODE_EXP2: + /* full precision. partial is 3, same throughput. */ + this->latency = 4 * chans * math_latency; + break; + case SHADER_OPCODE_POW: + this->latency = 8 * chans * math_latency; + break; + case SHADER_OPCODE_SIN: + case SHADER_OPCODE_COS: + /* minimum latency, max is 12 rounds. */ + this->latency = 5 * chans * math_latency; + break; + default: + this->latency = 2; + break; + } +} + +void +schedule_node::set_latency_gen7(bool is_haswell) +{ + switch (inst->opcode) { + case BRW_OPCODE_MAD: + /* 2 cycles + * (since the last two src operands are in different register banks): + * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q }; + * + * 3 cycles on IVB, 4 on HSW + * (since the last two src operands are in the same register bank): + * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q }; + * + * 18 cycles on IVB, 16 on HSW + * (since the last two src operands are in different register banks): + * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q }; + * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q }; + * + * 20 cycles on IVB, 18 on HSW + * (since the last two src operands are in the same register bank): + * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q }; + * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q }; + */ + + /* Our register allocator doesn't know about register banks, so use the + * higher latency. + */ + latency = is_haswell ? 16 : 18; + break; + + case BRW_OPCODE_LRP: + /* 2 cycles + * (since the last two src operands are in different register banks): + * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q }; + * + * 3 cycles on IVB, 4 on HSW + * (since the last two src operands are in the same register bank): + * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q }; + * + * 16 cycles on IVB, 14 on HSW + * (since the last two src operands are in different register banks): + * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q }; + * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q }; + * + * 16 cycles + * (since the last two src operands are in the same register bank): + * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q }; + * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q }; + */ + + /* Our register allocator doesn't know about register banks, so use the + * higher latency. + */ + latency = 14; + break; + + case SHADER_OPCODE_RCP: + case SHADER_OPCODE_RSQ: + case SHADER_OPCODE_SQRT: + case SHADER_OPCODE_LOG2: + case SHADER_OPCODE_EXP2: + case SHADER_OPCODE_SIN: + case SHADER_OPCODE_COS: + /* 2 cycles: + * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q }; + * + * 18 cycles: + * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * Same for exp2, log2, rsq, sqrt, sin, cos. + */ + latency = is_haswell ? 14 : 16; + break; + + case SHADER_OPCODE_POW: + /* 2 cycles: + * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q }; + * + * 26 cycles: + * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + */ + latency = is_haswell ? 22 : 24; + break; + + case SHADER_OPCODE_TEX: + case SHADER_OPCODE_TXD: + case SHADER_OPCODE_TXF: + case SHADER_OPCODE_TXF_LZ: + case SHADER_OPCODE_TXL: + case SHADER_OPCODE_TXL_LZ: + /* 18 cycles: + * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; + * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; + * send(8) g4<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * + * 697 +/-49 cycles (min 610, n=26): + * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; + * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; + * send(8) g4<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * So the latency on our first texture load of the batchbuffer takes + * ~700 cycles, since the caches are cold at that point. + * + * 840 +/- 92 cycles (min 720, n=25): + * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; + * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; + * send(8) g4<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * send(8) g4<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * On the second load, it takes just an extra ~140 cycles, and after + * accounting for the 14 cycles of the MOV's latency, that makes ~130. + * + * 683 +/- 49 cycles (min = 602, n=47): + * mov(8) g115<1>F 0F { align1 WE_normal 1Q }; + * mov(8) g114<1>F 0F { align1 WE_normal 1Q }; + * send(8) g4<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * send(8) g50<1>UW g114<8,8,1>F + * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * The unit appears to be pipelined, since this matches up with the + * cache-cold case, despite there being two loads here. If you replace + * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39). + * + * So, take some number between the cache-hot 140 cycles and the + * cache-cold 700 cycles. No particular tuning was done on this. + * + * I haven't done significant testing of the non-TEX opcodes. TXL at + * least looked about the same as TEX. + */ + latency = 200; + break; + + case SHADER_OPCODE_TXS: + /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41 + * cycles (n=15): + * mov(8) g114<1>UD 0D { align1 WE_normal 1Q }; + * send(8) g6<1>UW g114<8,8,1>F + * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q }; + * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q }; + * + * + * Two loads was 535 +/- 30 cycles (n=19): + * mov(16) g114<1>UD 0D { align1 WE_normal 1H }; + * send(16) g6<1>UW g114<8,8,1>F + * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H }; + * mov(16) g114<1>UD 0D { align1 WE_normal 1H }; + * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H }; + * send(16) g8<1>UW g114<8,8,1>F + * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H }; + * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H }; + * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H }; + * + * Since the only caches that should matter are just the + * instruction/state cache containing the surface state, assume that we + * always have hot caches. + */ + latency = 100; + break; + + case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4: + case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7: + case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: + case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: + case VS_OPCODE_PULL_CONSTANT_LOAD: + /* testing using varying-index pull constants: + * + * 16 cycles: + * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; + * send(8) g4<1>F g4<8,8,1>D + * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; + * + * ~480 cycles: + * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; + * send(8) g4<1>F g4<8,8,1>D + * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * ~620 cycles: + * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q }; + * send(8) g4<1>F g4<8,8,1>D + * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * send(8) g4<1>F g4<8,8,1>D + * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + * + * So, if it's cache-hot, it's about 140. If it's cache cold, it's + * about 460. We expect to mostly be cache hot, so pick something more + * in that direction. + */ + latency = 200; + break; + + case SHADER_OPCODE_GEN7_SCRATCH_READ: + /* Testing a load from offset 0, that had been previously written: + * + * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q }; + * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q }; + * + * The cycles spent seemed to be grouped around 40-50 (as low as 38), + * then around 140. Presumably this is cache hit vs miss. + */ + latency = 50; + break; + + case SHADER_OPCODE_UNTYPED_ATOMIC: + case SHADER_OPCODE_TYPED_ATOMIC: + /* Test code: + * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q }; + * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all }; + * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q }; + * send(8) g4<1>ud g112<8,8,1>ud + * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q }; + * + * Running it 100 times as fragment shader on a 128x128 quad + * gives an average latency of 13867 cycles per atomic op, + * standard deviation 3%. Note that this is a rather + * pessimistic estimate, the actual latency in cases with few + * collisions between threads and favorable pipelining has been + * seen to be reduced by a factor of 100. + */ + latency = 14000; + break; + + case SHADER_OPCODE_UNTYPED_SURFACE_READ: + case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: + case SHADER_OPCODE_TYPED_SURFACE_READ: + case SHADER_OPCODE_TYPED_SURFACE_WRITE: + /* Test code: + * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q }; + * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all }; + * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q }; + * send(8) g4<1>UD g112<8,8,1>UD + * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q }; + * . + * . [repeats 8 times] + * . + * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q }; + * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all }; + * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q }; + * send(8) g4<1>UD g112<8,8,1>UD + * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q }; + * + * Running it 100 times as fragment shader on a 128x128 quad + * gives an average latency of 583 cycles per surface read, + * standard deviation 0.9%. + */ + latency = is_haswell ? 300 : 600; + break; + + default: + /* 2 cycles: + * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q }; + * + * 16 cycles: + * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q }; + * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q }; + */ + latency = 14; + break; + } +} + +class instruction_scheduler { +public: + instruction_scheduler(backend_shader *s, int grf_count, + int hw_reg_count, int block_count, + instruction_scheduler_mode mode) + { + this->bs = s; + this->mem_ctx = ralloc_context(NULL); + this->grf_count = grf_count; + this->hw_reg_count = hw_reg_count; + this->instructions.make_empty(); + this->instructions_to_schedule = 0; + this->post_reg_alloc = (mode == SCHEDULE_POST); + this->mode = mode; + if (!post_reg_alloc) { + this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count); + + this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count); + for (int i = 0; i < block_count; i++) + this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD, + BITSET_WORDS(grf_count)); + + this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count); + for (int i = 0; i < block_count; i++) + this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD, + BITSET_WORDS(grf_count)); + + this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count); + for (int i = 0; i < block_count; i++) + this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD, + BITSET_WORDS(hw_reg_count)); + + this->written = rzalloc_array(mem_ctx, bool, grf_count); + + this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count); + + this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count); + } else { + this->reg_pressure_in = NULL; + this->livein = NULL; + this->liveout = NULL; + this->hw_liveout = NULL; + this->written = NULL; + this->reads_remaining = NULL; + this->hw_reads_remaining = NULL; + } + } + + ~instruction_scheduler() + { + ralloc_free(this->mem_ctx); + } + void add_barrier_deps(schedule_node *n); + void add_dep(schedule_node *before, schedule_node *after, int latency); + void add_dep(schedule_node *before, schedule_node *after); + + void run(cfg_t *cfg); + void add_insts_from_block(bblock_t *block); + void compute_delays(); + void compute_exits(); + virtual void calculate_deps() = 0; + virtual schedule_node *choose_instruction_to_schedule() = 0; + + /** + * Returns how many cycles it takes the instruction to issue. + * + * Instructions in gen hardware are handled one simd4 vector at a time, + * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2 + * cycles to dispatch and SIMD16 (compressed) instructions take 4. + */ + virtual int issue_time(backend_instruction *inst) = 0; + + virtual void count_reads_remaining(backend_instruction *inst) = 0; + virtual void setup_liveness(cfg_t *cfg) = 0; + virtual void update_register_pressure(backend_instruction *inst) = 0; + virtual int get_register_pressure_benefit(backend_instruction *inst) = 0; + + void schedule_instructions(bblock_t *block); + + void *mem_ctx; + + bool post_reg_alloc; + int instructions_to_schedule; + int grf_count; + int hw_reg_count; + int reg_pressure; + int block_idx; + exec_list instructions; + backend_shader *bs; + + instruction_scheduler_mode mode; + + /* + * The register pressure at the beginning of each basic block. + */ + + int *reg_pressure_in; + + /* + * The virtual GRF's whose range overlaps the beginning of each basic block. + */ + + BITSET_WORD **livein; + + /* + * The virtual GRF's whose range overlaps the end of each basic block. + */ + + BITSET_WORD **liveout; + + /* + * The hardware GRF's whose range overlaps the end of each basic block. + */ + + BITSET_WORD **hw_liveout; + + /* + * Whether we've scheduled a write for this virtual GRF yet. + */ + + bool *written; + + /* + * How many reads we haven't scheduled for this virtual GRF yet. + */ + + int *reads_remaining; + + /* + * How many reads we haven't scheduled for this hardware GRF yet. + */ + + int *hw_reads_remaining; +}; + +class fs_instruction_scheduler : public instruction_scheduler +{ +public: + fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count, + int block_count, + instruction_scheduler_mode mode); + void calculate_deps(); + bool is_compressed(fs_inst *inst); + schedule_node *choose_instruction_to_schedule(); + int issue_time(backend_instruction *inst); + fs_visitor *v; + + void count_reads_remaining(backend_instruction *inst); + void setup_liveness(cfg_t *cfg); + void update_register_pressure(backend_instruction *inst); + int get_register_pressure_benefit(backend_instruction *inst); +}; + +fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v, + int grf_count, int hw_reg_count, + int block_count, + instruction_scheduler_mode mode) + : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode), + v(v) +{ +} + +static bool +is_src_duplicate(fs_inst *inst, int src) +{ + for (int i = 0; i < src; i++) + if (inst->src[i].equals(inst->src[src])) + return true; + + return false; +} + +void +fs_instruction_scheduler::count_reads_remaining(backend_instruction *be) +{ + fs_inst *inst = (fs_inst *)be; + + if (!reads_remaining) + return; + + for (int i = 0; i < inst->sources; i++) { + if (is_src_duplicate(inst, i)) + continue; + + if (inst->src[i].file == VGRF) { + reads_remaining[inst->src[i].nr]++; + } else if (inst->src[i].file == FIXED_GRF) { + if (inst->src[i].nr >= hw_reg_count) + continue; + + for (unsigned j = 0; j < regs_read(inst, i); j++) + hw_reads_remaining[inst->src[i].nr + j]++; + } + } +} + +void +fs_instruction_scheduler::setup_liveness(cfg_t *cfg) +{ + /* First, compute liveness on a per-GRF level using the in/out sets from + * liveness calculation. + */ + for (int block = 0; block < cfg->num_blocks; block++) { + for (int i = 0; i < v->live_intervals->num_vars; i++) { + if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) { + int vgrf = v->live_intervals->vgrf_from_var[i]; + if (!BITSET_TEST(livein[block], vgrf)) { + reg_pressure_in[block] += v->alloc.sizes[vgrf]; + BITSET_SET(livein[block], vgrf); + } + } + + if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i)) + BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]); + } + } + + /* Now, extend the live in/live out sets for when a range crosses a block + * boundary, which matches what our register allocator/interference code + * does to account for force_writemask_all and incompatible exec_mask's. + */ + for (int block = 0; block < cfg->num_blocks - 1; block++) { + for (int i = 0; i < grf_count; i++) { + if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip && + v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) { + if (!BITSET_TEST(livein[block + 1], i)) { + reg_pressure_in[block + 1] += v->alloc.sizes[i]; + BITSET_SET(livein[block + 1], i); + } + + BITSET_SET(liveout[block], i); + } + } + } + + int payload_last_use_ip[hw_reg_count]; + v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip); + + for (int i = 0; i < hw_reg_count; i++) { + if (payload_last_use_ip[i] == -1) + continue; + + for (int block = 0; block < cfg->num_blocks; block++) { + if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i]) + reg_pressure_in[block]++; + + if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i]) + BITSET_SET(hw_liveout[block], i); + } + } +} + +void +fs_instruction_scheduler::update_register_pressure(backend_instruction *be) +{ + fs_inst *inst = (fs_inst *)be; + + if (!reads_remaining) + return; + + if (inst->dst.file == VGRF) { + written[inst->dst.nr] = true; + } + + for (int i = 0; i < inst->sources; i++) { + if (is_src_duplicate(inst, i)) + continue; + + if (inst->src[i].file == VGRF) { + reads_remaining[inst->src[i].nr]--; + } else if (inst->src[i].file == FIXED_GRF && + inst->src[i].nr < hw_reg_count) { + for (unsigned off = 0; off < regs_read(inst, i); off++) + hw_reads_remaining[inst->src[i].nr + off]--; + } + } +} + +int +fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be) +{ + fs_inst *inst = (fs_inst *)be; + int benefit = 0; + + if (inst->dst.file == VGRF) { + if (!BITSET_TEST(livein[block_idx], inst->dst.nr) && + !written[inst->dst.nr]) + benefit -= v->alloc.sizes[inst->dst.nr]; + } + + for (int i = 0; i < inst->sources; i++) { + if (is_src_duplicate(inst, i)) + continue; + + if (inst->src[i].file == VGRF && + !BITSET_TEST(liveout[block_idx], inst->src[i].nr) && + reads_remaining[inst->src[i].nr] == 1) + benefit += v->alloc.sizes[inst->src[i].nr]; + + if (inst->src[i].file == FIXED_GRF && + inst->src[i].nr < hw_reg_count) { + for (unsigned off = 0; off < regs_read(inst, i); off++) { + int reg = inst->src[i].nr + off; + if (!BITSET_TEST(hw_liveout[block_idx], reg) && + hw_reads_remaining[reg] == 1) { + benefit++; + } + } + } + } + + return benefit; +} + +class vec4_instruction_scheduler : public instruction_scheduler +{ +public: + vec4_instruction_scheduler(vec4_visitor *v, int grf_count); + void calculate_deps(); + schedule_node *choose_instruction_to_schedule(); + int issue_time(backend_instruction *inst); + vec4_visitor *v; + + void count_reads_remaining(backend_instruction *inst); + void setup_liveness(cfg_t *cfg); + void update_register_pressure(backend_instruction *inst); + int get_register_pressure_benefit(backend_instruction *inst); +}; + +vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v, + int grf_count) + : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST), + v(v) +{ +} + +void +vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be) +{ +} + +void +vec4_instruction_scheduler::setup_liveness(cfg_t *cfg) +{ +} + +void +vec4_instruction_scheduler::update_register_pressure(backend_instruction *be) +{ +} + +int +vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be) +{ + return 0; +} + +schedule_node::schedule_node(backend_instruction *inst, + instruction_scheduler *sched) +{ + const struct gen_device_info *devinfo = sched->bs->devinfo; + + this->inst = inst; + this->child_array_size = 0; + this->children = NULL; + this->child_latency = NULL; + this->child_count = 0; + this->parent_count = 0; + this->unblocked_time = 0; + this->cand_generation = 0; + this->delay = 0; + this->exit = NULL; + this->is_barrier = false; + + /* We can't measure Gen6 timings directly but expect them to be much + * closer to Gen7 than Gen4. + */ + if (!sched->post_reg_alloc) + this->latency = 1; + else if (devinfo->gen >= 6) + set_latency_gen7(devinfo->is_haswell); + else + set_latency_gen4(); +} + +void +instruction_scheduler::add_insts_from_block(bblock_t *block) +{ + foreach_inst_in_block(backend_instruction, inst, block) { + schedule_node *n = new(mem_ctx) schedule_node(inst, this); + + instructions.push_tail(n); + } + + this->instructions_to_schedule = block->end_ip - block->start_ip + 1; +} + +/** Computation of the delay member of each node. */ +void +instruction_scheduler::compute_delays() +{ + foreach_in_list_reverse(schedule_node, n, &instructions) { + if (!n->child_count) { + n->delay = issue_time(n->inst); + } else { + for (int i = 0; i < n->child_count; i++) { + assert(n->children[i]->delay); + n->delay = MAX2(n->delay, n->latency + n->children[i]->delay); + } + } + } +} + +void +instruction_scheduler::compute_exits() +{ + /* Calculate a lower bound of the scheduling time of each node in the + * graph. This is analogous to the node's critical path but calculated + * from the top instead of from the bottom of the block. + */ + foreach_in_list(schedule_node, n, &instructions) { + for (int i = 0; i < n->child_count; i++) { + n->children[i]->unblocked_time = + MAX2(n->children[i]->unblocked_time, + n->unblocked_time + issue_time(n->inst) + n->child_latency[i]); + } + } + + /* Calculate the exit of each node by induction based on the exit nodes of + * its children. The preferred exit of a node is the one among the exit + * nodes of its children which can be unblocked first according to the + * optimistic unblocked time estimate calculated above. + */ + foreach_in_list_reverse(schedule_node, n, &instructions) { + n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL); + + for (int i = 0; i < n->child_count; i++) { + if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n)) + n->exit = n->children[i]->exit; + } + } +} + +/** + * Add a dependency between two instruction nodes. + * + * The @after node will be scheduled after @before. We will try to + * schedule it @latency cycles after @before, but no guarantees there. + */ +void +instruction_scheduler::add_dep(schedule_node *before, schedule_node *after, + int latency) +{ + if (!before || !after) + return; + + assert(before != after); + + for (int i = 0; i < before->child_count; i++) { + if (before->children[i] == after) { + before->child_latency[i] = MAX2(before->child_latency[i], latency); + return; + } + } + + if (before->child_array_size <= before->child_count) { + if (before->child_array_size < 16) + before->child_array_size = 16; + else + before->child_array_size *= 2; + + before->children = reralloc(mem_ctx, before->children, + schedule_node *, + before->child_array_size); + before->child_latency = reralloc(mem_ctx, before->child_latency, + int, before->child_array_size); + } + + before->children[before->child_count] = after; + before->child_latency[before->child_count] = latency; + before->child_count++; + after->parent_count++; +} + +void +instruction_scheduler::add_dep(schedule_node *before, schedule_node *after) +{ + if (!before) + return; + + add_dep(before, after, before->latency); +} + +/** + * Sometimes we really want this node to execute after everything that + * was before it and before everything that followed it. This adds + * the deps to do so. + */ +void +instruction_scheduler::add_barrier_deps(schedule_node *n) +{ + schedule_node *prev = (schedule_node *)n->prev; + schedule_node *next = (schedule_node *)n->next; + + n->is_barrier = true; + + if (prev) { + while (!prev->is_head_sentinel()) { + add_dep(prev, n, 0); + if (prev->is_barrier) + break; + prev = (schedule_node *)prev->prev; + } + } + + if (next) { + while (!next->is_tail_sentinel()) { + add_dep(n, next, 0); + if (next->is_barrier) + break; + next = (schedule_node *)next->next; + } + } +} + +/* instruction scheduling needs to be aware of when an MRF write + * actually writes 2 MRFs. + */ +bool +fs_instruction_scheduler::is_compressed(fs_inst *inst) +{ + return inst->exec_size == 16; +} + +static bool +is_scheduling_barrier(const fs_inst *inst) +{ + return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT || + inst->is_control_flow() || + inst->has_side_effects(); +} + +void +fs_instruction_scheduler::calculate_deps() +{ + /* Pre-register-allocation, this tracks the last write per VGRF offset. + * After register allocation, reg_offsets are gone and we track individual + * GRF registers. + */ + schedule_node *last_grf_write[grf_count * 16]; + schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)]; + schedule_node *last_conditional_mod[4] = {}; + schedule_node *last_accumulator_write = NULL; + /* Fixed HW registers are assumed to be separate from the virtual + * GRFs, so they can be tracked separately. We don't really write + * to fixed GRFs much, so don't bother tracking them on a more + * granular level. + */ + schedule_node *last_fixed_grf_write = NULL; + + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + + /* top-to-bottom dependencies: RAW and WAW. */ + foreach_in_list(schedule_node, n, &instructions) { + fs_inst *inst = (fs_inst *)n->inst; + + if (is_scheduling_barrier(inst)) + add_barrier_deps(n); + + /* read-after-write deps. */ + for (int i = 0; i < inst->sources; i++) { + if (inst->src[i].file == VGRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_read(inst, i); r++) + add_dep(last_grf_write[inst->src[i].nr + r], n); + } else { + for (unsigned r = 0; r < regs_read(inst, i); r++) { + add_dep(last_grf_write[inst->src[i].nr * 16 + + inst->src[i].offset / REG_SIZE + r], n); + } + } + } else if (inst->src[i].file == FIXED_GRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_read(inst, i); r++) + add_dep(last_grf_write[inst->src[i].nr + r], n); + } else { + add_dep(last_fixed_grf_write, n); + } + } else if (inst->src[i].is_accumulator()) { + add_dep(last_accumulator_write, n); + } else if (inst->src[i].file == ARF) { + add_barrier_deps(n); + } + } + + if (inst->base_mrf != -1) { + for (int i = 0; i < inst->mlen; i++) { + /* It looks like the MRF regs are released in the send + * instruction once it's sent, not when the result comes + * back. + */ + add_dep(last_mrf_write[inst->base_mrf + i], n); + } + } + + if (const unsigned mask = inst->flags_read(v->devinfo)) { + assert(mask < (1 << ARRAY_SIZE(last_conditional_mod))); + + for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) { + if (mask & (1 << i)) + add_dep(last_conditional_mod[i], n); + } + } + + if (inst->reads_accumulator_implicitly()) { + add_dep(last_accumulator_write, n); + } + + /* write-after-write deps. */ + if (inst->dst.file == VGRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_written(inst); r++) { + add_dep(last_grf_write[inst->dst.nr + r], n); + last_grf_write[inst->dst.nr + r] = n; + } + } else { + for (unsigned r = 0; r < regs_written(inst); r++) { + add_dep(last_grf_write[inst->dst.nr * 16 + + inst->dst.offset / REG_SIZE + r], n); + last_grf_write[inst->dst.nr * 16 + + inst->dst.offset / REG_SIZE + r] = n; + } + } + } else if (inst->dst.file == MRF) { + int reg = inst->dst.nr & ~BRW_MRF_COMPR4; + + add_dep(last_mrf_write[reg], n); + last_mrf_write[reg] = n; + if (is_compressed(inst)) { + if (inst->dst.nr & BRW_MRF_COMPR4) + reg += 4; + else + reg++; + add_dep(last_mrf_write[reg], n); + last_mrf_write[reg] = n; + } + } else if (inst->dst.file == FIXED_GRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_written(inst); r++) + last_grf_write[inst->dst.nr + r] = n; + } else { + last_fixed_grf_write = n; + } + } else if (inst->dst.is_accumulator()) { + add_dep(last_accumulator_write, n); + last_accumulator_write = n; + } else if (inst->dst.file == ARF && !inst->dst.is_null()) { + add_barrier_deps(n); + } + + if (inst->mlen > 0 && inst->base_mrf != -1) { + for (int i = 0; i < v->implied_mrf_writes(inst); i++) { + add_dep(last_mrf_write[inst->base_mrf + i], n); + last_mrf_write[inst->base_mrf + i] = n; + } + } + + if (const unsigned mask = inst->flags_written()) { + assert(mask < (1 << ARRAY_SIZE(last_conditional_mod))); + + for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) { + if (mask & (1 << i)) { + add_dep(last_conditional_mod[i], n, 0); + last_conditional_mod[i] = n; + } + } + } + + if (inst->writes_accumulator_implicitly(v->devinfo) && + !inst->dst.is_accumulator()) { + add_dep(last_accumulator_write, n); + last_accumulator_write = n; + } + } + + /* bottom-to-top dependencies: WAR */ + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + memset(last_conditional_mod, 0, sizeof(last_conditional_mod)); + last_accumulator_write = NULL; + last_fixed_grf_write = NULL; + + foreach_in_list_reverse_safe(schedule_node, n, &instructions) { + fs_inst *inst = (fs_inst *)n->inst; + + /* write-after-read deps. */ + for (int i = 0; i < inst->sources; i++) { + if (inst->src[i].file == VGRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_read(inst, i); r++) + add_dep(n, last_grf_write[inst->src[i].nr + r], 0); + } else { + for (unsigned r = 0; r < regs_read(inst, i); r++) { + add_dep(n, last_grf_write[inst->src[i].nr * 16 + + inst->src[i].offset / REG_SIZE + r], 0); + } + } + } else if (inst->src[i].file == FIXED_GRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_read(inst, i); r++) + add_dep(n, last_grf_write[inst->src[i].nr + r], 0); + } else { + add_dep(n, last_fixed_grf_write, 0); + } + } else if (inst->src[i].is_accumulator()) { + add_dep(n, last_accumulator_write, 0); + } else if (inst->src[i].file == ARF) { + add_barrier_deps(n); + } + } + + if (inst->base_mrf != -1) { + for (int i = 0; i < inst->mlen; i++) { + /* It looks like the MRF regs are released in the send + * instruction once it's sent, not when the result comes + * back. + */ + add_dep(n, last_mrf_write[inst->base_mrf + i], 2); + } + } + + if (const unsigned mask = inst->flags_read(v->devinfo)) { + assert(mask < (1 << ARRAY_SIZE(last_conditional_mod))); + + for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) { + if (mask & (1 << i)) + add_dep(n, last_conditional_mod[i]); + } + } + + if (inst->reads_accumulator_implicitly()) { + add_dep(n, last_accumulator_write); + } + + /* Update the things this instruction wrote, so earlier reads + * can mark this as WAR dependency. + */ + if (inst->dst.file == VGRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_written(inst); r++) + last_grf_write[inst->dst.nr + r] = n; + } else { + for (unsigned r = 0; r < regs_written(inst); r++) { + last_grf_write[inst->dst.nr * 16 + + inst->dst.offset / REG_SIZE + r] = n; + } + } + } else if (inst->dst.file == MRF) { + int reg = inst->dst.nr & ~BRW_MRF_COMPR4; + + last_mrf_write[reg] = n; + + if (is_compressed(inst)) { + if (inst->dst.nr & BRW_MRF_COMPR4) + reg += 4; + else + reg++; + + last_mrf_write[reg] = n; + } + } else if (inst->dst.file == FIXED_GRF) { + if (post_reg_alloc) { + for (unsigned r = 0; r < regs_written(inst); r++) + last_grf_write[inst->dst.nr + r] = n; + } else { + last_fixed_grf_write = n; + } + } else if (inst->dst.is_accumulator()) { + last_accumulator_write = n; + } else if (inst->dst.file == ARF && !inst->dst.is_null()) { + add_barrier_deps(n); + } + + if (inst->mlen > 0 && inst->base_mrf != -1) { + for (int i = 0; i < v->implied_mrf_writes(inst); i++) { + last_mrf_write[inst->base_mrf + i] = n; + } + } + + if (const unsigned mask = inst->flags_written()) { + assert(mask < (1 << ARRAY_SIZE(last_conditional_mod))); + + for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) { + if (mask & (1 << i)) + last_conditional_mod[i] = n; + } + } + + if (inst->writes_accumulator_implicitly(v->devinfo)) { + last_accumulator_write = n; + } + } +} + +static bool +is_scheduling_barrier(const vec4_instruction *inst) +{ + return inst->is_control_flow() || + inst->has_side_effects(); +} + +void +vec4_instruction_scheduler::calculate_deps() +{ + schedule_node *last_grf_write[grf_count]; + schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)]; + schedule_node *last_conditional_mod = NULL; + schedule_node *last_accumulator_write = NULL; + /* Fixed HW registers are assumed to be separate from the virtual + * GRFs, so they can be tracked separately. We don't really write + * to fixed GRFs much, so don't bother tracking them on a more + * granular level. + */ + schedule_node *last_fixed_grf_write = NULL; + + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + + /* top-to-bottom dependencies: RAW and WAW. */ + foreach_in_list(schedule_node, n, &instructions) { + vec4_instruction *inst = (vec4_instruction *)n->inst; + + if (is_scheduling_barrier(inst)) + add_barrier_deps(n); + + /* read-after-write deps. */ + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) { + for (unsigned j = 0; j < regs_read(inst, i); ++j) + add_dep(last_grf_write[inst->src[i].nr + j], n); + } else if (inst->src[i].file == FIXED_GRF) { + add_dep(last_fixed_grf_write, n); + } else if (inst->src[i].is_accumulator()) { + assert(last_accumulator_write); + add_dep(last_accumulator_write, n); + } else if (inst->src[i].file == ARF) { + add_barrier_deps(n); + } + } + + if (!inst->is_send_from_grf()) { + for (int i = 0; i < inst->mlen; i++) { + /* It looks like the MRF regs are released in the send + * instruction once it's sent, not when the result comes + * back. + */ + add_dep(last_mrf_write[inst->base_mrf + i], n); + } + } + + if (inst->reads_flag()) { + assert(last_conditional_mod); + add_dep(last_conditional_mod, n); + } + + if (inst->reads_accumulator_implicitly()) { + assert(last_accumulator_write); + add_dep(last_accumulator_write, n); + } + + /* write-after-write deps. */ + if (inst->dst.file == VGRF) { + for (unsigned j = 0; j < regs_written(inst); ++j) { + add_dep(last_grf_write[inst->dst.nr + j], n); + last_grf_write[inst->dst.nr + j] = n; + } + } else if (inst->dst.file == MRF) { + add_dep(last_mrf_write[inst->dst.nr], n); + last_mrf_write[inst->dst.nr] = n; + } else if (inst->dst.file == FIXED_GRF) { + last_fixed_grf_write = n; + } else if (inst->dst.is_accumulator()) { + add_dep(last_accumulator_write, n); + last_accumulator_write = n; + } else if (inst->dst.file == ARF && !inst->dst.is_null()) { + add_barrier_deps(n); + } + + if (inst->mlen > 0 && !inst->is_send_from_grf()) { + for (int i = 0; i < v->implied_mrf_writes(inst); i++) { + add_dep(last_mrf_write[inst->base_mrf + i], n); + last_mrf_write[inst->base_mrf + i] = n; + } + } + + if (inst->writes_flag()) { + add_dep(last_conditional_mod, n, 0); + last_conditional_mod = n; + } + + if (inst->writes_accumulator_implicitly(v->devinfo) && + !inst->dst.is_accumulator()) { + add_dep(last_accumulator_write, n); + last_accumulator_write = n; + } + } + + /* bottom-to-top dependencies: WAR */ + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + last_conditional_mod = NULL; + last_accumulator_write = NULL; + last_fixed_grf_write = NULL; + + foreach_in_list_reverse_safe(schedule_node, n, &instructions) { + vec4_instruction *inst = (vec4_instruction *)n->inst; + + /* write-after-read deps. */ + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) { + for (unsigned j = 0; j < regs_read(inst, i); ++j) + add_dep(n, last_grf_write[inst->src[i].nr + j]); + } else if (inst->src[i].file == FIXED_GRF) { + add_dep(n, last_fixed_grf_write); + } else if (inst->src[i].is_accumulator()) { + add_dep(n, last_accumulator_write); + } else if (inst->src[i].file == ARF) { + add_barrier_deps(n); + } + } + + if (!inst->is_send_from_grf()) { + for (int i = 0; i < inst->mlen; i++) { + /* It looks like the MRF regs are released in the send + * instruction once it's sent, not when the result comes + * back. + */ + add_dep(n, last_mrf_write[inst->base_mrf + i], 2); + } + } + + if (inst->reads_flag()) { + add_dep(n, last_conditional_mod); + } + + if (inst->reads_accumulator_implicitly()) { + add_dep(n, last_accumulator_write); + } + + /* Update the things this instruction wrote, so earlier reads + * can mark this as WAR dependency. + */ + if (inst->dst.file == VGRF) { + for (unsigned j = 0; j < regs_written(inst); ++j) + last_grf_write[inst->dst.nr + j] = n; + } else if (inst->dst.file == MRF) { + last_mrf_write[inst->dst.nr] = n; + } else if (inst->dst.file == FIXED_GRF) { + last_fixed_grf_write = n; + } else if (inst->dst.is_accumulator()) { + last_accumulator_write = n; + } else if (inst->dst.file == ARF && !inst->dst.is_null()) { + add_barrier_deps(n); + } + + if (inst->mlen > 0 && !inst->is_send_from_grf()) { + for (int i = 0; i < v->implied_mrf_writes(inst); i++) { + last_mrf_write[inst->base_mrf + i] = n; + } + } + + if (inst->writes_flag()) { + last_conditional_mod = n; + } + + if (inst->writes_accumulator_implicitly(v->devinfo)) { + last_accumulator_write = n; + } + } +} + +schedule_node * +fs_instruction_scheduler::choose_instruction_to_schedule() +{ + schedule_node *chosen = NULL; + + if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) { + int chosen_time = 0; + + /* Of the instructions ready to execute or the closest to being ready, + * choose the one most likely to unblock an early program exit, or + * otherwise the oldest one. + */ + foreach_in_list(schedule_node, n, &instructions) { + if (!chosen || + exit_unblocked_time(n) < exit_unblocked_time(chosen) || + (exit_unblocked_time(n) == exit_unblocked_time(chosen) && + n->unblocked_time < chosen_time)) { + chosen = n; + chosen_time = n->unblocked_time; + } + } + } else { + /* Before register allocation, we don't care about the latencies of + * instructions. All we care about is reducing live intervals of + * variables so that we can avoid register spilling, or get SIMD16 + * shaders which naturally do a better job of hiding instruction + * latency. + */ + foreach_in_list(schedule_node, n, &instructions) { + fs_inst *inst = (fs_inst *)n->inst; + + if (!chosen) { + chosen = n; + continue; + } + + /* Most important: If we can definitely reduce register pressure, do + * so immediately. + */ + int register_pressure_benefit = get_register_pressure_benefit(n->inst); + int chosen_register_pressure_benefit = + get_register_pressure_benefit(chosen->inst); + + if (register_pressure_benefit > 0 && + register_pressure_benefit > chosen_register_pressure_benefit) { + chosen = n; + continue; + } else if (chosen_register_pressure_benefit > 0 && + (register_pressure_benefit < + chosen_register_pressure_benefit)) { + continue; + } + + if (mode == SCHEDULE_PRE_LIFO) { + /* Prefer instructions that recently became available for + * scheduling. These are the things that are most likely to + * (eventually) make a variable dead and reduce register pressure. + * Typical register pressure estimates don't work for us because + * most of our pressure comes from texturing, where no single + * instruction to schedule will make a vec4 value dead. + */ + if (n->cand_generation > chosen->cand_generation) { + chosen = n; + continue; + } else if (n->cand_generation < chosen->cand_generation) { + continue; + } + + /* On MRF-using chips, prefer non-SEND instructions. If we don't + * do this, then because we prefer instructions that just became + * candidates, we'll end up in a pattern of scheduling a SEND, + * then the MRFs for the next SEND, then the next SEND, then the + * MRFs, etc., without ever consuming the results of a send. + */ + if (v->devinfo->gen < 7) { + fs_inst *chosen_inst = (fs_inst *)chosen->inst; + + /* We use size_written > 4 * exec_size as our test for the kind + * of send instruction to avoid -- only sends generate many + * regs, and a single-result send is probably actually reducing + * register pressure. + */ + if (inst->size_written <= 4 * inst->exec_size && + chosen_inst->size_written > 4 * chosen_inst->exec_size) { + chosen = n; + continue; + } else if (inst->size_written > chosen_inst->size_written) { + continue; + } + } + } + + /* For instructions pushed on the cands list at the same time, prefer + * the one with the highest delay to the end of the program. This is + * most likely to have its values able to be consumed first (such as + * for a large tree of lowered ubo loads, which appear reversed in + * the instruction stream with respect to when they can be consumed). + */ + if (n->delay > chosen->delay) { + chosen = n; + continue; + } else if (n->delay < chosen->delay) { + continue; + } + + /* Prefer the node most likely to unblock an early program exit. + */ + if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) { + chosen = n; + continue; + } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) { + continue; + } + + /* If all other metrics are equal, we prefer the first instruction in + * the list (program execution). + */ + } + } + + return chosen; +} + +schedule_node * +vec4_instruction_scheduler::choose_instruction_to_schedule() +{ + schedule_node *chosen = NULL; + int chosen_time = 0; + + /* Of the instructions ready to execute or the closest to being ready, + * choose the oldest one. + */ + foreach_in_list(schedule_node, n, &instructions) { + if (!chosen || n->unblocked_time < chosen_time) { + chosen = n; + chosen_time = n->unblocked_time; + } + } + + return chosen; +} + +int +fs_instruction_scheduler::issue_time(backend_instruction *inst) +{ + if (is_compressed((fs_inst *)inst)) + return 4; + else + return 2; +} + +int +vec4_instruction_scheduler::issue_time(backend_instruction *inst) +{ + /* We always execute as two vec4s in parallel. */ + return 2; +} + +void +instruction_scheduler::schedule_instructions(bblock_t *block) +{ + const struct gen_device_info *devinfo = bs->devinfo; + int time = 0; + if (!post_reg_alloc) + reg_pressure = reg_pressure_in[block->num]; + block_idx = block->num; + + /* Remove non-DAG heads from the list. */ + foreach_in_list_safe(schedule_node, n, &instructions) { + if (n->parent_count != 0) + n->remove(); + } + + unsigned cand_generation = 1; + while (!instructions.is_empty()) { + schedule_node *chosen = choose_instruction_to_schedule(); + + /* Schedule this instruction. */ + assert(chosen); + chosen->remove(); + chosen->inst->exec_node::remove(); + block->instructions.push_tail(chosen->inst); + instructions_to_schedule--; + + if (!post_reg_alloc) { + reg_pressure -= get_register_pressure_benefit(chosen->inst); + update_register_pressure(chosen->inst); + } + + /* If we expected a delay for scheduling, then bump the clock to reflect + * that. In reality, the hardware will switch to another hyperthread + * and may not return to dispatching our thread for a while even after + * we're unblocked. After this, we have the time when the chosen + * instruction will start executing. + */ + time = MAX2(time, chosen->unblocked_time); + + /* Update the clock for how soon an instruction could start after the + * chosen one. + */ + time += issue_time(chosen->inst); + + if (debug) { + fprintf(stderr, "clock %4d, scheduled: ", time); + bs->dump_instruction(chosen->inst); + if (!post_reg_alloc) + fprintf(stderr, "(register pressure %d)\n", reg_pressure); + } + + /* Now that we've scheduled a new instruction, some of its + * children can be promoted to the list of instructions ready to + * be scheduled. Update the children's unblocked time for this + * DAG edge as we do so. + */ + for (int i = chosen->child_count - 1; i >= 0; i--) { + schedule_node *child = chosen->children[i]; + + child->unblocked_time = MAX2(child->unblocked_time, + time + chosen->child_latency[i]); + + if (debug) { + fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count); + bs->dump_instruction(child->inst); + } + + child->cand_generation = cand_generation; + child->parent_count--; + if (child->parent_count == 0) { + if (debug) { + fprintf(stderr, "\t\tnow available\n"); + } + instructions.push_head(child); + } + } + cand_generation++; + + /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+ + * but it's more limited pre-gen6, so if we send something off to it then + * the next math instruction isn't going to make progress until the first + * is done. + */ + if (devinfo->gen < 6 && chosen->inst->is_math()) { + foreach_in_list(schedule_node, n, &instructions) { + if (n->inst->is_math()) + n->unblocked_time = MAX2(n->unblocked_time, + time + chosen->latency); + } + } + } + + assert(instructions_to_schedule == 0); + + block->cycle_count = time; +} + +static unsigned get_cycle_count(cfg_t *cfg) +{ + unsigned count = 0, multiplier = 1; + foreach_block(block, cfg) { + if (block->start()->opcode == BRW_OPCODE_DO) + multiplier *= 10; /* assume that loops execute ~10 times */ + + count += block->cycle_count * multiplier; + + if (block->end()->opcode == BRW_OPCODE_WHILE) + multiplier /= 10; + } + + return count; +} + +void +instruction_scheduler::run(cfg_t *cfg) +{ + if (debug && !post_reg_alloc) { + fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n", + post_reg_alloc); + bs->dump_instructions(); + } + + if (!post_reg_alloc) + setup_liveness(cfg); + + foreach_block(block, cfg) { + if (reads_remaining) { + memset(reads_remaining, 0, + grf_count * sizeof(*reads_remaining)); + memset(hw_reads_remaining, 0, + hw_reg_count * sizeof(*hw_reads_remaining)); + memset(written, 0, grf_count * sizeof(*written)); + + foreach_inst_in_block(fs_inst, inst, block) + count_reads_remaining(inst); + } + + add_insts_from_block(block); + + calculate_deps(); + + compute_delays(); + compute_exits(); + + schedule_instructions(block); + } + + if (debug && !post_reg_alloc) { + fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n", + post_reg_alloc); + bs->dump_instructions(); + } + + cfg->cycle_count = get_cycle_count(cfg); +} + +void +fs_visitor::schedule_instructions(instruction_scheduler_mode mode) +{ + if (mode != SCHEDULE_POST) + calculate_live_intervals(); + + int grf_count; + if (mode == SCHEDULE_POST) + grf_count = grf_used; + else + grf_count = alloc.count; + + fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf, + cfg->num_blocks, mode); + sched.run(cfg); + + invalidate_live_intervals(); +} + +void +vec4_visitor::opt_schedule_instructions() +{ + vec4_instruction_scheduler sched(this, prog_data->total_grf); + sched.run(cfg); + + invalidate_live_intervals(); +} |