summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_schedule_instructions.cpp
diff options
context:
space:
mode:
authorJason Ekstrand <[email protected]>2017-02-28 09:10:43 -0800
committerEmil Velikov <[email protected]>2017-03-13 11:16:34 +0000
commit700bebb958e93f4d472c383de62ced9db8e64bec (patch)
tree0075c098c56c338f38ba0db80b9dba3e7e268a17 /src/intel/compiler/brw_schedule_instructions.cpp
parentd0d4a5f43b4dd79bd7bfff7c7deaade10bfebf7c (diff)
i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts: - With the earlier header cleanups, nothing in src/intel depends files from src/mesa/drivers/dri/i965/ - Both Autoconf and Android builds are addressed. Thanks to Mauro and Tapani for the fixups in the latter - brw_util.[ch] is not really compiler specific, so it's moved to i965. v2: - move brw_eu_defines.h instead of brw_defines.h - remove no-longer applicable includes - add missing vulkan/ prefix in the Android build (thanks Tapani) v3: - don't list brw_defines.h in src/intel/Makefile.sources (Jason) - rebase on top of the oa patches [Emil Velikov: commit message, various small fixes througout] Signed-off-by: Emil Velikov <[email protected]> Reviewed-by: Jason Ekstrand <[email protected]>
Diffstat (limited to 'src/intel/compiler/brw_schedule_instructions.cpp')
-rw-r--r--src/intel/compiler/brw_schedule_instructions.cpp1753
1 files changed, 1753 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_schedule_instructions.cpp b/src/intel/compiler/brw_schedule_instructions.cpp
new file mode 100644
index 00000000000..b3f7e877c80
--- /dev/null
+++ b/src/intel/compiler/brw_schedule_instructions.cpp
@@ -0,0 +1,1753 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Eric Anholt <[email protected]>
+ *
+ */
+
+#include "brw_fs.h"
+#include "brw_fs_live_variables.h"
+#include "brw_vec4.h"
+#include "brw_cfg.h"
+#include "brw_shader.h"
+
+using namespace brw;
+
+/** @file brw_fs_schedule_instructions.cpp
+ *
+ * List scheduling of FS instructions.
+ *
+ * The basic model of the list scheduler is to take a basic block,
+ * compute a DAG of the dependencies (RAW ordering with latency, WAW
+ * ordering with latency, WAR ordering), and make a list of the DAG heads.
+ * Heuristically pick a DAG head, then put all the children that are
+ * now DAG heads into the list of things to schedule.
+ *
+ * The heuristic is the important part. We're trying to be cheap,
+ * since actually computing the optimal scheduling is NP complete.
+ * What we do is track a "current clock". When we schedule a node, we
+ * update the earliest-unblocked clock time of its children, and
+ * increment the clock. Then, when trying to schedule, we just pick
+ * the earliest-unblocked instruction to schedule.
+ *
+ * Note that often there will be many things which could execute
+ * immediately, and there are a range of heuristic options to choose
+ * from in picking among those.
+ */
+
+static bool debug = false;
+
+class instruction_scheduler;
+
+class schedule_node : public exec_node
+{
+public:
+ schedule_node(backend_instruction *inst, instruction_scheduler *sched);
+ void set_latency_gen4();
+ void set_latency_gen7(bool is_haswell);
+
+ backend_instruction *inst;
+ schedule_node **children;
+ int *child_latency;
+ int child_count;
+ int parent_count;
+ int child_array_size;
+ int unblocked_time;
+ int latency;
+
+ /**
+ * Which iteration of pushing groups of children onto the candidates list
+ * this node was a part of.
+ */
+ unsigned cand_generation;
+
+ /**
+ * This is the sum of the instruction's latency plus the maximum delay of
+ * its children, or just the issue_time if it's a leaf node.
+ */
+ int delay;
+
+ /**
+ * Preferred exit node among the (direct or indirect) successors of this
+ * node. Among the scheduler nodes blocked by this node, this will be the
+ * one that may cause earliest program termination, or NULL if none of the
+ * successors is an exit node.
+ */
+ schedule_node *exit;
+
+ bool is_barrier;
+};
+
+/**
+ * Lower bound of the scheduling time after which one of the instructions
+ * blocked by this node may lead to program termination.
+ *
+ * exit_unblocked_time() determines a strict partial ordering relation '«' on
+ * the set of scheduler nodes as follows:
+ *
+ * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
+ *
+ * which can be used to heuristically order nodes according to how early they
+ * can unblock an exit node and lead to program termination.
+ */
+static inline int
+exit_unblocked_time(const schedule_node *n)
+{
+ return n->exit ? n->exit->unblocked_time : INT_MAX;
+}
+
+void
+schedule_node::set_latency_gen4()
+{
+ int chans = 8;
+ int math_latency = 22;
+
+ switch (inst->opcode) {
+ case SHADER_OPCODE_RCP:
+ this->latency = 1 * chans * math_latency;
+ break;
+ case SHADER_OPCODE_RSQ:
+ this->latency = 2 * chans * math_latency;
+ break;
+ case SHADER_OPCODE_INT_QUOTIENT:
+ case SHADER_OPCODE_SQRT:
+ case SHADER_OPCODE_LOG2:
+ /* full precision log. partial is 2. */
+ this->latency = 3 * chans * math_latency;
+ break;
+ case SHADER_OPCODE_INT_REMAINDER:
+ case SHADER_OPCODE_EXP2:
+ /* full precision. partial is 3, same throughput. */
+ this->latency = 4 * chans * math_latency;
+ break;
+ case SHADER_OPCODE_POW:
+ this->latency = 8 * chans * math_latency;
+ break;
+ case SHADER_OPCODE_SIN:
+ case SHADER_OPCODE_COS:
+ /* minimum latency, max is 12 rounds. */
+ this->latency = 5 * chans * math_latency;
+ break;
+ default:
+ this->latency = 2;
+ break;
+ }
+}
+
+void
+schedule_node::set_latency_gen7(bool is_haswell)
+{
+ switch (inst->opcode) {
+ case BRW_OPCODE_MAD:
+ /* 2 cycles
+ * (since the last two src operands are in different register banks):
+ * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
+ *
+ * 3 cycles on IVB, 4 on HSW
+ * (since the last two src operands are in the same register bank):
+ * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
+ *
+ * 18 cycles on IVB, 16 on HSW
+ * (since the last two src operands are in different register banks):
+ * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
+ * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
+ *
+ * 20 cycles on IVB, 18 on HSW
+ * (since the last two src operands are in the same register bank):
+ * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
+ * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
+ */
+
+ /* Our register allocator doesn't know about register banks, so use the
+ * higher latency.
+ */
+ latency = is_haswell ? 16 : 18;
+ break;
+
+ case BRW_OPCODE_LRP:
+ /* 2 cycles
+ * (since the last two src operands are in different register banks):
+ * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
+ *
+ * 3 cycles on IVB, 4 on HSW
+ * (since the last two src operands are in the same register bank):
+ * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
+ *
+ * 16 cycles on IVB, 14 on HSW
+ * (since the last two src operands are in different register banks):
+ * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
+ * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
+ *
+ * 16 cycles
+ * (since the last two src operands are in the same register bank):
+ * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
+ * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
+ */
+
+ /* Our register allocator doesn't know about register banks, so use the
+ * higher latency.
+ */
+ latency = 14;
+ break;
+
+ case SHADER_OPCODE_RCP:
+ case SHADER_OPCODE_RSQ:
+ case SHADER_OPCODE_SQRT:
+ case SHADER_OPCODE_LOG2:
+ case SHADER_OPCODE_EXP2:
+ case SHADER_OPCODE_SIN:
+ case SHADER_OPCODE_COS:
+ /* 2 cycles:
+ * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
+ *
+ * 18 cycles:
+ * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * Same for exp2, log2, rsq, sqrt, sin, cos.
+ */
+ latency = is_haswell ? 14 : 16;
+ break;
+
+ case SHADER_OPCODE_POW:
+ /* 2 cycles:
+ * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
+ *
+ * 26 cycles:
+ * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ */
+ latency = is_haswell ? 22 : 24;
+ break;
+
+ case SHADER_OPCODE_TEX:
+ case SHADER_OPCODE_TXD:
+ case SHADER_OPCODE_TXF:
+ case SHADER_OPCODE_TXF_LZ:
+ case SHADER_OPCODE_TXL:
+ case SHADER_OPCODE_TXL_LZ:
+ /* 18 cycles:
+ * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
+ * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
+ * send(8) g4<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ *
+ * 697 +/-49 cycles (min 610, n=26):
+ * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
+ * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
+ * send(8) g4<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * So the latency on our first texture load of the batchbuffer takes
+ * ~700 cycles, since the caches are cold at that point.
+ *
+ * 840 +/- 92 cycles (min 720, n=25):
+ * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
+ * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
+ * send(8) g4<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ * send(8) g4<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * On the second load, it takes just an extra ~140 cycles, and after
+ * accounting for the 14 cycles of the MOV's latency, that makes ~130.
+ *
+ * 683 +/- 49 cycles (min = 602, n=47):
+ * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
+ * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
+ * send(8) g4<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ * send(8) g50<1>UW g114<8,8,1>F
+ * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * The unit appears to be pipelined, since this matches up with the
+ * cache-cold case, despite there being two loads here. If you replace
+ * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
+ *
+ * So, take some number between the cache-hot 140 cycles and the
+ * cache-cold 700 cycles. No particular tuning was done on this.
+ *
+ * I haven't done significant testing of the non-TEX opcodes. TXL at
+ * least looked about the same as TEX.
+ */
+ latency = 200;
+ break;
+
+ case SHADER_OPCODE_TXS:
+ /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
+ * cycles (n=15):
+ * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
+ * send(8) g6<1>UW g114<8,8,1>F
+ * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
+ * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
+ *
+ *
+ * Two loads was 535 +/- 30 cycles (n=19):
+ * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
+ * send(16) g6<1>UW g114<8,8,1>F
+ * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
+ * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
+ * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
+ * send(16) g8<1>UW g114<8,8,1>F
+ * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
+ * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
+ * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
+ *
+ * Since the only caches that should matter are just the
+ * instruction/state cache containing the surface state, assume that we
+ * always have hot caches.
+ */
+ latency = 100;
+ break;
+
+ case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
+ case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
+ case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
+ case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
+ case VS_OPCODE_PULL_CONSTANT_LOAD:
+ /* testing using varying-index pull constants:
+ *
+ * 16 cycles:
+ * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
+ * send(8) g4<1>F g4<8,8,1>D
+ * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
+ *
+ * ~480 cycles:
+ * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
+ * send(8) g4<1>F g4<8,8,1>D
+ * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * ~620 cycles:
+ * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
+ * send(8) g4<1>F g4<8,8,1>D
+ * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ * send(8) g4<1>F g4<8,8,1>D
+ * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * So, if it's cache-hot, it's about 140. If it's cache cold, it's
+ * about 460. We expect to mostly be cache hot, so pick something more
+ * in that direction.
+ */
+ latency = 200;
+ break;
+
+ case SHADER_OPCODE_GEN7_SCRATCH_READ:
+ /* Testing a load from offset 0, that had been previously written:
+ *
+ * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
+ * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
+ *
+ * The cycles spent seemed to be grouped around 40-50 (as low as 38),
+ * then around 140. Presumably this is cache hit vs miss.
+ */
+ latency = 50;
+ break;
+
+ case SHADER_OPCODE_UNTYPED_ATOMIC:
+ case SHADER_OPCODE_TYPED_ATOMIC:
+ /* Test code:
+ * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
+ * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
+ * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
+ * send(8) g4<1>ud g112<8,8,1>ud
+ * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
+ *
+ * Running it 100 times as fragment shader on a 128x128 quad
+ * gives an average latency of 13867 cycles per atomic op,
+ * standard deviation 3%. Note that this is a rather
+ * pessimistic estimate, the actual latency in cases with few
+ * collisions between threads and favorable pipelining has been
+ * seen to be reduced by a factor of 100.
+ */
+ latency = 14000;
+ break;
+
+ case SHADER_OPCODE_UNTYPED_SURFACE_READ:
+ case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
+ case SHADER_OPCODE_TYPED_SURFACE_READ:
+ case SHADER_OPCODE_TYPED_SURFACE_WRITE:
+ /* Test code:
+ * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
+ * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
+ * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
+ * send(8) g4<1>UD g112<8,8,1>UD
+ * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
+ * .
+ * . [repeats 8 times]
+ * .
+ * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
+ * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
+ * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
+ * send(8) g4<1>UD g112<8,8,1>UD
+ * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
+ *
+ * Running it 100 times as fragment shader on a 128x128 quad
+ * gives an average latency of 583 cycles per surface read,
+ * standard deviation 0.9%.
+ */
+ latency = is_haswell ? 300 : 600;
+ break;
+
+ default:
+ /* 2 cycles:
+ * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
+ *
+ * 16 cycles:
+ * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
+ * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
+ */
+ latency = 14;
+ break;
+ }
+}
+
+class instruction_scheduler {
+public:
+ instruction_scheduler(backend_shader *s, int grf_count,
+ int hw_reg_count, int block_count,
+ instruction_scheduler_mode mode)
+ {
+ this->bs = s;
+ this->mem_ctx = ralloc_context(NULL);
+ this->grf_count = grf_count;
+ this->hw_reg_count = hw_reg_count;
+ this->instructions.make_empty();
+ this->instructions_to_schedule = 0;
+ this->post_reg_alloc = (mode == SCHEDULE_POST);
+ this->mode = mode;
+ if (!post_reg_alloc) {
+ this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
+
+ this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
+ for (int i = 0; i < block_count; i++)
+ this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
+ BITSET_WORDS(grf_count));
+
+ this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
+ for (int i = 0; i < block_count; i++)
+ this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
+ BITSET_WORDS(grf_count));
+
+ this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
+ for (int i = 0; i < block_count; i++)
+ this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
+ BITSET_WORDS(hw_reg_count));
+
+ this->written = rzalloc_array(mem_ctx, bool, grf_count);
+
+ this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
+
+ this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
+ } else {
+ this->reg_pressure_in = NULL;
+ this->livein = NULL;
+ this->liveout = NULL;
+ this->hw_liveout = NULL;
+ this->written = NULL;
+ this->reads_remaining = NULL;
+ this->hw_reads_remaining = NULL;
+ }
+ }
+
+ ~instruction_scheduler()
+ {
+ ralloc_free(this->mem_ctx);
+ }
+ void add_barrier_deps(schedule_node *n);
+ void add_dep(schedule_node *before, schedule_node *after, int latency);
+ void add_dep(schedule_node *before, schedule_node *after);
+
+ void run(cfg_t *cfg);
+ void add_insts_from_block(bblock_t *block);
+ void compute_delays();
+ void compute_exits();
+ virtual void calculate_deps() = 0;
+ virtual schedule_node *choose_instruction_to_schedule() = 0;
+
+ /**
+ * Returns how many cycles it takes the instruction to issue.
+ *
+ * Instructions in gen hardware are handled one simd4 vector at a time,
+ * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
+ * cycles to dispatch and SIMD16 (compressed) instructions take 4.
+ */
+ virtual int issue_time(backend_instruction *inst) = 0;
+
+ virtual void count_reads_remaining(backend_instruction *inst) = 0;
+ virtual void setup_liveness(cfg_t *cfg) = 0;
+ virtual void update_register_pressure(backend_instruction *inst) = 0;
+ virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
+
+ void schedule_instructions(bblock_t *block);
+
+ void *mem_ctx;
+
+ bool post_reg_alloc;
+ int instructions_to_schedule;
+ int grf_count;
+ int hw_reg_count;
+ int reg_pressure;
+ int block_idx;
+ exec_list instructions;
+ backend_shader *bs;
+
+ instruction_scheduler_mode mode;
+
+ /*
+ * The register pressure at the beginning of each basic block.
+ */
+
+ int *reg_pressure_in;
+
+ /*
+ * The virtual GRF's whose range overlaps the beginning of each basic block.
+ */
+
+ BITSET_WORD **livein;
+
+ /*
+ * The virtual GRF's whose range overlaps the end of each basic block.
+ */
+
+ BITSET_WORD **liveout;
+
+ /*
+ * The hardware GRF's whose range overlaps the end of each basic block.
+ */
+
+ BITSET_WORD **hw_liveout;
+
+ /*
+ * Whether we've scheduled a write for this virtual GRF yet.
+ */
+
+ bool *written;
+
+ /*
+ * How many reads we haven't scheduled for this virtual GRF yet.
+ */
+
+ int *reads_remaining;
+
+ /*
+ * How many reads we haven't scheduled for this hardware GRF yet.
+ */
+
+ int *hw_reads_remaining;
+};
+
+class fs_instruction_scheduler : public instruction_scheduler
+{
+public:
+ fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
+ int block_count,
+ instruction_scheduler_mode mode);
+ void calculate_deps();
+ bool is_compressed(fs_inst *inst);
+ schedule_node *choose_instruction_to_schedule();
+ int issue_time(backend_instruction *inst);
+ fs_visitor *v;
+
+ void count_reads_remaining(backend_instruction *inst);
+ void setup_liveness(cfg_t *cfg);
+ void update_register_pressure(backend_instruction *inst);
+ int get_register_pressure_benefit(backend_instruction *inst);
+};
+
+fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
+ int grf_count, int hw_reg_count,
+ int block_count,
+ instruction_scheduler_mode mode)
+ : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
+ v(v)
+{
+}
+
+static bool
+is_src_duplicate(fs_inst *inst, int src)
+{
+ for (int i = 0; i < src; i++)
+ if (inst->src[i].equals(inst->src[src]))
+ return true;
+
+ return false;
+}
+
+void
+fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
+{
+ fs_inst *inst = (fs_inst *)be;
+
+ if (!reads_remaining)
+ return;
+
+ for (int i = 0; i < inst->sources; i++) {
+ if (is_src_duplicate(inst, i))
+ continue;
+
+ if (inst->src[i].file == VGRF) {
+ reads_remaining[inst->src[i].nr]++;
+ } else if (inst->src[i].file == FIXED_GRF) {
+ if (inst->src[i].nr >= hw_reg_count)
+ continue;
+
+ for (unsigned j = 0; j < regs_read(inst, i); j++)
+ hw_reads_remaining[inst->src[i].nr + j]++;
+ }
+ }
+}
+
+void
+fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
+{
+ /* First, compute liveness on a per-GRF level using the in/out sets from
+ * liveness calculation.
+ */
+ for (int block = 0; block < cfg->num_blocks; block++) {
+ for (int i = 0; i < v->live_intervals->num_vars; i++) {
+ if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
+ int vgrf = v->live_intervals->vgrf_from_var[i];
+ if (!BITSET_TEST(livein[block], vgrf)) {
+ reg_pressure_in[block] += v->alloc.sizes[vgrf];
+ BITSET_SET(livein[block], vgrf);
+ }
+ }
+
+ if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
+ BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
+ }
+ }
+
+ /* Now, extend the live in/live out sets for when a range crosses a block
+ * boundary, which matches what our register allocator/interference code
+ * does to account for force_writemask_all and incompatible exec_mask's.
+ */
+ for (int block = 0; block < cfg->num_blocks - 1; block++) {
+ for (int i = 0; i < grf_count; i++) {
+ if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
+ v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
+ if (!BITSET_TEST(livein[block + 1], i)) {
+ reg_pressure_in[block + 1] += v->alloc.sizes[i];
+ BITSET_SET(livein[block + 1], i);
+ }
+
+ BITSET_SET(liveout[block], i);
+ }
+ }
+ }
+
+ int payload_last_use_ip[hw_reg_count];
+ v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
+
+ for (int i = 0; i < hw_reg_count; i++) {
+ if (payload_last_use_ip[i] == -1)
+ continue;
+
+ for (int block = 0; block < cfg->num_blocks; block++) {
+ if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
+ reg_pressure_in[block]++;
+
+ if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
+ BITSET_SET(hw_liveout[block], i);
+ }
+ }
+}
+
+void
+fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
+{
+ fs_inst *inst = (fs_inst *)be;
+
+ if (!reads_remaining)
+ return;
+
+ if (inst->dst.file == VGRF) {
+ written[inst->dst.nr] = true;
+ }
+
+ for (int i = 0; i < inst->sources; i++) {
+ if (is_src_duplicate(inst, i))
+ continue;
+
+ if (inst->src[i].file == VGRF) {
+ reads_remaining[inst->src[i].nr]--;
+ } else if (inst->src[i].file == FIXED_GRF &&
+ inst->src[i].nr < hw_reg_count) {
+ for (unsigned off = 0; off < regs_read(inst, i); off++)
+ hw_reads_remaining[inst->src[i].nr + off]--;
+ }
+ }
+}
+
+int
+fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
+{
+ fs_inst *inst = (fs_inst *)be;
+ int benefit = 0;
+
+ if (inst->dst.file == VGRF) {
+ if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
+ !written[inst->dst.nr])
+ benefit -= v->alloc.sizes[inst->dst.nr];
+ }
+
+ for (int i = 0; i < inst->sources; i++) {
+ if (is_src_duplicate(inst, i))
+ continue;
+
+ if (inst->src[i].file == VGRF &&
+ !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
+ reads_remaining[inst->src[i].nr] == 1)
+ benefit += v->alloc.sizes[inst->src[i].nr];
+
+ if (inst->src[i].file == FIXED_GRF &&
+ inst->src[i].nr < hw_reg_count) {
+ for (unsigned off = 0; off < regs_read(inst, i); off++) {
+ int reg = inst->src[i].nr + off;
+ if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
+ hw_reads_remaining[reg] == 1) {
+ benefit++;
+ }
+ }
+ }
+ }
+
+ return benefit;
+}
+
+class vec4_instruction_scheduler : public instruction_scheduler
+{
+public:
+ vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
+ void calculate_deps();
+ schedule_node *choose_instruction_to_schedule();
+ int issue_time(backend_instruction *inst);
+ vec4_visitor *v;
+
+ void count_reads_remaining(backend_instruction *inst);
+ void setup_liveness(cfg_t *cfg);
+ void update_register_pressure(backend_instruction *inst);
+ int get_register_pressure_benefit(backend_instruction *inst);
+};
+
+vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
+ int grf_count)
+ : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
+ v(v)
+{
+}
+
+void
+vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
+{
+}
+
+void
+vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
+{
+}
+
+void
+vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
+{
+}
+
+int
+vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
+{
+ return 0;
+}
+
+schedule_node::schedule_node(backend_instruction *inst,
+ instruction_scheduler *sched)
+{
+ const struct gen_device_info *devinfo = sched->bs->devinfo;
+
+ this->inst = inst;
+ this->child_array_size = 0;
+ this->children = NULL;
+ this->child_latency = NULL;
+ this->child_count = 0;
+ this->parent_count = 0;
+ this->unblocked_time = 0;
+ this->cand_generation = 0;
+ this->delay = 0;
+ this->exit = NULL;
+ this->is_barrier = false;
+
+ /* We can't measure Gen6 timings directly but expect them to be much
+ * closer to Gen7 than Gen4.
+ */
+ if (!sched->post_reg_alloc)
+ this->latency = 1;
+ else if (devinfo->gen >= 6)
+ set_latency_gen7(devinfo->is_haswell);
+ else
+ set_latency_gen4();
+}
+
+void
+instruction_scheduler::add_insts_from_block(bblock_t *block)
+{
+ foreach_inst_in_block(backend_instruction, inst, block) {
+ schedule_node *n = new(mem_ctx) schedule_node(inst, this);
+
+ instructions.push_tail(n);
+ }
+
+ this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
+}
+
+/** Computation of the delay member of each node. */
+void
+instruction_scheduler::compute_delays()
+{
+ foreach_in_list_reverse(schedule_node, n, &instructions) {
+ if (!n->child_count) {
+ n->delay = issue_time(n->inst);
+ } else {
+ for (int i = 0; i < n->child_count; i++) {
+ assert(n->children[i]->delay);
+ n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
+ }
+ }
+ }
+}
+
+void
+instruction_scheduler::compute_exits()
+{
+ /* Calculate a lower bound of the scheduling time of each node in the
+ * graph. This is analogous to the node's critical path but calculated
+ * from the top instead of from the bottom of the block.
+ */
+ foreach_in_list(schedule_node, n, &instructions) {
+ for (int i = 0; i < n->child_count; i++) {
+ n->children[i]->unblocked_time =
+ MAX2(n->children[i]->unblocked_time,
+ n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
+ }
+ }
+
+ /* Calculate the exit of each node by induction based on the exit nodes of
+ * its children. The preferred exit of a node is the one among the exit
+ * nodes of its children which can be unblocked first according to the
+ * optimistic unblocked time estimate calculated above.
+ */
+ foreach_in_list_reverse(schedule_node, n, &instructions) {
+ n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
+
+ for (int i = 0; i < n->child_count; i++) {
+ if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
+ n->exit = n->children[i]->exit;
+ }
+ }
+}
+
+/**
+ * Add a dependency between two instruction nodes.
+ *
+ * The @after node will be scheduled after @before. We will try to
+ * schedule it @latency cycles after @before, but no guarantees there.
+ */
+void
+instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
+ int latency)
+{
+ if (!before || !after)
+ return;
+
+ assert(before != after);
+
+ for (int i = 0; i < before->child_count; i++) {
+ if (before->children[i] == after) {
+ before->child_latency[i] = MAX2(before->child_latency[i], latency);
+ return;
+ }
+ }
+
+ if (before->child_array_size <= before->child_count) {
+ if (before->child_array_size < 16)
+ before->child_array_size = 16;
+ else
+ before->child_array_size *= 2;
+
+ before->children = reralloc(mem_ctx, before->children,
+ schedule_node *,
+ before->child_array_size);
+ before->child_latency = reralloc(mem_ctx, before->child_latency,
+ int, before->child_array_size);
+ }
+
+ before->children[before->child_count] = after;
+ before->child_latency[before->child_count] = latency;
+ before->child_count++;
+ after->parent_count++;
+}
+
+void
+instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
+{
+ if (!before)
+ return;
+
+ add_dep(before, after, before->latency);
+}
+
+/**
+ * Sometimes we really want this node to execute after everything that
+ * was before it and before everything that followed it. This adds
+ * the deps to do so.
+ */
+void
+instruction_scheduler::add_barrier_deps(schedule_node *n)
+{
+ schedule_node *prev = (schedule_node *)n->prev;
+ schedule_node *next = (schedule_node *)n->next;
+
+ n->is_barrier = true;
+
+ if (prev) {
+ while (!prev->is_head_sentinel()) {
+ add_dep(prev, n, 0);
+ if (prev->is_barrier)
+ break;
+ prev = (schedule_node *)prev->prev;
+ }
+ }
+
+ if (next) {
+ while (!next->is_tail_sentinel()) {
+ add_dep(n, next, 0);
+ if (next->is_barrier)
+ break;
+ next = (schedule_node *)next->next;
+ }
+ }
+}
+
+/* instruction scheduling needs to be aware of when an MRF write
+ * actually writes 2 MRFs.
+ */
+bool
+fs_instruction_scheduler::is_compressed(fs_inst *inst)
+{
+ return inst->exec_size == 16;
+}
+
+static bool
+is_scheduling_barrier(const fs_inst *inst)
+{
+ return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
+ inst->is_control_flow() ||
+ inst->has_side_effects();
+}
+
+void
+fs_instruction_scheduler::calculate_deps()
+{
+ /* Pre-register-allocation, this tracks the last write per VGRF offset.
+ * After register allocation, reg_offsets are gone and we track individual
+ * GRF registers.
+ */
+ schedule_node *last_grf_write[grf_count * 16];
+ schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
+ schedule_node *last_conditional_mod[4] = {};
+ schedule_node *last_accumulator_write = NULL;
+ /* Fixed HW registers are assumed to be separate from the virtual
+ * GRFs, so they can be tracked separately. We don't really write
+ * to fixed GRFs much, so don't bother tracking them on a more
+ * granular level.
+ */
+ schedule_node *last_fixed_grf_write = NULL;
+
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+
+ /* top-to-bottom dependencies: RAW and WAW. */
+ foreach_in_list(schedule_node, n, &instructions) {
+ fs_inst *inst = (fs_inst *)n->inst;
+
+ if (is_scheduling_barrier(inst))
+ add_barrier_deps(n);
+
+ /* read-after-write deps. */
+ for (int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file == VGRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_read(inst, i); r++)
+ add_dep(last_grf_write[inst->src[i].nr + r], n);
+ } else {
+ for (unsigned r = 0; r < regs_read(inst, i); r++) {
+ add_dep(last_grf_write[inst->src[i].nr * 16 +
+ inst->src[i].offset / REG_SIZE + r], n);
+ }
+ }
+ } else if (inst->src[i].file == FIXED_GRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_read(inst, i); r++)
+ add_dep(last_grf_write[inst->src[i].nr + r], n);
+ } else {
+ add_dep(last_fixed_grf_write, n);
+ }
+ } else if (inst->src[i].is_accumulator()) {
+ add_dep(last_accumulator_write, n);
+ } else if (inst->src[i].file == ARF) {
+ add_barrier_deps(n);
+ }
+ }
+
+ if (inst->base_mrf != -1) {
+ for (int i = 0; i < inst->mlen; i++) {
+ /* It looks like the MRF regs are released in the send
+ * instruction once it's sent, not when the result comes
+ * back.
+ */
+ add_dep(last_mrf_write[inst->base_mrf + i], n);
+ }
+ }
+
+ if (const unsigned mask = inst->flags_read(v->devinfo)) {
+ assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
+
+ for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
+ if (mask & (1 << i))
+ add_dep(last_conditional_mod[i], n);
+ }
+ }
+
+ if (inst->reads_accumulator_implicitly()) {
+ add_dep(last_accumulator_write, n);
+ }
+
+ /* write-after-write deps. */
+ if (inst->dst.file == VGRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_written(inst); r++) {
+ add_dep(last_grf_write[inst->dst.nr + r], n);
+ last_grf_write[inst->dst.nr + r] = n;
+ }
+ } else {
+ for (unsigned r = 0; r < regs_written(inst); r++) {
+ add_dep(last_grf_write[inst->dst.nr * 16 +
+ inst->dst.offset / REG_SIZE + r], n);
+ last_grf_write[inst->dst.nr * 16 +
+ inst->dst.offset / REG_SIZE + r] = n;
+ }
+ }
+ } else if (inst->dst.file == MRF) {
+ int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
+
+ add_dep(last_mrf_write[reg], n);
+ last_mrf_write[reg] = n;
+ if (is_compressed(inst)) {
+ if (inst->dst.nr & BRW_MRF_COMPR4)
+ reg += 4;
+ else
+ reg++;
+ add_dep(last_mrf_write[reg], n);
+ last_mrf_write[reg] = n;
+ }
+ } else if (inst->dst.file == FIXED_GRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_written(inst); r++)
+ last_grf_write[inst->dst.nr + r] = n;
+ } else {
+ last_fixed_grf_write = n;
+ }
+ } else if (inst->dst.is_accumulator()) {
+ add_dep(last_accumulator_write, n);
+ last_accumulator_write = n;
+ } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
+ add_barrier_deps(n);
+ }
+
+ if (inst->mlen > 0 && inst->base_mrf != -1) {
+ for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
+ add_dep(last_mrf_write[inst->base_mrf + i], n);
+ last_mrf_write[inst->base_mrf + i] = n;
+ }
+ }
+
+ if (const unsigned mask = inst->flags_written()) {
+ assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
+
+ for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
+ if (mask & (1 << i)) {
+ add_dep(last_conditional_mod[i], n, 0);
+ last_conditional_mod[i] = n;
+ }
+ }
+ }
+
+ if (inst->writes_accumulator_implicitly(v->devinfo) &&
+ !inst->dst.is_accumulator()) {
+ add_dep(last_accumulator_write, n);
+ last_accumulator_write = n;
+ }
+ }
+
+ /* bottom-to-top dependencies: WAR */
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+ memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
+ last_accumulator_write = NULL;
+ last_fixed_grf_write = NULL;
+
+ foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
+ fs_inst *inst = (fs_inst *)n->inst;
+
+ /* write-after-read deps. */
+ for (int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file == VGRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_read(inst, i); r++)
+ add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
+ } else {
+ for (unsigned r = 0; r < regs_read(inst, i); r++) {
+ add_dep(n, last_grf_write[inst->src[i].nr * 16 +
+ inst->src[i].offset / REG_SIZE + r], 0);
+ }
+ }
+ } else if (inst->src[i].file == FIXED_GRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_read(inst, i); r++)
+ add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
+ } else {
+ add_dep(n, last_fixed_grf_write, 0);
+ }
+ } else if (inst->src[i].is_accumulator()) {
+ add_dep(n, last_accumulator_write, 0);
+ } else if (inst->src[i].file == ARF) {
+ add_barrier_deps(n);
+ }
+ }
+
+ if (inst->base_mrf != -1) {
+ for (int i = 0; i < inst->mlen; i++) {
+ /* It looks like the MRF regs are released in the send
+ * instruction once it's sent, not when the result comes
+ * back.
+ */
+ add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
+ }
+ }
+
+ if (const unsigned mask = inst->flags_read(v->devinfo)) {
+ assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
+
+ for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
+ if (mask & (1 << i))
+ add_dep(n, last_conditional_mod[i]);
+ }
+ }
+
+ if (inst->reads_accumulator_implicitly()) {
+ add_dep(n, last_accumulator_write);
+ }
+
+ /* Update the things this instruction wrote, so earlier reads
+ * can mark this as WAR dependency.
+ */
+ if (inst->dst.file == VGRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_written(inst); r++)
+ last_grf_write[inst->dst.nr + r] = n;
+ } else {
+ for (unsigned r = 0; r < regs_written(inst); r++) {
+ last_grf_write[inst->dst.nr * 16 +
+ inst->dst.offset / REG_SIZE + r] = n;
+ }
+ }
+ } else if (inst->dst.file == MRF) {
+ int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
+
+ last_mrf_write[reg] = n;
+
+ if (is_compressed(inst)) {
+ if (inst->dst.nr & BRW_MRF_COMPR4)
+ reg += 4;
+ else
+ reg++;
+
+ last_mrf_write[reg] = n;
+ }
+ } else if (inst->dst.file == FIXED_GRF) {
+ if (post_reg_alloc) {
+ for (unsigned r = 0; r < regs_written(inst); r++)
+ last_grf_write[inst->dst.nr + r] = n;
+ } else {
+ last_fixed_grf_write = n;
+ }
+ } else if (inst->dst.is_accumulator()) {
+ last_accumulator_write = n;
+ } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
+ add_barrier_deps(n);
+ }
+
+ if (inst->mlen > 0 && inst->base_mrf != -1) {
+ for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
+ last_mrf_write[inst->base_mrf + i] = n;
+ }
+ }
+
+ if (const unsigned mask = inst->flags_written()) {
+ assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
+
+ for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
+ if (mask & (1 << i))
+ last_conditional_mod[i] = n;
+ }
+ }
+
+ if (inst->writes_accumulator_implicitly(v->devinfo)) {
+ last_accumulator_write = n;
+ }
+ }
+}
+
+static bool
+is_scheduling_barrier(const vec4_instruction *inst)
+{
+ return inst->is_control_flow() ||
+ inst->has_side_effects();
+}
+
+void
+vec4_instruction_scheduler::calculate_deps()
+{
+ schedule_node *last_grf_write[grf_count];
+ schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
+ schedule_node *last_conditional_mod = NULL;
+ schedule_node *last_accumulator_write = NULL;
+ /* Fixed HW registers are assumed to be separate from the virtual
+ * GRFs, so they can be tracked separately. We don't really write
+ * to fixed GRFs much, so don't bother tracking them on a more
+ * granular level.
+ */
+ schedule_node *last_fixed_grf_write = NULL;
+
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+
+ /* top-to-bottom dependencies: RAW and WAW. */
+ foreach_in_list(schedule_node, n, &instructions) {
+ vec4_instruction *inst = (vec4_instruction *)n->inst;
+
+ if (is_scheduling_barrier(inst))
+ add_barrier_deps(n);
+
+ /* read-after-write deps. */
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF) {
+ for (unsigned j = 0; j < regs_read(inst, i); ++j)
+ add_dep(last_grf_write[inst->src[i].nr + j], n);
+ } else if (inst->src[i].file == FIXED_GRF) {
+ add_dep(last_fixed_grf_write, n);
+ } else if (inst->src[i].is_accumulator()) {
+ assert(last_accumulator_write);
+ add_dep(last_accumulator_write, n);
+ } else if (inst->src[i].file == ARF) {
+ add_barrier_deps(n);
+ }
+ }
+
+ if (!inst->is_send_from_grf()) {
+ for (int i = 0; i < inst->mlen; i++) {
+ /* It looks like the MRF regs are released in the send
+ * instruction once it's sent, not when the result comes
+ * back.
+ */
+ add_dep(last_mrf_write[inst->base_mrf + i], n);
+ }
+ }
+
+ if (inst->reads_flag()) {
+ assert(last_conditional_mod);
+ add_dep(last_conditional_mod, n);
+ }
+
+ if (inst->reads_accumulator_implicitly()) {
+ assert(last_accumulator_write);
+ add_dep(last_accumulator_write, n);
+ }
+
+ /* write-after-write deps. */
+ if (inst->dst.file == VGRF) {
+ for (unsigned j = 0; j < regs_written(inst); ++j) {
+ add_dep(last_grf_write[inst->dst.nr + j], n);
+ last_grf_write[inst->dst.nr + j] = n;
+ }
+ } else if (inst->dst.file == MRF) {
+ add_dep(last_mrf_write[inst->dst.nr], n);
+ last_mrf_write[inst->dst.nr] = n;
+ } else if (inst->dst.file == FIXED_GRF) {
+ last_fixed_grf_write = n;
+ } else if (inst->dst.is_accumulator()) {
+ add_dep(last_accumulator_write, n);
+ last_accumulator_write = n;
+ } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
+ add_barrier_deps(n);
+ }
+
+ if (inst->mlen > 0 && !inst->is_send_from_grf()) {
+ for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
+ add_dep(last_mrf_write[inst->base_mrf + i], n);
+ last_mrf_write[inst->base_mrf + i] = n;
+ }
+ }
+
+ if (inst->writes_flag()) {
+ add_dep(last_conditional_mod, n, 0);
+ last_conditional_mod = n;
+ }
+
+ if (inst->writes_accumulator_implicitly(v->devinfo) &&
+ !inst->dst.is_accumulator()) {
+ add_dep(last_accumulator_write, n);
+ last_accumulator_write = n;
+ }
+ }
+
+ /* bottom-to-top dependencies: WAR */
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+ last_conditional_mod = NULL;
+ last_accumulator_write = NULL;
+ last_fixed_grf_write = NULL;
+
+ foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
+ vec4_instruction *inst = (vec4_instruction *)n->inst;
+
+ /* write-after-read deps. */
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF) {
+ for (unsigned j = 0; j < regs_read(inst, i); ++j)
+ add_dep(n, last_grf_write[inst->src[i].nr + j]);
+ } else if (inst->src[i].file == FIXED_GRF) {
+ add_dep(n, last_fixed_grf_write);
+ } else if (inst->src[i].is_accumulator()) {
+ add_dep(n, last_accumulator_write);
+ } else if (inst->src[i].file == ARF) {
+ add_barrier_deps(n);
+ }
+ }
+
+ if (!inst->is_send_from_grf()) {
+ for (int i = 0; i < inst->mlen; i++) {
+ /* It looks like the MRF regs are released in the send
+ * instruction once it's sent, not when the result comes
+ * back.
+ */
+ add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
+ }
+ }
+
+ if (inst->reads_flag()) {
+ add_dep(n, last_conditional_mod);
+ }
+
+ if (inst->reads_accumulator_implicitly()) {
+ add_dep(n, last_accumulator_write);
+ }
+
+ /* Update the things this instruction wrote, so earlier reads
+ * can mark this as WAR dependency.
+ */
+ if (inst->dst.file == VGRF) {
+ for (unsigned j = 0; j < regs_written(inst); ++j)
+ last_grf_write[inst->dst.nr + j] = n;
+ } else if (inst->dst.file == MRF) {
+ last_mrf_write[inst->dst.nr] = n;
+ } else if (inst->dst.file == FIXED_GRF) {
+ last_fixed_grf_write = n;
+ } else if (inst->dst.is_accumulator()) {
+ last_accumulator_write = n;
+ } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
+ add_barrier_deps(n);
+ }
+
+ if (inst->mlen > 0 && !inst->is_send_from_grf()) {
+ for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
+ last_mrf_write[inst->base_mrf + i] = n;
+ }
+ }
+
+ if (inst->writes_flag()) {
+ last_conditional_mod = n;
+ }
+
+ if (inst->writes_accumulator_implicitly(v->devinfo)) {
+ last_accumulator_write = n;
+ }
+ }
+}
+
+schedule_node *
+fs_instruction_scheduler::choose_instruction_to_schedule()
+{
+ schedule_node *chosen = NULL;
+
+ if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
+ int chosen_time = 0;
+
+ /* Of the instructions ready to execute or the closest to being ready,
+ * choose the one most likely to unblock an early program exit, or
+ * otherwise the oldest one.
+ */
+ foreach_in_list(schedule_node, n, &instructions) {
+ if (!chosen ||
+ exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
+ (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
+ n->unblocked_time < chosen_time)) {
+ chosen = n;
+ chosen_time = n->unblocked_time;
+ }
+ }
+ } else {
+ /* Before register allocation, we don't care about the latencies of
+ * instructions. All we care about is reducing live intervals of
+ * variables so that we can avoid register spilling, or get SIMD16
+ * shaders which naturally do a better job of hiding instruction
+ * latency.
+ */
+ foreach_in_list(schedule_node, n, &instructions) {
+ fs_inst *inst = (fs_inst *)n->inst;
+
+ if (!chosen) {
+ chosen = n;
+ continue;
+ }
+
+ /* Most important: If we can definitely reduce register pressure, do
+ * so immediately.
+ */
+ int register_pressure_benefit = get_register_pressure_benefit(n->inst);
+ int chosen_register_pressure_benefit =
+ get_register_pressure_benefit(chosen->inst);
+
+ if (register_pressure_benefit > 0 &&
+ register_pressure_benefit > chosen_register_pressure_benefit) {
+ chosen = n;
+ continue;
+ } else if (chosen_register_pressure_benefit > 0 &&
+ (register_pressure_benefit <
+ chosen_register_pressure_benefit)) {
+ continue;
+ }
+
+ if (mode == SCHEDULE_PRE_LIFO) {
+ /* Prefer instructions that recently became available for
+ * scheduling. These are the things that are most likely to
+ * (eventually) make a variable dead and reduce register pressure.
+ * Typical register pressure estimates don't work for us because
+ * most of our pressure comes from texturing, where no single
+ * instruction to schedule will make a vec4 value dead.
+ */
+ if (n->cand_generation > chosen->cand_generation) {
+ chosen = n;
+ continue;
+ } else if (n->cand_generation < chosen->cand_generation) {
+ continue;
+ }
+
+ /* On MRF-using chips, prefer non-SEND instructions. If we don't
+ * do this, then because we prefer instructions that just became
+ * candidates, we'll end up in a pattern of scheduling a SEND,
+ * then the MRFs for the next SEND, then the next SEND, then the
+ * MRFs, etc., without ever consuming the results of a send.
+ */
+ if (v->devinfo->gen < 7) {
+ fs_inst *chosen_inst = (fs_inst *)chosen->inst;
+
+ /* We use size_written > 4 * exec_size as our test for the kind
+ * of send instruction to avoid -- only sends generate many
+ * regs, and a single-result send is probably actually reducing
+ * register pressure.
+ */
+ if (inst->size_written <= 4 * inst->exec_size &&
+ chosen_inst->size_written > 4 * chosen_inst->exec_size) {
+ chosen = n;
+ continue;
+ } else if (inst->size_written > chosen_inst->size_written) {
+ continue;
+ }
+ }
+ }
+
+ /* For instructions pushed on the cands list at the same time, prefer
+ * the one with the highest delay to the end of the program. This is
+ * most likely to have its values able to be consumed first (such as
+ * for a large tree of lowered ubo loads, which appear reversed in
+ * the instruction stream with respect to when they can be consumed).
+ */
+ if (n->delay > chosen->delay) {
+ chosen = n;
+ continue;
+ } else if (n->delay < chosen->delay) {
+ continue;
+ }
+
+ /* Prefer the node most likely to unblock an early program exit.
+ */
+ if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
+ chosen = n;
+ continue;
+ } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
+ continue;
+ }
+
+ /* If all other metrics are equal, we prefer the first instruction in
+ * the list (program execution).
+ */
+ }
+ }
+
+ return chosen;
+}
+
+schedule_node *
+vec4_instruction_scheduler::choose_instruction_to_schedule()
+{
+ schedule_node *chosen = NULL;
+ int chosen_time = 0;
+
+ /* Of the instructions ready to execute or the closest to being ready,
+ * choose the oldest one.
+ */
+ foreach_in_list(schedule_node, n, &instructions) {
+ if (!chosen || n->unblocked_time < chosen_time) {
+ chosen = n;
+ chosen_time = n->unblocked_time;
+ }
+ }
+
+ return chosen;
+}
+
+int
+fs_instruction_scheduler::issue_time(backend_instruction *inst)
+{
+ if (is_compressed((fs_inst *)inst))
+ return 4;
+ else
+ return 2;
+}
+
+int
+vec4_instruction_scheduler::issue_time(backend_instruction *inst)
+{
+ /* We always execute as two vec4s in parallel. */
+ return 2;
+}
+
+void
+instruction_scheduler::schedule_instructions(bblock_t *block)
+{
+ const struct gen_device_info *devinfo = bs->devinfo;
+ int time = 0;
+ if (!post_reg_alloc)
+ reg_pressure = reg_pressure_in[block->num];
+ block_idx = block->num;
+
+ /* Remove non-DAG heads from the list. */
+ foreach_in_list_safe(schedule_node, n, &instructions) {
+ if (n->parent_count != 0)
+ n->remove();
+ }
+
+ unsigned cand_generation = 1;
+ while (!instructions.is_empty()) {
+ schedule_node *chosen = choose_instruction_to_schedule();
+
+ /* Schedule this instruction. */
+ assert(chosen);
+ chosen->remove();
+ chosen->inst->exec_node::remove();
+ block->instructions.push_tail(chosen->inst);
+ instructions_to_schedule--;
+
+ if (!post_reg_alloc) {
+ reg_pressure -= get_register_pressure_benefit(chosen->inst);
+ update_register_pressure(chosen->inst);
+ }
+
+ /* If we expected a delay for scheduling, then bump the clock to reflect
+ * that. In reality, the hardware will switch to another hyperthread
+ * and may not return to dispatching our thread for a while even after
+ * we're unblocked. After this, we have the time when the chosen
+ * instruction will start executing.
+ */
+ time = MAX2(time, chosen->unblocked_time);
+
+ /* Update the clock for how soon an instruction could start after the
+ * chosen one.
+ */
+ time += issue_time(chosen->inst);
+
+ if (debug) {
+ fprintf(stderr, "clock %4d, scheduled: ", time);
+ bs->dump_instruction(chosen->inst);
+ if (!post_reg_alloc)
+ fprintf(stderr, "(register pressure %d)\n", reg_pressure);
+ }
+
+ /* Now that we've scheduled a new instruction, some of its
+ * children can be promoted to the list of instructions ready to
+ * be scheduled. Update the children's unblocked time for this
+ * DAG edge as we do so.
+ */
+ for (int i = chosen->child_count - 1; i >= 0; i--) {
+ schedule_node *child = chosen->children[i];
+
+ child->unblocked_time = MAX2(child->unblocked_time,
+ time + chosen->child_latency[i]);
+
+ if (debug) {
+ fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
+ bs->dump_instruction(child->inst);
+ }
+
+ child->cand_generation = cand_generation;
+ child->parent_count--;
+ if (child->parent_count == 0) {
+ if (debug) {
+ fprintf(stderr, "\t\tnow available\n");
+ }
+ instructions.push_head(child);
+ }
+ }
+ cand_generation++;
+
+ /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
+ * but it's more limited pre-gen6, so if we send something off to it then
+ * the next math instruction isn't going to make progress until the first
+ * is done.
+ */
+ if (devinfo->gen < 6 && chosen->inst->is_math()) {
+ foreach_in_list(schedule_node, n, &instructions) {
+ if (n->inst->is_math())
+ n->unblocked_time = MAX2(n->unblocked_time,
+ time + chosen->latency);
+ }
+ }
+ }
+
+ assert(instructions_to_schedule == 0);
+
+ block->cycle_count = time;
+}
+
+static unsigned get_cycle_count(cfg_t *cfg)
+{
+ unsigned count = 0, multiplier = 1;
+ foreach_block(block, cfg) {
+ if (block->start()->opcode == BRW_OPCODE_DO)
+ multiplier *= 10; /* assume that loops execute ~10 times */
+
+ count += block->cycle_count * multiplier;
+
+ if (block->end()->opcode == BRW_OPCODE_WHILE)
+ multiplier /= 10;
+ }
+
+ return count;
+}
+
+void
+instruction_scheduler::run(cfg_t *cfg)
+{
+ if (debug && !post_reg_alloc) {
+ fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
+ post_reg_alloc);
+ bs->dump_instructions();
+ }
+
+ if (!post_reg_alloc)
+ setup_liveness(cfg);
+
+ foreach_block(block, cfg) {
+ if (reads_remaining) {
+ memset(reads_remaining, 0,
+ grf_count * sizeof(*reads_remaining));
+ memset(hw_reads_remaining, 0,
+ hw_reg_count * sizeof(*hw_reads_remaining));
+ memset(written, 0, grf_count * sizeof(*written));
+
+ foreach_inst_in_block(fs_inst, inst, block)
+ count_reads_remaining(inst);
+ }
+
+ add_insts_from_block(block);
+
+ calculate_deps();
+
+ compute_delays();
+ compute_exits();
+
+ schedule_instructions(block);
+ }
+
+ if (debug && !post_reg_alloc) {
+ fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
+ post_reg_alloc);
+ bs->dump_instructions();
+ }
+
+ cfg->cycle_count = get_cycle_count(cfg);
+}
+
+void
+fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
+{
+ if (mode != SCHEDULE_POST)
+ calculate_live_intervals();
+
+ int grf_count;
+ if (mode == SCHEDULE_POST)
+ grf_count = grf_used;
+ else
+ grf_count = alloc.count;
+
+ fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
+ cfg->num_blocks, mode);
+ sched.run(cfg);
+
+ invalidate_live_intervals();
+}
+
+void
+vec4_visitor::opt_schedule_instructions()
+{
+ vec4_instruction_scheduler sched(this, prog_data->total_grf);
+ sched.run(cfg);
+
+ invalidate_live_intervals();
+}