summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_nir.cpp
diff options
context:
space:
mode:
authorJason Ekstrand <[email protected]>2017-02-28 09:10:43 -0800
committerEmil Velikov <[email protected]>2017-03-13 11:16:34 +0000
commit700bebb958e93f4d472c383de62ced9db8e64bec (patch)
tree0075c098c56c338f38ba0db80b9dba3e7e268a17 /src/intel/compiler/brw_fs_nir.cpp
parentd0d4a5f43b4dd79bd7bfff7c7deaade10bfebf7c (diff)
i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts: - With the earlier header cleanups, nothing in src/intel depends files from src/mesa/drivers/dri/i965/ - Both Autoconf and Android builds are addressed. Thanks to Mauro and Tapani for the fixups in the latter - brw_util.[ch] is not really compiler specific, so it's moved to i965. v2: - move brw_eu_defines.h instead of brw_defines.h - remove no-longer applicable includes - add missing vulkan/ prefix in the Android build (thanks Tapani) v3: - don't list brw_defines.h in src/intel/Makefile.sources (Jason) - rebase on top of the oa patches [Emil Velikov: commit message, various small fixes througout] Signed-off-by: Emil Velikov <[email protected]> Reviewed-by: Jason Ekstrand <[email protected]>
Diffstat (limited to 'src/intel/compiler/brw_fs_nir.cpp')
-rw-r--r--src/intel/compiler/brw_fs_nir.cpp4679
1 files changed, 4679 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_nir.cpp b/src/intel/compiler/brw_fs_nir.cpp
new file mode 100644
index 00000000000..d403dec5357
--- /dev/null
+++ b/src/intel/compiler/brw_fs_nir.cpp
@@ -0,0 +1,4679 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "compiler/glsl/ir.h"
+#include "brw_fs.h"
+#include "brw_fs_surface_builder.h"
+#include "brw_nir.h"
+
+using namespace brw;
+using namespace brw::surface_access;
+
+void
+fs_visitor::emit_nir_code()
+{
+ /* emit the arrays used for inputs and outputs - load/store intrinsics will
+ * be converted to reads/writes of these arrays
+ */
+ nir_setup_outputs();
+ nir_setup_uniforms();
+ nir_emit_system_values();
+
+ /* get the main function and emit it */
+ nir_foreach_function(function, nir) {
+ assert(strcmp(function->name, "main") == 0);
+ assert(function->impl);
+ nir_emit_impl(function->impl);
+ }
+}
+
+void
+fs_visitor::nir_setup_outputs()
+{
+ if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
+ return;
+
+ nir_foreach_variable(var, &nir->outputs) {
+ const unsigned vec4s =
+ var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
+ : type_size_vec4(var->type);
+ fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s);
+ for (unsigned i = 0; i < vec4s; i++) {
+ if (outputs[var->data.driver_location + i].file == BAD_FILE)
+ outputs[var->data.driver_location + i] = offset(reg, bld, 4 * i);
+ }
+ }
+}
+
+void
+fs_visitor::nir_setup_uniforms()
+{
+ if (dispatch_width != min_dispatch_width)
+ return;
+
+ uniforms = nir->num_uniforms / 4;
+}
+
+static bool
+emit_system_values_block(nir_block *block, fs_visitor *v)
+{
+ fs_reg *reg;
+
+ nir_foreach_instr(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ switch (intrin->intrinsic) {
+ case nir_intrinsic_load_vertex_id:
+ unreachable("should be lowered by lower_vertex_id().");
+
+ case nir_intrinsic_load_vertex_id_zero_base:
+ assert(v->stage == MESA_SHADER_VERTEX);
+ reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
+ break;
+
+ case nir_intrinsic_load_base_vertex:
+ assert(v->stage == MESA_SHADER_VERTEX);
+ reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
+ break;
+
+ case nir_intrinsic_load_instance_id:
+ assert(v->stage == MESA_SHADER_VERTEX);
+ reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
+ break;
+
+ case nir_intrinsic_load_base_instance:
+ assert(v->stage == MESA_SHADER_VERTEX);
+ reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
+ break;
+
+ case nir_intrinsic_load_draw_id:
+ assert(v->stage == MESA_SHADER_VERTEX);
+ reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
+ break;
+
+ case nir_intrinsic_load_invocation_id:
+ if (v->stage == MESA_SHADER_TESS_CTRL)
+ break;
+ assert(v->stage == MESA_SHADER_GEOMETRY);
+ reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
+ if (reg->file == BAD_FILE) {
+ const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
+ fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+ fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.SHR(iid, g1, brw_imm_ud(27u));
+ *reg = iid;
+ }
+ break;
+
+ case nir_intrinsic_load_sample_pos:
+ assert(v->stage == MESA_SHADER_FRAGMENT);
+ reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_samplepos_setup();
+ break;
+
+ case nir_intrinsic_load_sample_id:
+ assert(v->stage == MESA_SHADER_FRAGMENT);
+ reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_sampleid_setup();
+ break;
+
+ case nir_intrinsic_load_sample_mask_in:
+ assert(v->stage == MESA_SHADER_FRAGMENT);
+ assert(v->devinfo->gen >= 7);
+ reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_samplemaskin_setup();
+ break;
+
+ case nir_intrinsic_load_work_group_id:
+ assert(v->stage == MESA_SHADER_COMPUTE);
+ reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
+ if (reg->file == BAD_FILE)
+ *reg = *v->emit_cs_work_group_id_setup();
+ break;
+
+ case nir_intrinsic_load_helper_invocation:
+ assert(v->stage == MESA_SHADER_FRAGMENT);
+ reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
+ if (reg->file == BAD_FILE) {
+ const fs_builder abld =
+ v->bld.annotate("gl_HelperInvocation", NULL);
+
+ /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
+ * pixel mask is in g1.7 of the thread payload.
+ *
+ * We move the per-channel pixel enable bit to the low bit of each
+ * channel by shifting the byte containing the pixel mask by the
+ * vector immediate 0x76543210UV.
+ *
+ * The region of <1,8,0> reads only 1 byte (the pixel masks for
+ * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
+ * masks for 2 and 3) in SIMD16.
+ */
+ fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
+ abld.SHR(shifted,
+ stride(byte_offset(retype(brw_vec1_grf(1, 0),
+ BRW_REGISTER_TYPE_UB), 28),
+ 1, 8, 0),
+ brw_imm_v(0x76543210));
+
+ /* A set bit in the pixel mask means the channel is enabled, but
+ * that is the opposite of gl_HelperInvocation so we need to invert
+ * the mask.
+ *
+ * The negate source-modifier bit of logical instructions on Gen8+
+ * performs 1's complement negation, so we can use that instead of
+ * a NOT instruction.
+ */
+ fs_reg inverted = negate(shifted);
+ if (v->devinfo->gen < 8) {
+ inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
+ abld.NOT(inverted, shifted);
+ }
+
+ /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
+ * with 1 and negating.
+ */
+ fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.AND(anded, inverted, brw_imm_uw(1));
+
+ fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
+ abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
+ *reg = dst;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return true;
+}
+
+void
+fs_visitor::nir_emit_system_values()
+{
+ nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
+ for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
+ nir_system_values[i] = fs_reg();
+ }
+
+ nir_foreach_function(function, nir) {
+ assert(strcmp(function->name, "main") == 0);
+ assert(function->impl);
+ nir_foreach_block(block, function->impl) {
+ emit_system_values_block(block, this);
+ }
+ }
+}
+
+void
+fs_visitor::nir_emit_impl(nir_function_impl *impl)
+{
+ nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
+ for (unsigned i = 0; i < impl->reg_alloc; i++) {
+ nir_locals[i] = fs_reg();
+ }
+
+ foreach_list_typed(nir_register, reg, node, &impl->registers) {
+ unsigned array_elems =
+ reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
+ unsigned size = array_elems * reg->num_components;
+ const brw_reg_type reg_type =
+ reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
+ nir_locals[reg->index] = bld.vgrf(reg_type, size);
+ }
+
+ nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
+ impl->ssa_alloc);
+
+ nir_emit_cf_list(&impl->body);
+}
+
+void
+fs_visitor::nir_emit_cf_list(exec_list *list)
+{
+ exec_list_validate(list);
+ foreach_list_typed(nir_cf_node, node, node, list) {
+ switch (node->type) {
+ case nir_cf_node_if:
+ nir_emit_if(nir_cf_node_as_if(node));
+ break;
+
+ case nir_cf_node_loop:
+ nir_emit_loop(nir_cf_node_as_loop(node));
+ break;
+
+ case nir_cf_node_block:
+ nir_emit_block(nir_cf_node_as_block(node));
+ break;
+
+ default:
+ unreachable("Invalid CFG node block");
+ }
+ }
+}
+
+void
+fs_visitor::nir_emit_if(nir_if *if_stmt)
+{
+ /* first, put the condition into f0 */
+ fs_inst *inst = bld.MOV(bld.null_reg_d(),
+ retype(get_nir_src(if_stmt->condition),
+ BRW_REGISTER_TYPE_D));
+ inst->conditional_mod = BRW_CONDITIONAL_NZ;
+
+ bld.IF(BRW_PREDICATE_NORMAL);
+
+ nir_emit_cf_list(&if_stmt->then_list);
+
+ /* note: if the else is empty, dead CF elimination will remove it */
+ bld.emit(BRW_OPCODE_ELSE);
+
+ nir_emit_cf_list(&if_stmt->else_list);
+
+ bld.emit(BRW_OPCODE_ENDIF);
+}
+
+void
+fs_visitor::nir_emit_loop(nir_loop *loop)
+{
+ bld.emit(BRW_OPCODE_DO);
+
+ nir_emit_cf_list(&loop->body);
+
+ bld.emit(BRW_OPCODE_WHILE);
+}
+
+void
+fs_visitor::nir_emit_block(nir_block *block)
+{
+ nir_foreach_instr(instr, block) {
+ nir_emit_instr(instr);
+ }
+}
+
+void
+fs_visitor::nir_emit_instr(nir_instr *instr)
+{
+ const fs_builder abld = bld.annotate(NULL, instr);
+
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ nir_emit_alu(abld, nir_instr_as_alu(instr));
+ break;
+
+ case nir_instr_type_intrinsic:
+ switch (stage) {
+ case MESA_SHADER_VERTEX:
+ nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ case MESA_SHADER_TESS_CTRL:
+ nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ case MESA_SHADER_TESS_EVAL:
+ nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ case MESA_SHADER_GEOMETRY:
+ nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ case MESA_SHADER_FRAGMENT:
+ nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ case MESA_SHADER_COMPUTE:
+ nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+ break;
+ default:
+ unreachable("unsupported shader stage");
+ }
+ break;
+
+ case nir_instr_type_tex:
+ nir_emit_texture(abld, nir_instr_as_tex(instr));
+ break;
+
+ case nir_instr_type_load_const:
+ nir_emit_load_const(abld, nir_instr_as_load_const(instr));
+ break;
+
+ case nir_instr_type_ssa_undef:
+ /* We create a new VGRF for undefs on every use (by handling
+ * them in get_nir_src()), rather than for each definition.
+ * This helps register coalescing eliminate MOVs from undef.
+ */
+ break;
+
+ case nir_instr_type_jump:
+ nir_emit_jump(abld, nir_instr_as_jump(instr));
+ break;
+
+ default:
+ unreachable("unknown instruction type");
+ }
+}
+
+/**
+ * Recognizes a parent instruction of nir_op_extract_* and changes the type to
+ * match instr.
+ */
+bool
+fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
+ const fs_reg &result)
+{
+ if (!instr->src[0].src.is_ssa ||
+ !instr->src[0].src.ssa->parent_instr)
+ return false;
+
+ if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
+ return false;
+
+ nir_alu_instr *src0 =
+ nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
+
+ if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
+ src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
+ return false;
+
+ nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
+ assert(element != NULL);
+
+ /* Element type to extract.*/
+ const brw_reg_type type = brw_int_type(
+ src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
+ src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
+
+ fs_reg op0 = get_nir_src(src0->src[0].src);
+ op0.type = brw_type_for_nir_type(devinfo,
+ (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
+ nir_src_bit_size(src0->src[0].src)));
+ op0 = offset(op0, bld, src0->src[0].swizzle[0]);
+
+ set_saturate(instr->dest.saturate,
+ bld.MOV(result, subscript(op0, type, element->u32[0])));
+ return true;
+}
+
+bool
+fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
+ const fs_reg &result)
+{
+ if (!instr->src[0].src.is_ssa ||
+ instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
+ return false;
+
+ nir_intrinsic_instr *src0 =
+ nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
+
+ if (src0->intrinsic != nir_intrinsic_load_front_face)
+ return false;
+
+ nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
+ if (!value1 || fabsf(value1->f32[0]) != 1.0f)
+ return false;
+
+ nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
+ if (!value2 || fabsf(value2->f32[0]) != 1.0f)
+ return false;
+
+ fs_reg tmp = vgrf(glsl_type::int_type);
+
+ if (devinfo->gen >= 6) {
+ /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
+ fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
+
+ /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
+ *
+ * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
+ * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
+ *
+ * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
+ *
+ * This negation looks like it's safe in practice, because bits 0:4 will
+ * surely be TRIANGLES
+ */
+
+ if (value1->f32[0] == -1.0f) {
+ g0.negate = true;
+ }
+
+ bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
+ g0, brw_imm_uw(0x3f80));
+ } else {
+ /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
+ fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
+
+ /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
+ *
+ * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
+ * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
+ *
+ * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
+ *
+ * This negation looks like it's safe in practice, because bits 0:4 will
+ * surely be TRIANGLES
+ */
+
+ if (value1->f32[0] == -1.0f) {
+ g1_6.negate = true;
+ }
+
+ bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
+ }
+ bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
+
+ return true;
+}
+
+static void
+emit_find_msb_using_lzd(const fs_builder &bld,
+ const fs_reg &result,
+ const fs_reg &src,
+ bool is_signed)
+{
+ fs_inst *inst;
+ fs_reg temp = src;
+
+ if (is_signed) {
+ /* LZD of an absolute value source almost always does the right
+ * thing. There are two problem values:
+ *
+ * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
+ * 0. However, findMSB(int(0x80000000)) == 30.
+ *
+ * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
+ * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
+ *
+ * For a value of zero or negative one, -1 will be returned.
+ *
+ * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
+ * findMSB(-(1<<x)) should return x-1.
+ *
+ * For all negative number cases, including 0x80000000 and
+ * 0xffffffff, the correct value is obtained from LZD if instead of
+ * negating the (already negative) value the logical-not is used. A
+ * conditonal logical-not can be achieved in two instructions.
+ */
+ temp = bld.vgrf(BRW_REGISTER_TYPE_D);
+
+ bld.ASR(temp, src, brw_imm_d(31));
+ bld.XOR(temp, temp, src);
+ }
+
+ bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
+ retype(temp, BRW_REGISTER_TYPE_UD));
+
+ /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
+ * from the LSB side. Subtract the result from 31 to convert the MSB
+ * count into an LSB count. If no bits are set, LZD will return 32.
+ * 31-32 = -1, which is exactly what findMSB() is supposed to return.
+ */
+ inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
+ inst->src[0].negate = true;
+}
+
+void
+fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
+{
+ struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
+ fs_inst *inst;
+
+ fs_reg result = get_nir_dest(instr->dest.dest);
+ result.type = brw_type_for_nir_type(devinfo,
+ (nir_alu_type)(nir_op_infos[instr->op].output_type |
+ nir_dest_bit_size(instr->dest.dest)));
+
+ fs_reg op[4];
+ for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
+ op[i] = get_nir_src(instr->src[i].src);
+ op[i].type = brw_type_for_nir_type(devinfo,
+ (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
+ nir_src_bit_size(instr->src[i].src)));
+ op[i].abs = instr->src[i].abs;
+ op[i].negate = instr->src[i].negate;
+ }
+
+ /* We get a bunch of mov's out of the from_ssa pass and they may still
+ * be vectorized. We'll handle them as a special-case. We'll also
+ * handle vecN here because it's basically the same thing.
+ */
+ switch (instr->op) {
+ case nir_op_imov:
+ case nir_op_fmov:
+ case nir_op_vec2:
+ case nir_op_vec3:
+ case nir_op_vec4: {
+ fs_reg temp = result;
+ bool need_extra_copy = false;
+ for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
+ if (!instr->src[i].src.is_ssa &&
+ instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
+ need_extra_copy = true;
+ temp = bld.vgrf(result.type, 4);
+ break;
+ }
+ }
+
+ for (unsigned i = 0; i < 4; i++) {
+ if (!(instr->dest.write_mask & (1 << i)))
+ continue;
+
+ if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
+ inst = bld.MOV(offset(temp, bld, i),
+ offset(op[0], bld, instr->src[0].swizzle[i]));
+ } else {
+ inst = bld.MOV(offset(temp, bld, i),
+ offset(op[i], bld, instr->src[i].swizzle[0]));
+ }
+ inst->saturate = instr->dest.saturate;
+ }
+
+ /* In this case the source and destination registers were the same,
+ * so we need to insert an extra set of moves in order to deal with
+ * any swizzling.
+ */
+ if (need_extra_copy) {
+ for (unsigned i = 0; i < 4; i++) {
+ if (!(instr->dest.write_mask & (1 << i)))
+ continue;
+
+ bld.MOV(offset(result, bld, i), offset(temp, bld, i));
+ }
+ }
+ return;
+ }
+ default:
+ break;
+ }
+
+ /* At this point, we have dealt with any instruction that operates on
+ * more than a single channel. Therefore, we can just adjust the source
+ * and destination registers for that channel and emit the instruction.
+ */
+ unsigned channel = 0;
+ if (nir_op_infos[instr->op].output_size == 0) {
+ /* Since NIR is doing the scalarizing for us, we should only ever see
+ * vectorized operations with a single channel.
+ */
+ assert(_mesa_bitcount(instr->dest.write_mask) == 1);
+ channel = ffs(instr->dest.write_mask) - 1;
+
+ result = offset(result, bld, channel);
+ }
+
+ for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
+ assert(nir_op_infos[instr->op].input_sizes[i] < 2);
+ op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
+ }
+
+ switch (instr->op) {
+ case nir_op_i2f:
+ case nir_op_u2f:
+ case nir_op_i642d:
+ case nir_op_u642d:
+ if (optimize_extract_to_float(instr, result))
+ return;
+ inst = bld.MOV(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_f2d:
+ case nir_op_i2d:
+ case nir_op_u2d:
+ /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
+ *
+ * "When source or destination is 64b (...), regioning in Align1
+ * must follow these rules:
+ *
+ * 1. Source and destination horizontal stride must be aligned to
+ * the same qword.
+ * (...)"
+ *
+ * This means that 32-bit to 64-bit conversions need to have the 32-bit
+ * data elements aligned to 64-bit. This restriction does not apply to
+ * BDW and later.
+ */
+ if (nir_dest_bit_size(instr->dest.dest) == 64 &&
+ nir_src_bit_size(instr->src[0].src) == 32 &&
+ (devinfo->is_cherryview || devinfo->is_broxton)) {
+ fs_reg tmp = bld.vgrf(result.type, 1);
+ tmp = subscript(tmp, op[0].type, 0);
+ inst = bld.MOV(tmp, op[0]);
+ inst = bld.MOV(result, tmp);
+ inst->saturate = instr->dest.saturate;
+ break;
+ }
+ /* fallthrough */
+ case nir_op_f2i64:
+ case nir_op_f2u64:
+ case nir_op_i2i64:
+ case nir_op_i2u64:
+ case nir_op_u2i64:
+ case nir_op_u2u64:
+ case nir_op_b2i64:
+ case nir_op_d2f:
+ case nir_op_d2i:
+ case nir_op_d2u:
+ case nir_op_i642f:
+ case nir_op_u642f:
+ case nir_op_u2i32:
+ case nir_op_i2i32:
+ case nir_op_u2u32:
+ case nir_op_i2u32:
+ if (instr->op == nir_op_b2i64) {
+ bld.MOV(result, negate(op[0]));
+ } else {
+ inst = bld.MOV(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ }
+ break;
+
+ case nir_op_f2i:
+ case nir_op_f2u:
+ bld.MOV(result, op[0]);
+ break;
+
+ case nir_op_fsign: {
+ if (op[0].abs) {
+ /* Straightforward since the source can be assumed to be
+ * non-negative.
+ */
+ set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
+ set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
+
+ } else if (type_sz(op[0].type) < 8) {
+ /* AND(val, 0x80000000) gives the sign bit.
+ *
+ * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
+ * zero.
+ */
+ bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
+
+ fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
+ op[0].type = BRW_REGISTER_TYPE_UD;
+ result.type = BRW_REGISTER_TYPE_UD;
+ bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
+
+ inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ if (instr->dest.saturate) {
+ inst = bld.MOV(result, result);
+ inst->saturate = true;
+ }
+ } else {
+ /* For doubles we do the same but we need to consider:
+ *
+ * - 2-src instructions can't operate with 64-bit immediates
+ * - The sign is encoded in the high 32-bit of each DF
+ * - CMP with DF requires special handling in SIMD16
+ * - We need to produce a DF result.
+ */
+
+ /* 2-src instructions can't have 64-bit immediates, so put 0.0 in
+ * a register and compare with that.
+ */
+ fs_reg tmp = vgrf(glsl_type::double_type);
+ bld.MOV(tmp, setup_imm_df(bld, 0.0));
+
+ /* A direct DF CMP using the flag register (null dst) won't work in
+ * SIMD16 because the CMP will be split in two by lower_simd_width,
+ * resulting in two CMP instructions with the same dst (NULL),
+ * leading to dead code elimination of the first one. In SIMD8,
+ * however, there is no need to split the CMP and we can save some
+ * work.
+ */
+ fs_reg dst_tmp = vgrf(glsl_type::double_type);
+ bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ);
+
+ /* In SIMD16 we want to avoid using a NULL dst register with DF CMP,
+ * so we store the result of the comparison in a vgrf instead and
+ * then we generate a UD comparison from that that won't have to
+ * be split by lower_simd_width. This is what NIR does to handle
+ * double comparisons in the general case.
+ */
+ if (bld.dispatch_width() == 16 ) {
+ fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD);
+ bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0));
+ bld.CMP(bld.null_reg_ud(),
+ dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
+ }
+
+ /* Get the high 32-bit of each double component where the sign is */
+ fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
+ bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
+
+ /* Get the sign bit */
+ bld.AND(result_int, result_int, brw_imm_ud(0x80000000u));
+
+ /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */
+ inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
+ inst->predicate = BRW_PREDICATE_NORMAL;
+
+ /* Convert from 32-bit float to 64-bit double */
+ result.type = BRW_REGISTER_TYPE_DF;
+ inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F));
+
+ if (instr->dest.saturate) {
+ inst = bld.MOV(result, result);
+ inst->saturate = true;
+ }
+ }
+ break;
+ }
+
+ case nir_op_isign:
+ /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
+ * -> non-negative val generates 0x00000000.
+ * Predicated OR sets 1 if val is positive.
+ */
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
+ bld.ASR(result, op[0], brw_imm_d(31));
+ inst = bld.OR(result, result, brw_imm_d(1));
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ break;
+
+ case nir_op_frcp:
+ inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fexp2:
+ inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_flog2:
+ inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fsin:
+ inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fcos:
+ inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fddx:
+ if (fs_key->high_quality_derivatives) {
+ inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
+ } else {
+ inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
+ }
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fddx_fine:
+ inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fddx_coarse:
+ inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fddy:
+ if (fs_key->high_quality_derivatives) {
+ inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
+ } else {
+ inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
+ }
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fddy_fine:
+ inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fddy_coarse:
+ inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_iadd:
+ case nir_op_fadd:
+ inst = bld.ADD(result, op[0], op[1]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fmul:
+ inst = bld.MUL(result, op[0], op[1]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_imul:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.MUL(result, op[0], op[1]);
+ break;
+
+ case nir_op_imul_high:
+ case nir_op_umul_high:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
+ break;
+
+ case nir_op_idiv:
+ case nir_op_udiv:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
+ break;
+
+ case nir_op_uadd_carry:
+ unreachable("Should have been lowered by carry_to_arith().");
+
+ case nir_op_usub_borrow:
+ unreachable("Should have been lowered by borrow_to_arith().");
+
+ case nir_op_umod:
+ case nir_op_irem:
+ /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
+ * appears that our hardware just does the right thing for signed
+ * remainder.
+ */
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
+ break;
+
+ case nir_op_imod: {
+ /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
+ bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
+
+ /* Math instructions don't support conditional mod */
+ inst = bld.MOV(bld.null_reg_d(), result);
+ inst->conditional_mod = BRW_CONDITIONAL_NZ;
+
+ /* Now, we need to determine if signs of the sources are different.
+ * When we XOR the sources, the top bit is 0 if they are the same and 1
+ * if they are different. We can then use a conditional modifier to
+ * turn that into a predicate. This leads us to an XOR.l instruction.
+ *
+ * Technically, according to the PRM, you're not allowed to use .l on a
+ * XOR instruction. However, emperical experiments and Curro's reading
+ * of the simulator source both indicate that it's safe.
+ */
+ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
+ inst = bld.XOR(tmp, op[0], op[1]);
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ inst->conditional_mod = BRW_CONDITIONAL_L;
+
+ /* If the result of the initial remainder operation is non-zero and the
+ * two sources have different signs, add in a copy of op[1] to get the
+ * final integer modulus value.
+ */
+ inst = bld.ADD(result, result, op[1]);
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ break;
+ }
+
+ case nir_op_flt:
+ case nir_op_fge:
+ case nir_op_feq:
+ case nir_op_fne: {
+ fs_reg dest = result;
+ if (nir_src_bit_size(instr->src[0].src) > 32) {
+ dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
+ }
+ brw_conditional_mod cond;
+ switch (instr->op) {
+ case nir_op_flt:
+ cond = BRW_CONDITIONAL_L;
+ break;
+ case nir_op_fge:
+ cond = BRW_CONDITIONAL_GE;
+ break;
+ case nir_op_feq:
+ cond = BRW_CONDITIONAL_Z;
+ break;
+ case nir_op_fne:
+ cond = BRW_CONDITIONAL_NZ;
+ break;
+ default:
+ unreachable("bad opcode");
+ }
+ bld.CMP(dest, op[0], op[1], cond);
+ if (nir_src_bit_size(instr->src[0].src) > 32) {
+ bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
+ }
+ break;
+ }
+
+ case nir_op_ilt:
+ case nir_op_ult:
+ case nir_op_ige:
+ case nir_op_uge:
+ case nir_op_ieq:
+ case nir_op_ine: {
+ fs_reg dest = result;
+ if (nir_src_bit_size(instr->src[0].src) > 32) {
+ dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1);
+ }
+
+ brw_conditional_mod cond;
+ switch (instr->op) {
+ case nir_op_ilt:
+ case nir_op_ult:
+ cond = BRW_CONDITIONAL_L;
+ break;
+ case nir_op_ige:
+ case nir_op_uge:
+ cond = BRW_CONDITIONAL_GE;
+ break;
+ case nir_op_ieq:
+ cond = BRW_CONDITIONAL_Z;
+ break;
+ case nir_op_ine:
+ cond = BRW_CONDITIONAL_NZ;
+ break;
+ default:
+ unreachable("bad opcode");
+ }
+ bld.CMP(dest, op[0], op[1], cond);
+ if (nir_src_bit_size(instr->src[0].src) > 32) {
+ bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
+ }
+ break;
+ }
+
+ case nir_op_inot:
+ if (devinfo->gen >= 8) {
+ op[0] = resolve_source_modifiers(op[0]);
+ }
+ bld.NOT(result, op[0]);
+ break;
+ case nir_op_ixor:
+ if (devinfo->gen >= 8) {
+ op[0] = resolve_source_modifiers(op[0]);
+ op[1] = resolve_source_modifiers(op[1]);
+ }
+ bld.XOR(result, op[0], op[1]);
+ break;
+ case nir_op_ior:
+ if (devinfo->gen >= 8) {
+ op[0] = resolve_source_modifiers(op[0]);
+ op[1] = resolve_source_modifiers(op[1]);
+ }
+ bld.OR(result, op[0], op[1]);
+ break;
+ case nir_op_iand:
+ if (devinfo->gen >= 8) {
+ op[0] = resolve_source_modifiers(op[0]);
+ op[1] = resolve_source_modifiers(op[1]);
+ }
+ bld.AND(result, op[0], op[1]);
+ break;
+
+ case nir_op_fdot2:
+ case nir_op_fdot3:
+ case nir_op_fdot4:
+ case nir_op_ball_fequal2:
+ case nir_op_ball_iequal2:
+ case nir_op_ball_fequal3:
+ case nir_op_ball_iequal3:
+ case nir_op_ball_fequal4:
+ case nir_op_ball_iequal4:
+ case nir_op_bany_fnequal2:
+ case nir_op_bany_inequal2:
+ case nir_op_bany_fnequal3:
+ case nir_op_bany_inequal3:
+ case nir_op_bany_fnequal4:
+ case nir_op_bany_inequal4:
+ unreachable("Lowered by nir_lower_alu_reductions");
+
+ case nir_op_fnoise1_1:
+ case nir_op_fnoise1_2:
+ case nir_op_fnoise1_3:
+ case nir_op_fnoise1_4:
+ case nir_op_fnoise2_1:
+ case nir_op_fnoise2_2:
+ case nir_op_fnoise2_3:
+ case nir_op_fnoise2_4:
+ case nir_op_fnoise3_1:
+ case nir_op_fnoise3_2:
+ case nir_op_fnoise3_3:
+ case nir_op_fnoise3_4:
+ case nir_op_fnoise4_1:
+ case nir_op_fnoise4_2:
+ case nir_op_fnoise4_3:
+ case nir_op_fnoise4_4:
+ unreachable("not reached: should be handled by lower_noise");
+
+ case nir_op_ldexp:
+ unreachable("not reached: should be handled by ldexp_to_arith()");
+
+ case nir_op_fsqrt:
+ inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_frsq:
+ inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_b2i:
+ case nir_op_b2f:
+ bld.MOV(result, negate(op[0]));
+ break;
+
+ case nir_op_f2b:
+ bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
+ break;
+
+ case nir_op_i642b:
+ case nir_op_d2b: {
+ /* two-argument instructions can't take 64-bit immediates */
+ fs_reg zero;
+ fs_reg tmp;
+
+ if (instr->op == nir_op_d2b) {
+ zero = vgrf(glsl_type::double_type);
+ tmp = vgrf(glsl_type::double_type);
+ } else {
+ zero = vgrf(glsl_type::int64_t_type);
+ tmp = vgrf(glsl_type::int64_t_type);
+ }
+
+ bld.MOV(zero, setup_imm_df(bld, 0.0));
+ /* A SIMD16 execution needs to be split in two instructions, so use
+ * a vgrf instead of the flag register as dst so instruction splitting
+ * works
+ */
+ bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
+ bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
+ break;
+ }
+ case nir_op_i2b:
+ bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
+ break;
+
+ case nir_op_ftrunc:
+ inst = bld.RNDZ(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fceil: {
+ op[0].negate = !op[0].negate;
+ fs_reg temp = vgrf(glsl_type::float_type);
+ bld.RNDD(temp, op[0]);
+ temp.negate = true;
+ inst = bld.MOV(result, temp);
+ inst->saturate = instr->dest.saturate;
+ break;
+ }
+ case nir_op_ffloor:
+ inst = bld.RNDD(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_ffract:
+ inst = bld.FRC(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_fround_even:
+ inst = bld.RNDE(result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_fquantize2f16: {
+ fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
+ fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
+ fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
+
+ /* The destination stride must be at least as big as the source stride. */
+ tmp16.type = BRW_REGISTER_TYPE_W;
+ tmp16.stride = 2;
+
+ /* Check for denormal */
+ fs_reg abs_src0 = op[0];
+ abs_src0.abs = true;
+ bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
+ BRW_CONDITIONAL_L);
+ /* Get the appropriately signed zero */
+ bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
+ retype(op[0], BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(0x80000000));
+ /* Do the actual F32 -> F16 -> F32 conversion */
+ bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
+ bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
+ /* Select that or zero based on normal status */
+ inst = bld.SEL(result, zero, tmp32);
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ inst->saturate = instr->dest.saturate;
+ break;
+ }
+
+ case nir_op_imin:
+ case nir_op_umin:
+ case nir_op_fmin:
+ inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_imax:
+ case nir_op_umax:
+ case nir_op_fmax:
+ inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_pack_snorm_2x16:
+ case nir_op_pack_snorm_4x8:
+ case nir_op_pack_unorm_2x16:
+ case nir_op_pack_unorm_4x8:
+ case nir_op_unpack_snorm_2x16:
+ case nir_op_unpack_snorm_4x8:
+ case nir_op_unpack_unorm_2x16:
+ case nir_op_unpack_unorm_4x8:
+ case nir_op_unpack_half_2x16:
+ case nir_op_pack_half_2x16:
+ unreachable("not reached: should be handled by lower_packing_builtins");
+
+ case nir_op_unpack_half_2x16_split_x:
+ inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+ case nir_op_unpack_half_2x16_split_y:
+ inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_pack_64_2x32_split:
+ bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
+ break;
+
+ case nir_op_unpack_64_2x32_split_x:
+ case nir_op_unpack_64_2x32_split_y: {
+ if (instr->op == nir_op_unpack_64_2x32_split_x)
+ bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
+ else
+ bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
+ break;
+ }
+
+ case nir_op_fpow:
+ inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_bitfield_reverse:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.BFREV(result, op[0]);
+ break;
+
+ case nir_op_bit_count:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.CBIT(result, op[0]);
+ break;
+
+ case nir_op_ufind_msb: {
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ emit_find_msb_using_lzd(bld, result, op[0], false);
+ break;
+ }
+
+ case nir_op_ifind_msb: {
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+
+ if (devinfo->gen < 7) {
+ emit_find_msb_using_lzd(bld, result, op[0], true);
+ } else {
+ bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
+
+ /* FBH counts from the MSB side, while GLSL's findMSB() wants the
+ * count from the LSB side. If FBH didn't return an error
+ * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
+ * count into an LSB count.
+ */
+ bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
+
+ inst = bld.ADD(result, result, brw_imm_d(31));
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ inst->src[0].negate = true;
+ }
+ break;
+ }
+
+ case nir_op_find_lsb:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+
+ if (devinfo->gen < 7) {
+ fs_reg temp = vgrf(glsl_type::int_type);
+
+ /* (x & -x) generates a value that consists of only the LSB of x.
+ * For all powers of 2, findMSB(y) == findLSB(y).
+ */
+ fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
+ fs_reg negated_src = src;
+
+ /* One must be negated, and the other must be non-negated. It
+ * doesn't matter which is which.
+ */
+ negated_src.negate = true;
+ src.negate = false;
+
+ bld.AND(temp, src, negated_src);
+ emit_find_msb_using_lzd(bld, result, temp, false);
+ } else {
+ bld.FBL(result, op[0]);
+ }
+ break;
+
+ case nir_op_ubitfield_extract:
+ case nir_op_ibitfield_extract:
+ unreachable("should have been lowered");
+ case nir_op_ubfe:
+ case nir_op_ibfe:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.BFE(result, op[2], op[1], op[0]);
+ break;
+ case nir_op_bfm:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.BFI1(result, op[0], op[1]);
+ break;
+ case nir_op_bfi:
+ assert(nir_dest_bit_size(instr->dest.dest) < 64);
+ bld.BFI2(result, op[0], op[1], op[2]);
+ break;
+
+ case nir_op_bitfield_insert:
+ unreachable("not reached: should have been lowered");
+
+ case nir_op_ishl:
+ bld.SHL(result, op[0], op[1]);
+ break;
+ case nir_op_ishr:
+ bld.ASR(result, op[0], op[1]);
+ break;
+ case nir_op_ushr:
+ bld.SHR(result, op[0], op[1]);
+ break;
+
+ case nir_op_pack_half_2x16_split:
+ bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
+ break;
+
+ case nir_op_ffma:
+ inst = bld.MAD(result, op[2], op[1], op[0]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_flrp:
+ inst = bld.LRP(result, op[0], op[1], op[2]);
+ inst->saturate = instr->dest.saturate;
+ break;
+
+ case nir_op_bcsel:
+ if (optimize_frontfacing_ternary(instr, result))
+ return;
+
+ bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
+ inst = bld.SEL(result, op[1], op[2]);
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ break;
+
+ case nir_op_extract_u8:
+ case nir_op_extract_i8: {
+ const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
+ nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
+ assert(byte != NULL);
+ bld.MOV(result, subscript(op[0], type, byte->u32[0]));
+ break;
+ }
+
+ case nir_op_extract_u16:
+ case nir_op_extract_i16: {
+ const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
+ nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
+ assert(word != NULL);
+ bld.MOV(result, subscript(op[0], type, word->u32[0]));
+ break;
+ }
+
+ default:
+ unreachable("unhandled instruction");
+ }
+
+ /* If we need to do a boolean resolve, replace the result with -(x & 1)
+ * to sign extend the low bit to 0/~0
+ */
+ if (devinfo->gen <= 5 &&
+ (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
+ fs_reg masked = vgrf(glsl_type::int_type);
+ bld.AND(masked, result, brw_imm_d(1));
+ masked.negate = true;
+ bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
+ }
+}
+
+void
+fs_visitor::nir_emit_load_const(const fs_builder &bld,
+ nir_load_const_instr *instr)
+{
+ const brw_reg_type reg_type =
+ instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
+ fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
+
+ switch (instr->def.bit_size) {
+ case 32:
+ for (unsigned i = 0; i < instr->def.num_components; i++)
+ bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
+ break;
+
+ case 64:
+ for (unsigned i = 0; i < instr->def.num_components; i++)
+ bld.MOV(offset(reg, bld, i),
+ setup_imm_df(bld, instr->value.f64[i]));
+ break;
+
+ default:
+ unreachable("Invalid bit size");
+ }
+
+ nir_ssa_values[instr->def.index] = reg;
+}
+
+fs_reg
+fs_visitor::get_nir_src(const nir_src &src)
+{
+ fs_reg reg;
+ if (src.is_ssa) {
+ if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
+ const brw_reg_type reg_type = src.ssa->bit_size == 32 ?
+ BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
+ reg = bld.vgrf(reg_type, src.ssa->num_components);
+ } else {
+ reg = nir_ssa_values[src.ssa->index];
+ }
+ } else {
+ /* We don't handle indirects on locals */
+ assert(src.reg.indirect == NULL);
+ reg = offset(nir_locals[src.reg.reg->index], bld,
+ src.reg.base_offset * src.reg.reg->num_components);
+ }
+
+ /* to avoid floating-point denorm flushing problems, set the type by
+ * default to D - instructions that need floating point semantics will set
+ * this to F if they need to
+ */
+ return retype(reg, BRW_REGISTER_TYPE_D);
+}
+
+/**
+ * Return an IMM for constants; otherwise call get_nir_src() as normal.
+ */
+fs_reg
+fs_visitor::get_nir_src_imm(const nir_src &src)
+{
+ nir_const_value *val = nir_src_as_const_value(src);
+ return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
+}
+
+fs_reg
+fs_visitor::get_nir_dest(const nir_dest &dest)
+{
+ if (dest.is_ssa) {
+ const brw_reg_type reg_type =
+ dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
+ nir_ssa_values[dest.ssa.index] =
+ bld.vgrf(reg_type, dest.ssa.num_components);
+ return nir_ssa_values[dest.ssa.index];
+ } else {
+ /* We don't handle indirects on locals */
+ assert(dest.reg.indirect == NULL);
+ return offset(nir_locals[dest.reg.reg->index], bld,
+ dest.reg.base_offset * dest.reg.reg->num_components);
+ }
+}
+
+fs_reg
+fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
+{
+ fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
+ BRW_REGISTER_TYPE_UD);
+ fs_reg indirect;
+ unsigned indirect_max = 0;
+
+ for (const nir_deref *tail = &deref->deref; tail->child;
+ tail = tail->child) {
+ const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
+ assert(tail->child->deref_type == nir_deref_type_array);
+ const unsigned size = glsl_get_length(tail->type);
+ const unsigned element_size = type_size_scalar(deref_array->deref.type);
+ const unsigned base = MIN2(deref_array->base_offset, size - 1);
+ image = offset(image, bld, base * element_size);
+
+ if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
+ fs_reg tmp = vgrf(glsl_type::uint_type);
+
+ /* Accessing an invalid surface index with the dataport can result
+ * in a hang. According to the spec "if the index used to
+ * select an individual element is negative or greater than or
+ * equal to the size of the array, the results of the operation
+ * are undefined but may not lead to termination" -- which is one
+ * of the possible outcomes of the hang. Clamp the index to
+ * prevent access outside of the array bounds.
+ */
+ bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
+ BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
+
+ indirect_max += element_size * (tail->type->length - 1);
+
+ bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
+ if (indirect.file == BAD_FILE) {
+ indirect = tmp;
+ } else {
+ bld.ADD(indirect, indirect, tmp);
+ }
+ }
+ }
+
+ if (indirect.file == BAD_FILE) {
+ return image;
+ } else {
+ /* Emit a pile of MOVs to load the uniform into a temporary. The
+ * dead-code elimination pass will get rid of what we don't use.
+ */
+ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
+ for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT,
+ offset(tmp, bld, j), offset(image, bld, j),
+ indirect, brw_imm_ud((indirect_max + 1) * 4));
+ }
+ return tmp;
+ }
+}
+
+void
+fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
+ unsigned wr_mask)
+{
+ for (unsigned i = 0; i < 4; i++) {
+ if (!((wr_mask >> i) & 1))
+ continue;
+
+ fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
+ new_inst->dst = offset(new_inst->dst, bld, i);
+ for (unsigned j = 0; j < new_inst->sources; j++)
+ if (new_inst->src[j].file == VGRF)
+ new_inst->src[j] = offset(new_inst->src[j], bld, i);
+
+ bld.emit(new_inst);
+ }
+}
+
+/**
+ * Get the matching channel register datatype for an image intrinsic of the
+ * specified GLSL image type.
+ */
+static brw_reg_type
+get_image_base_type(const glsl_type *type)
+{
+ switch ((glsl_base_type)type->sampled_type) {
+ case GLSL_TYPE_UINT:
+ return BRW_REGISTER_TYPE_UD;
+ case GLSL_TYPE_INT:
+ return BRW_REGISTER_TYPE_D;
+ case GLSL_TYPE_FLOAT:
+ return BRW_REGISTER_TYPE_F;
+ default:
+ unreachable("Not reached.");
+ }
+}
+
+/**
+ * Get the appropriate atomic op for an image atomic intrinsic.
+ */
+static unsigned
+get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
+{
+ switch (op) {
+ case nir_intrinsic_image_atomic_add:
+ return BRW_AOP_ADD;
+ case nir_intrinsic_image_atomic_min:
+ return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
+ BRW_AOP_IMIN : BRW_AOP_UMIN);
+ case nir_intrinsic_image_atomic_max:
+ return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
+ BRW_AOP_IMAX : BRW_AOP_UMAX);
+ case nir_intrinsic_image_atomic_and:
+ return BRW_AOP_AND;
+ case nir_intrinsic_image_atomic_or:
+ return BRW_AOP_OR;
+ case nir_intrinsic_image_atomic_xor:
+ return BRW_AOP_XOR;
+ case nir_intrinsic_image_atomic_exchange:
+ return BRW_AOP_MOV;
+ case nir_intrinsic_image_atomic_comp_swap:
+ return BRW_AOP_CMPWR;
+ default:
+ unreachable("Not reachable.");
+ }
+}
+
+static fs_inst *
+emit_pixel_interpolater_send(const fs_builder &bld,
+ enum opcode opcode,
+ const fs_reg &dst,
+ const fs_reg &src,
+ const fs_reg &desc,
+ glsl_interp_mode interpolation)
+{
+ struct brw_wm_prog_data *wm_prog_data =
+ brw_wm_prog_data(bld.shader->stage_prog_data);
+ fs_inst *inst;
+ fs_reg payload;
+ int mlen;
+
+ if (src.file == BAD_FILE) {
+ /* Dummy payload */
+ payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
+ mlen = 1;
+ } else {
+ payload = src;
+ mlen = 2 * bld.dispatch_width() / 8;
+ }
+
+ inst = bld.emit(opcode, dst, payload, desc);
+ inst->mlen = mlen;
+ /* 2 floats per slot returned */
+ inst->size_written = 2 * dst.component_size(inst->exec_size);
+ inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
+
+ wm_prog_data->pulls_bary = true;
+
+ return inst;
+}
+
+/**
+ * Computes 1 << x, given a D/UD register containing some value x.
+ */
+static fs_reg
+intexp2(const fs_builder &bld, const fs_reg &x)
+{
+ assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
+
+ fs_reg result = bld.vgrf(x.type, 1);
+ fs_reg one = bld.vgrf(x.type, 1);
+
+ bld.MOV(one, retype(brw_imm_d(1), one.type));
+ bld.SHL(result, one, x);
+ return result;
+}
+
+void
+fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
+{
+ assert(stage == MESA_SHADER_GEOMETRY);
+
+ struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
+
+ if (gs_compile->control_data_header_size_bits == 0)
+ return;
+
+ /* We can only do EndPrimitive() functionality when the control data
+ * consists of cut bits. Fortunately, the only time it isn't is when the
+ * output type is points, in which case EndPrimitive() is a no-op.
+ */
+ if (gs_prog_data->control_data_format !=
+ GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
+ return;
+ }
+
+ /* Cut bits use one bit per vertex. */
+ assert(gs_compile->control_data_bits_per_vertex == 1);
+
+ fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+ vertex_count.type = BRW_REGISTER_TYPE_UD;
+
+ /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
+ * vertex n, 0 otherwise. So all we need to do here is mark bit
+ * (vertex_count - 1) % 32 in the cut_bits register to indicate that
+ * EndPrimitive() was called after emitting vertex (vertex_count - 1);
+ * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
+ *
+ * Note that if EndPrimitive() is called before emitting any vertices, this
+ * will cause us to set bit 31 of the control_data_bits register to 1.
+ * That's fine because:
+ *
+ * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
+ * output, so the hardware will ignore cut bit 31.
+ *
+ * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
+ * last vertex, so setting cut bit 31 has no effect (since the primitive
+ * is automatically ended when the GS terminates).
+ *
+ * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
+ * control_data_bits register to 0 when the first vertex is emitted.
+ */
+
+ const fs_builder abld = bld.annotate("end primitive");
+
+ /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
+ fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
+ fs_reg mask = intexp2(abld, prev_count);
+ /* Note: we're relying on the fact that the GEN SHL instruction only pays
+ * attention to the lower 5 bits of its second source argument, so on this
+ * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
+ * ((vertex_count - 1) % 32).
+ */
+ abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
+
+void
+fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
+{
+ assert(stage == MESA_SHADER_GEOMETRY);
+ assert(gs_compile->control_data_bits_per_vertex != 0);
+
+ struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
+
+ const fs_builder abld = bld.annotate("emit control data bits");
+ const fs_builder fwa_bld = bld.exec_all();
+
+ /* We use a single UD register to accumulate control data bits (32 bits
+ * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
+ * at a time.
+ *
+ * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
+ * We have select a 128-bit group via the Global and Per-Slot Offsets, then
+ * use the Channel Mask phase to enable/disable which DWord within that
+ * group to write. (Remember, different SIMD8 channels may have emitted
+ * different numbers of vertices, so we may need per-slot offsets.)
+ *
+ * Channel masking presents an annoying problem: we may have to replicate
+ * the data up to 4 times:
+ *
+ * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
+ *
+ * To avoid penalizing shaders that emit a small number of vertices, we
+ * can avoid these sometimes: if the size of the control data header is
+ * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
+ * land in the same 128-bit group, so we can skip per-slot offsets.
+ *
+ * Similarly, if the control data header is <= 32 bits, there is only one
+ * DWord, so we can skip channel masks.
+ */
+ enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
+
+ fs_reg channel_mask, per_slot_offset;
+
+ if (gs_compile->control_data_header_size_bits > 32) {
+ opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
+ channel_mask = vgrf(glsl_type::uint_type);
+ }
+
+ if (gs_compile->control_data_header_size_bits > 128) {
+ opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
+ per_slot_offset = vgrf(glsl_type::uint_type);
+ }
+
+ /* Figure out which DWord we're trying to write to using the formula:
+ *
+ * dword_index = (vertex_count - 1) * bits_per_vertex / 32
+ *
+ * Since bits_per_vertex is a power of two, and is known at compile
+ * time, this can be optimized to:
+ *
+ * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
+ */
+ if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
+ fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
+ unsigned log2_bits_per_vertex =
+ util_last_bit(gs_compile->control_data_bits_per_vertex);
+ abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
+
+ if (per_slot_offset.file != BAD_FILE) {
+ /* Set the per-slot offset to dword_index / 4, so that we'll write to
+ * the appropriate OWord within the control data header.
+ */
+ abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
+ }
+
+ /* Set the channel masks to 1 << (dword_index % 4), so that we'll
+ * write to the appropriate DWORD within the OWORD.
+ */
+ fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
+ channel_mask = intexp2(fwa_bld, channel);
+ /* Then the channel masks need to be in bits 23:16. */
+ fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
+ }
+
+ /* Store the control data bits in the message payload and send it. */
+ int mlen = 2;
+ if (channel_mask.file != BAD_FILE)
+ mlen += 4; /* channel masks, plus 3 extra copies of the data */
+ if (per_slot_offset.file != BAD_FILE)
+ mlen++;
+
+ fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
+ fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
+ int i = 0;
+ sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+ if (per_slot_offset.file != BAD_FILE)
+ sources[i++] = per_slot_offset;
+ if (channel_mask.file != BAD_FILE)
+ sources[i++] = channel_mask;
+ while (i < mlen) {
+ sources[i++] = this->control_data_bits;
+ }
+
+ abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
+ fs_inst *inst = abld.emit(opcode, reg_undef, payload);
+ inst->mlen = mlen;
+ /* We need to increment Global Offset by 256-bits to make room for
+ * Broadwell's extra "Vertex Count" payload at the beginning of the
+ * URB entry. Since this is an OWord message, Global Offset is counted
+ * in 128-bit units, so we must set it to 2.
+ */
+ if (gs_prog_data->static_vertex_count == -1)
+ inst->offset = 2;
+}
+
+void
+fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
+ unsigned stream_id)
+{
+ /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
+
+ /* Note: we are calling this *before* increasing vertex_count, so
+ * this->vertex_count == vertex_count - 1 in the formula above.
+ */
+
+ /* Stream mode uses 2 bits per vertex */
+ assert(gs_compile->control_data_bits_per_vertex == 2);
+
+ /* Must be a valid stream */
+ assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
+
+ /* Control data bits are initialized to 0 so we don't have to set any
+ * bits when sending vertices to stream 0.
+ */
+ if (stream_id == 0)
+ return;
+
+ const fs_builder abld = bld.annotate("set stream control data bits", NULL);
+
+ /* reg::sid = stream_id */
+ fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.MOV(sid, brw_imm_ud(stream_id));
+
+ /* reg:shift_count = 2 * (vertex_count - 1) */
+ fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
+
+ /* Note: we're relying on the fact that the GEN SHL instruction only pays
+ * attention to the lower 5 bits of its second source argument, so on this
+ * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
+ * stream_id << ((2 * (vertex_count - 1)) % 32).
+ */
+ fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ abld.SHL(mask, sid, shift_count);
+ abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
+
+void
+fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
+ unsigned stream_id)
+{
+ assert(stage == MESA_SHADER_GEOMETRY);
+
+ struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
+
+ fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+ vertex_count.type = BRW_REGISTER_TYPE_UD;
+
+ /* Haswell and later hardware ignores the "Render Stream Select" bits
+ * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
+ * and instead sends all primitives down the pipeline for rasterization.
+ * If the SOL stage is enabled, "Render Stream Select" is honored and
+ * primitives bound to non-zero streams are discarded after stream output.
+ *
+ * Since the only purpose of primives sent to non-zero streams is to
+ * be recorded by transform feedback, we can simply discard all geometry
+ * bound to these streams when transform feedback is disabled.
+ */
+ if (stream_id > 0 && !nir->info->has_transform_feedback_varyings)
+ return;
+
+ /* If we're outputting 32 control data bits or less, then we can wait
+ * until the shader is over to output them all. Otherwise we need to
+ * output them as we go. Now is the time to do it, since we're about to
+ * output the vertex_count'th vertex, so it's guaranteed that the
+ * control data bits associated with the (vertex_count - 1)th vertex are
+ * correct.
+ */
+ if (gs_compile->control_data_header_size_bits > 32) {
+ const fs_builder abld =
+ bld.annotate("emit vertex: emit control data bits");
+
+ /* Only emit control data bits if we've finished accumulating a batch
+ * of 32 bits. This is the case when:
+ *
+ * (vertex_count * bits_per_vertex) % 32 == 0
+ *
+ * (in other words, when the last 5 bits of vertex_count *
+ * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
+ * integer n (which is always the case, since bits_per_vertex is
+ * always 1 or 2), this is equivalent to requiring that the last 5-n
+ * bits of vertex_count are 0:
+ *
+ * vertex_count & (2^(5-n) - 1) == 0
+ *
+ * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
+ * equivalent to:
+ *
+ * vertex_count & (32 / bits_per_vertex - 1) == 0
+ *
+ * TODO: If vertex_count is an immediate, we could do some of this math
+ * at compile time...
+ */
+ fs_inst *inst =
+ abld.AND(bld.null_reg_d(), vertex_count,
+ brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
+ inst->conditional_mod = BRW_CONDITIONAL_Z;
+
+ abld.IF(BRW_PREDICATE_NORMAL);
+ /* If vertex_count is 0, then no control data bits have been
+ * accumulated yet, so we can skip emitting them.
+ */
+ abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
+ BRW_CONDITIONAL_NEQ);
+ abld.IF(BRW_PREDICATE_NORMAL);
+ emit_gs_control_data_bits(vertex_count);
+ abld.emit(BRW_OPCODE_ENDIF);
+
+ /* Reset control_data_bits to 0 so we can start accumulating a new
+ * batch.
+ *
+ * Note: in the case where vertex_count == 0, this neutralizes the
+ * effect of any call to EndPrimitive() that the shader may have
+ * made before outputting its first vertex.
+ */
+ inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
+ inst->force_writemask_all = true;
+ abld.emit(BRW_OPCODE_ENDIF);
+ }
+
+ emit_urb_writes(vertex_count);
+
+ /* In stream mode we have to set control data bits for all vertices
+ * unless we have disabled control data bits completely (which we do
+ * do for GL_POINTS outputs that don't use streams).
+ */
+ if (gs_compile->control_data_header_size_bits > 0 &&
+ gs_prog_data->control_data_format ==
+ GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
+ set_gs_stream_control_data_bits(vertex_count, stream_id);
+ }
+}
+
+void
+fs_visitor::emit_gs_input_load(const fs_reg &dst,
+ const nir_src &vertex_src,
+ unsigned base_offset,
+ const nir_src &offset_src,
+ unsigned num_components,
+ unsigned first_component)
+{
+ struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
+
+ nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
+ nir_const_value *offset_const = nir_src_as_const_value(offset_src);
+ const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
+
+ /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
+ * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
+ * gl_PointSize is available as a GS input, however, so it must be that.
+ */
+ const bool is_point_size = (base_offset == 0);
+
+ /* TODO: figure out push input layout for invocations == 1 */
+ if (gs_prog_data->invocations == 1 &&
+ offset_const != NULL && vertex_const != NULL &&
+ 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
+ int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
+ vertex_const->u32[0] * push_reg_count;
+ /* This input was pushed into registers. */
+ if (is_point_size) {
+ /* gl_PointSize comes in .w */
+ bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
+ } else {
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(dst, bld, i),
+ fs_reg(ATTR, imm_offset + i + first_component, dst.type));
+ }
+ }
+ return;
+ }
+
+ /* Resort to the pull model. Ensure the VUE handles are provided. */
+ gs_prog_data->base.include_vue_handles = true;
+
+ unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
+ fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+
+ if (gs_prog_data->invocations == 1) {
+ if (vertex_const) {
+ /* The vertex index is constant; just select the proper URB handle. */
+ icp_handle =
+ retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
+ BRW_REGISTER_TYPE_UD);
+ } else {
+ /* The vertex index is non-constant. We need to use indirect
+ * addressing to fetch the proper URB handle.
+ *
+ * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
+ * indicating that channel <n> should read the handle from
+ * DWord <n>. We convert that to bytes by multiplying by 4.
+ *
+ * Next, we convert the vertex index to bytes by multiplying
+ * by 32 (shifting by 5), and add the two together. This is
+ * the final indirect byte offset.
+ */
+ fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
+ fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+
+ /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
+ bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
+ /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
+ bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
+ /* Convert vertex_index to bytes (multiply by 32) */
+ bld.SHL(vertex_offset_bytes,
+ retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(5u));
+ bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
+
+ /* Use first_icp_handle as the base offset. There is one register
+ * of URB handles per vertex, so inform the register allocator that
+ * we might read up to nir->info->gs.vertices_in registers.
+ */
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
+ retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
+ fs_reg(icp_offset_bytes),
+ brw_imm_ud(nir->info->gs.vertices_in * REG_SIZE));
+ }
+ } else {
+ assert(gs_prog_data->invocations > 1);
+
+ if (vertex_const) {
+ assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
+ bld.MOV(icp_handle,
+ retype(brw_vec1_grf(first_icp_handle +
+ vertex_const->i32[0] / 8,
+ vertex_const->i32[0] % 8),
+ BRW_REGISTER_TYPE_UD));
+ } else {
+ /* The vertex index is non-constant. We need to use indirect
+ * addressing to fetch the proper URB handle.
+ *
+ */
+ fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+
+ /* Convert vertex_index to bytes (multiply by 4) */
+ bld.SHL(icp_offset_bytes,
+ retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(2u));
+
+ /* Use first_icp_handle as the base offset. There is one DWord
+ * of URB handles per vertex, so inform the register allocator that
+ * we might read up to ceil(nir->info->gs.vertices_in / 8) registers.
+ */
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
+ retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
+ fs_reg(icp_offset_bytes),
+ brw_imm_ud(DIV_ROUND_UP(nir->info->gs.vertices_in, 8) *
+ REG_SIZE));
+ }
+ }
+
+ fs_inst *inst;
+
+ fs_reg tmp_dst = dst;
+ fs_reg indirect_offset = get_nir_src(offset_src);
+ unsigned num_iterations = 1;
+ unsigned orig_num_components = num_components;
+
+ if (type_sz(dst.type) == 8) {
+ if (num_components > 2) {
+ num_iterations = 2;
+ num_components = 2;
+ }
+ fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
+ tmp_dst = tmp;
+ first_component = first_component / 2;
+ }
+
+ for (unsigned iter = 0; iter < num_iterations; iter++) {
+ if (offset_const) {
+ /* Constant indexing - use global offset. */
+ if (first_component != 0) {
+ unsigned read_components = num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
+ inst->size_written = read_components *
+ tmp.component_size(inst->exec_size);
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(tmp_dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
+ icp_handle);
+ inst->size_written = num_components *
+ tmp_dst.component_size(inst->exec_size);
+ }
+ inst->offset = base_offset + offset_const->u32[0];
+ inst->mlen = 1;
+ } else {
+ /* Indirect indexing - use per-slot offsets as well. */
+ const fs_reg srcs[] = { icp_handle, indirect_offset };
+ unsigned read_components = num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
+ if (first_component != 0) {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
+ payload);
+ inst->size_written = read_components *
+ tmp.component_size(inst->exec_size);
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(tmp_dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
+ payload);
+ inst->size_written = num_components *
+ tmp_dst.component_size(inst->exec_size);
+ }
+ inst->offset = base_offset;
+ inst->mlen = 2;
+ }
+
+ if (type_sz(dst.type) == 8) {
+ shuffle_32bit_load_result_to_64bit_data(
+ bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
+
+ for (unsigned c = 0; c < num_components; c++)
+ bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
+ }
+
+ if (num_iterations > 1) {
+ num_components = orig_num_components - 2;
+ if(offset_const) {
+ base_offset++;
+ } else {
+ fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
+ indirect_offset = new_indirect;
+ }
+ }
+ }
+
+ if (is_point_size) {
+ /* Read the whole VUE header (because of alignment) and read .w. */
+ fs_reg tmp = bld.vgrf(dst.type, 4);
+ inst->dst = tmp;
+ inst->size_written = 4 * REG_SIZE;
+ bld.MOV(dst, offset(tmp, bld, 3));
+ }
+}
+
+fs_reg
+fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
+{
+ nir_src *offset_src = nir_get_io_offset_src(instr);
+ nir_const_value *const_value = nir_src_as_const_value(*offset_src);
+
+ if (const_value) {
+ /* The only constant offset we should find is 0. brw_nir.c's
+ * add_const_offset_to_base() will fold other constant offsets
+ * into instr->const_index[0].
+ */
+ assert(const_value->u32[0] == 0);
+ return fs_reg();
+ }
+
+ return get_nir_src(*offset_src);
+}
+
+static void
+do_untyped_vector_read(const fs_builder &bld,
+ const fs_reg dest,
+ const fs_reg surf_index,
+ const fs_reg offset_reg,
+ unsigned num_components)
+{
+ if (type_sz(dest.type) == 4) {
+ fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+ 1 /* dims */,
+ num_components,
+ BRW_PREDICATE_NONE);
+ read_result.type = dest.type;
+ for (unsigned i = 0; i < num_components; i++)
+ bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+ } else if (type_sz(dest.type) == 8) {
+ /* Reading a dvec, so we need to:
+ *
+ * 1. Multiply num_components by 2, to account for the fact that we
+ * need to read 64-bit components.
+ * 2. Shuffle the result of the load to form valid 64-bit elements
+ * 3. Emit a second load (for components z/w) if needed.
+ */
+ fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.MOV(read_offset, offset_reg);
+
+ int iters = num_components <= 2 ? 1 : 2;
+
+ /* Load the dvec, the first iteration loads components x/y, the second
+ * iteration, if needed, loads components z/w
+ */
+ for (int it = 0; it < iters; it++) {
+ /* Compute number of components to read in this iteration */
+ int iter_components = MIN2(2, num_components);
+ num_components -= iter_components;
+
+ /* Read. Since this message reads 32-bit components, we need to
+ * read twice as many components.
+ */
+ fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
+ 1 /* dims */,
+ iter_components * 2,
+ BRW_PREDICATE_NONE);
+
+ /* Shuffle the 32-bit load result into valid 64-bit data */
+ const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
+ shuffle_32bit_load_result_to_64bit_data(
+ bld, packed_result, read_result, iter_components);
+
+ /* Move each component to its destination */
+ read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
+ for (int c = 0; c < iter_components; c++) {
+ bld.MOV(offset(dest, bld, it * 2 + c),
+ offset(packed_result, bld, c));
+ }
+
+ bld.ADD(read_offset, read_offset, brw_imm_ud(16));
+ }
+ } else {
+ unreachable("Unsupported type");
+ }
+}
+
+void
+fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_VERTEX);
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_load_vertex_id:
+ unreachable("should be lowered by lower_vertex_id()");
+
+ case nir_intrinsic_load_vertex_id_zero_base:
+ case nir_intrinsic_load_base_vertex:
+ case nir_intrinsic_load_instance_id:
+ case nir_intrinsic_load_base_instance:
+ case nir_intrinsic_load_draw_id: {
+ gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+ fs_reg val = nir_system_values[sv];
+ assert(val.file != BAD_FILE);
+ dest.type = val.type;
+ bld.MOV(dest, val);
+ break;
+ }
+
+ case nir_intrinsic_load_input: {
+ fs_reg src = fs_reg(ATTR, instr->const_index[0], dest.type);
+ unsigned first_component = nir_intrinsic_component(instr);
+ unsigned num_components = instr->num_components;
+ enum brw_reg_type type = dest.type;
+
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+ assert(const_offset && "Indirect input loads not allowed");
+ src = offset(src, bld, const_offset->u32[0]);
+
+ for (unsigned j = 0; j < num_components; j++) {
+ bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
+ }
+
+ if (type == BRW_REGISTER_TYPE_DF) {
+ /* Once the double vector is read, set again its original register
+ * type to continue with normal execution.
+ */
+ src = retype(src, type);
+ dest = retype(dest, type);
+ }
+
+ if (type_sz(src.type) == 8) {
+ shuffle_32bit_load_result_to_64bit_data(bld,
+ dest,
+ retype(dest, BRW_REGISTER_TYPE_F),
+ instr->num_components);
+ }
+ break;
+ }
+
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+void
+fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_TESS_CTRL);
+ struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
+ struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
+
+ fs_reg dst;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dst = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_load_primitive_id:
+ bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
+ break;
+ case nir_intrinsic_load_invocation_id:
+ bld.MOV(retype(dst, invocation_id.type), invocation_id);
+ break;
+ case nir_intrinsic_load_patch_vertices_in:
+ bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
+ brw_imm_d(tcs_key->input_vertices));
+ break;
+
+ case nir_intrinsic_barrier: {
+ if (tcs_prog_data->instances == 1)
+ break;
+
+ fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ fs_reg m0_2 = component(m0, 2);
+
+ const fs_builder chanbld = bld.exec_all().group(1, 0);
+
+ /* Zero the message header */
+ bld.exec_all().MOV(m0, brw_imm_ud(0u));
+
+ /* Copy "Barrier ID" from r0.2, bits 16:13 */
+ chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(INTEL_MASK(16, 13)));
+
+ /* Shift it up to bits 27:24. */
+ chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
+
+ /* Set the Barrier Count and the enable bit */
+ chanbld.OR(m0_2, m0_2,
+ brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
+
+ bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
+ break;
+ }
+
+ case nir_intrinsic_load_input:
+ unreachable("nir_lower_io should never give us these.");
+ break;
+
+ case nir_intrinsic_load_per_vertex_input: {
+ fs_reg indirect_offset = get_indirect_offset(instr);
+ unsigned imm_offset = instr->const_index[0];
+
+ const nir_src &vertex_src = instr->src[0];
+ nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
+
+ fs_inst *inst;
+
+ fs_reg icp_handle;
+
+ if (vertex_const) {
+ /* Emit a MOV to resolve <0,1,0> regioning. */
+ icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ bld.MOV(icp_handle,
+ retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
+ vertex_const->i32[0] & 7),
+ BRW_REGISTER_TYPE_UD));
+ } else if (tcs_prog_data->instances == 1 &&
+ vertex_src.is_ssa &&
+ vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
+ nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
+ /* For the common case of only 1 instance, an array index of
+ * gl_InvocationID means reading g1. Skip all the indirect work.
+ */
+ icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
+ } else {
+ /* The vertex index is non-constant. We need to use indirect
+ * addressing to fetch the proper URB handle.
+ */
+ icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+
+ /* Each ICP handle is a single DWord (4 bytes) */
+ fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ bld.SHL(vertex_offset_bytes,
+ retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(2u));
+
+ /* Start at g1. We might read up to 4 registers. */
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
+ retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
+ brw_imm_ud(4 * REG_SIZE));
+ }
+
+ /* We can only read two double components with each URB read, so
+ * we send two read messages in that case, each one loading up to
+ * two double components.
+ */
+ unsigned num_iterations = 1;
+ unsigned num_components = instr->num_components;
+ unsigned first_component = nir_intrinsic_component(instr);
+ fs_reg orig_dst = dst;
+ if (type_sz(dst.type) == 8) {
+ first_component = first_component / 2;
+ if (instr->num_components > 2) {
+ num_iterations = 2;
+ num_components = 2;
+ }
+
+ fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
+ dst = tmp;
+ }
+
+ for (unsigned iter = 0; iter < num_iterations; iter++) {
+ if (indirect_offset.file == BAD_FILE) {
+ /* Constant indexing - use global offset. */
+ if (first_component != 0) {
+ unsigned read_components = num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
+ }
+ inst->offset = imm_offset;
+ inst->mlen = 1;
+ } else {
+ /* Indirect indexing - use per-slot offsets as well. */
+ const fs_reg srcs[] = { icp_handle, indirect_offset };
+ fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
+ if (first_component != 0) {
+ unsigned read_components = num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
+ payload);
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
+ payload);
+ }
+ inst->offset = imm_offset;
+ inst->mlen = 2;
+ }
+ inst->size_written = (num_components + first_component) *
+ inst->dst.component_size(inst->exec_size);
+
+ /* If we are reading 64-bit data using 32-bit read messages we need
+ * build proper 64-bit data elements by shuffling the low and high
+ * 32-bit components around like we do for other things like UBOs
+ * or SSBOs.
+ */
+ if (type_sz(dst.type) == 8) {
+ shuffle_32bit_load_result_to_64bit_data(
+ bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
+
+ for (unsigned c = 0; c < num_components; c++) {
+ bld.MOV(offset(orig_dst, bld, iter * 2 + c),
+ offset(dst, bld, c));
+ }
+ }
+
+ /* Copy the temporary to the destination to deal with writemasking.
+ *
+ * Also attempt to deal with gl_PointSize being in the .w component.
+ */
+ if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
+ assert(type_sz(dst.type) < 8);
+ inst->dst = bld.vgrf(dst.type, 4);
+ inst->size_written = 4 * REG_SIZE;
+ bld.MOV(dst, offset(inst->dst, bld, 3));
+ }
+
+ /* If we are loading double data and we need a second read message
+ * adjust the write offset
+ */
+ if (num_iterations > 1) {
+ num_components = instr->num_components - 2;
+ imm_offset++;
+ }
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_output:
+ case nir_intrinsic_load_per_vertex_output: {
+ fs_reg indirect_offset = get_indirect_offset(instr);
+ unsigned imm_offset = instr->const_index[0];
+ unsigned first_component = nir_intrinsic_component(instr);
+
+ fs_inst *inst;
+ if (indirect_offset.file == BAD_FILE) {
+ /* Replicate the patch handle to all enabled channels */
+ fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ bld.MOV(patch_handle,
+ retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
+
+ {
+ if (first_component != 0) {
+ unsigned read_components =
+ instr->num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
+ patch_handle);
+ inst->size_written = read_components * REG_SIZE;
+ for (unsigned i = 0; i < instr->num_components; i++) {
+ bld.MOV(offset(dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
+ patch_handle);
+ inst->size_written = instr->num_components * REG_SIZE;
+ }
+ inst->offset = imm_offset;
+ inst->mlen = 1;
+ }
+ } else {
+ /* Indirect indexing - use per-slot offsets as well. */
+ const fs_reg srcs[] = {
+ retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
+ indirect_offset
+ };
+ fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
+ if (first_component != 0) {
+ unsigned read_components =
+ instr->num_components + first_component;
+ fs_reg tmp = bld.vgrf(dst.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
+ payload);
+ inst->size_written = read_components * REG_SIZE;
+ for (unsigned i = 0; i < instr->num_components; i++) {
+ bld.MOV(offset(dst, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
+ payload);
+ inst->size_written = instr->num_components * REG_SIZE;
+ }
+ inst->offset = imm_offset;
+ inst->mlen = 2;
+ }
+ break;
+ }
+
+ case nir_intrinsic_store_output:
+ case nir_intrinsic_store_per_vertex_output: {
+ fs_reg value = get_nir_src(instr->src[0]);
+ bool is_64bit = (instr->src[0].is_ssa ?
+ instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
+ fs_reg indirect_offset = get_indirect_offset(instr);
+ unsigned imm_offset = instr->const_index[0];
+ unsigned swiz = BRW_SWIZZLE_XYZW;
+ unsigned mask = instr->const_index[1];
+ unsigned header_regs = 0;
+ fs_reg srcs[7];
+ srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
+
+ if (indirect_offset.file != BAD_FILE) {
+ srcs[header_regs++] = indirect_offset;
+ }
+
+ if (mask == 0)
+ break;
+
+ unsigned num_components = util_last_bit(mask);
+ enum opcode opcode;
+
+ /* We can only pack two 64-bit components in a single message, so send
+ * 2 messages if we have more components
+ */
+ unsigned num_iterations = 1;
+ unsigned iter_components = num_components;
+ unsigned first_component = nir_intrinsic_component(instr);
+ if (is_64bit) {
+ first_component = first_component / 2;
+ if (instr->num_components > 2) {
+ num_iterations = 2;
+ iter_components = 2;
+ }
+ }
+
+ /* 64-bit data needs to me shuffled before we can write it to the URB.
+ * We will use this temporary to shuffle the components in each
+ * iteration.
+ */
+ fs_reg tmp =
+ fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type);
+
+ mask = mask << first_component;
+
+ for (unsigned iter = 0; iter < num_iterations; iter++) {
+ if (!is_64bit && mask != WRITEMASK_XYZW) {
+ srcs[header_regs++] = brw_imm_ud(mask << 16);
+ opcode = indirect_offset.file != BAD_FILE ?
+ SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
+ SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
+ } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
+ /* Expand the 64-bit mask to 32-bit channels. We only handle
+ * two channels in each iteration, so we only care about X/Y.
+ */
+ unsigned mask32 = 0;
+ if (mask & WRITEMASK_X)
+ mask32 |= WRITEMASK_XY;
+ if (mask & WRITEMASK_Y)
+ mask32 |= WRITEMASK_ZW;
+
+ /* If the mask does not include any of the channels X or Y there
+ * is nothing to do in this iteration. Move on to the next couple
+ * of 64-bit channels.
+ */
+ if (!mask32) {
+ mask >>= 2;
+ imm_offset++;
+ continue;
+ }
+
+ srcs[header_regs++] = brw_imm_ud(mask32 << 16);
+ opcode = indirect_offset.file != BAD_FILE ?
+ SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
+ SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
+ } else {
+ opcode = indirect_offset.file != BAD_FILE ?
+ SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
+ SHADER_OPCODE_URB_WRITE_SIMD8;
+ }
+
+ for (unsigned i = 0; i < iter_components; i++) {
+ if (!(mask & (1 << (i + first_component))))
+ continue;
+
+ if (!is_64bit) {
+ srcs[header_regs + i + first_component] =
+ offset(value, bld, BRW_GET_SWZ(swiz, i));
+ } else {
+ /* We need to shuffle the 64-bit data to match the layout
+ * expected by our 32-bit URB write messages. We use a temporary
+ * for that.
+ */
+ unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i);
+ shuffle_64bit_data_for_32bit_write(bld,
+ retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F),
+ retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF),
+ 1);
+
+ /* Now copy the data to the destination */
+ fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type);
+ unsigned idx = 2 * i;
+ bld.MOV(dest, offset(tmp, bld, idx));
+ bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1));
+ srcs[header_regs + idx + first_component * 2] = dest;
+ srcs[header_regs + idx + 1 + first_component * 2] =
+ offset(dest, bld, 1);
+ }
+ }
+
+ unsigned mlen =
+ header_regs + (is_64bit ? 2 * iter_components : iter_components) +
+ (is_64bit ? 2 * first_component : first_component);
+ fs_reg payload =
+ bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
+ bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
+
+ fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
+ inst->offset = imm_offset;
+ inst->mlen = mlen;
+
+ /* If this is a 64-bit attribute, select the next two 64-bit channels
+ * to be handled in the next iteration.
+ */
+ if (is_64bit) {
+ mask >>= 2;
+ imm_offset++;
+ }
+ }
+ break;
+ }
+
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+void
+fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_TESS_EVAL);
+ struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_load_primitive_id:
+ bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
+ break;
+ case nir_intrinsic_load_tess_coord:
+ /* gl_TessCoord is part of the payload in g1-3 */
+ for (unsigned i = 0; i < 3; i++) {
+ bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
+ }
+ break;
+
+ case nir_intrinsic_load_input:
+ case nir_intrinsic_load_per_vertex_input: {
+ fs_reg indirect_offset = get_indirect_offset(instr);
+ unsigned imm_offset = instr->const_index[0];
+ unsigned first_component = nir_intrinsic_component(instr);
+
+ if (type_sz(dest.type) == 8) {
+ first_component = first_component / 2;
+ }
+
+ fs_inst *inst;
+ if (indirect_offset.file == BAD_FILE) {
+ /* Arbitrarily only push up to 32 vec4 slots worth of data,
+ * which is 16 registers (since each holds 2 vec4 slots).
+ */
+ const unsigned max_push_slots = 32;
+ if (imm_offset < max_push_slots) {
+ fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
+ for (int i = 0; i < instr->num_components; i++) {
+ unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
+ i + first_component;
+ bld.MOV(offset(dest, bld, i), component(src, comp));
+ }
+ tes_prog_data->base.urb_read_length =
+ MAX2(tes_prog_data->base.urb_read_length,
+ DIV_ROUND_UP(imm_offset + 1, 2));
+ } else {
+ /* Replicate the patch handle to all enabled channels */
+ const fs_reg srcs[] = {
+ retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
+ };
+ fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+ bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
+
+ if (first_component != 0) {
+ unsigned read_components =
+ instr->num_components + first_component;
+ fs_reg tmp = bld.vgrf(dest.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
+ patch_handle);
+ inst->size_written = read_components * REG_SIZE;
+ for (unsigned i = 0; i < instr->num_components; i++) {
+ bld.MOV(offset(dest, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
+ patch_handle);
+ inst->size_written = instr->num_components * REG_SIZE;
+ }
+ inst->mlen = 1;
+ inst->offset = imm_offset;
+ }
+ } else {
+ /* Indirect indexing - use per-slot offsets as well. */
+
+ /* We can only read two double components with each URB read, so
+ * we send two read messages in that case, each one loading up to
+ * two double components.
+ */
+ unsigned num_iterations = 1;
+ unsigned num_components = instr->num_components;
+ fs_reg orig_dest = dest;
+ if (type_sz(dest.type) == 8) {
+ if (instr->num_components > 2) {
+ num_iterations = 2;
+ num_components = 2;
+ }
+ fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
+ dest = tmp;
+ }
+
+ for (unsigned iter = 0; iter < num_iterations; iter++) {
+ const fs_reg srcs[] = {
+ retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
+ indirect_offset
+ };
+ fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
+
+ if (first_component != 0) {
+ unsigned read_components =
+ num_components + first_component;
+ fs_reg tmp = bld.vgrf(dest.type, read_components);
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
+ payload);
+ for (unsigned i = 0; i < num_components; i++) {
+ bld.MOV(offset(dest, bld, i),
+ offset(tmp, bld, i + first_component));
+ }
+ } else {
+ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
+ payload);
+ }
+ inst->mlen = 2;
+ inst->offset = imm_offset;
+ inst->size_written = (num_components + first_component) *
+ inst->dst.component_size(inst->exec_size);
+
+ /* If we are reading 64-bit data using 32-bit read messages we need
+ * build proper 64-bit data elements by shuffling the low and high
+ * 32-bit components around like we do for other things like UBOs
+ * or SSBOs.
+ */
+ if (type_sz(dest.type) == 8) {
+ shuffle_32bit_load_result_to_64bit_data(
+ bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
+
+ for (unsigned c = 0; c < num_components; c++) {
+ bld.MOV(offset(orig_dest, bld, iter * 2 + c),
+ offset(dest, bld, c));
+ }
+ }
+
+ /* If we are loading double data and we need a second read message
+ * adjust the offset
+ */
+ if (num_iterations > 1) {
+ num_components = instr->num_components - 2;
+ imm_offset++;
+ }
+ }
+ }
+ break;
+ }
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+void
+fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_GEOMETRY);
+ fs_reg indirect_offset;
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_load_primitive_id:
+ assert(stage == MESA_SHADER_GEOMETRY);
+ assert(brw_gs_prog_data(prog_data)->include_primitive_id);
+ bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
+ retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
+ break;
+
+ case nir_intrinsic_load_input:
+ unreachable("load_input intrinsics are invalid for the GS stage");
+
+ case nir_intrinsic_load_per_vertex_input:
+ emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
+ instr->src[1], instr->num_components,
+ nir_intrinsic_component(instr));
+ break;
+
+ case nir_intrinsic_emit_vertex_with_counter:
+ emit_gs_vertex(instr->src[0], instr->const_index[0]);
+ break;
+
+ case nir_intrinsic_end_primitive_with_counter:
+ emit_gs_end_primitive(instr->src[0]);
+ break;
+
+ case nir_intrinsic_set_vertex_count:
+ bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
+ break;
+
+ case nir_intrinsic_load_invocation_id: {
+ fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
+ assert(val.file != BAD_FILE);
+ dest.type = val.type;
+ bld.MOV(dest, val);
+ break;
+ }
+
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+/**
+ * Fetch the current render target layer index.
+ */
+static fs_reg
+fetch_render_target_array_index(const fs_builder &bld)
+{
+ if (bld.shader->devinfo->gen >= 6) {
+ /* The render target array index is provided in the thread payload as
+ * bits 26:16 of r0.0.
+ */
+ const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
+ brw_imm_uw(0x7ff));
+ return idx;
+ } else {
+ /* Pre-SNB we only ever render into the first layer of the framebuffer
+ * since layered rendering is not implemented.
+ */
+ return brw_imm_ud(0);
+ }
+}
+
+/**
+ * Fake non-coherent framebuffer read implemented using TXF to fetch from the
+ * framebuffer at the current fragment coordinates and sample index.
+ */
+fs_inst *
+fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
+ unsigned target)
+{
+ const struct gen_device_info *devinfo = bld.shader->devinfo;
+
+ assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
+ const brw_wm_prog_key *wm_key =
+ reinterpret_cast<const brw_wm_prog_key *>(key);
+ assert(!wm_key->coherent_fb_fetch);
+ const struct brw_wm_prog_data *wm_prog_data =
+ brw_wm_prog_data(stage_prog_data);
+
+ /* Calculate the surface index relative to the start of the texture binding
+ * table block, since that's what the texturing messages expect.
+ */
+ const unsigned surface = target +
+ wm_prog_data->binding_table.render_target_read_start -
+ wm_prog_data->base.binding_table.texture_start;
+
+ brw_mark_surface_used(
+ bld.shader->stage_prog_data,
+ wm_prog_data->binding_table.render_target_read_start + target);
+
+ /* Calculate the fragment coordinates. */
+ const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
+ bld.MOV(offset(coords, bld, 0), pixel_x);
+ bld.MOV(offset(coords, bld, 1), pixel_y);
+ bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
+
+ /* Calculate the sample index and MCS payload when multisampling. Luckily
+ * the MCS fetch message behaves deterministically for UMS surfaces, so it
+ * shouldn't be necessary to recompile based on whether the framebuffer is
+ * CMS or UMS.
+ */
+ if (wm_key->multisample_fbo &&
+ nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
+ nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
+
+ const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
+ const fs_reg mcs = wm_key->multisample_fbo ?
+ emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
+
+ /* Use either a normal or a CMS texel fetch message depending on whether
+ * the framebuffer is single or multisample. On SKL+ use the wide CMS
+ * message just in case the framebuffer uses 16x multisampling, it should
+ * be equivalent to the normal CMS fetch for lower multisampling modes.
+ */
+ const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
+ devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
+ SHADER_OPCODE_TXF_CMS_LOGICAL;
+
+ /* Emit the instruction. */
+ const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
+ sample, mcs,
+ brw_imm_ud(surface), brw_imm_ud(0),
+ fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
+ STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
+
+ fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
+ inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
+
+ return inst;
+}
+
+/**
+ * Actual coherent framebuffer read implemented using the native render target
+ * read message. Requires SKL+.
+ */
+static fs_inst *
+emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
+{
+ assert(bld.shader->devinfo->gen >= 9);
+ fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
+ inst->target = target;
+ inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
+
+ return inst;
+}
+
+static fs_reg
+alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
+{
+ if (n && regs[0].file != BAD_FILE) {
+ return regs[0];
+
+ } else {
+ const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
+
+ for (unsigned i = 0; i < n; i++)
+ regs[i] = tmp;
+
+ return tmp;
+ }
+}
+
+static fs_reg
+alloc_frag_output(fs_visitor *v, unsigned location)
+{
+ assert(v->stage == MESA_SHADER_FRAGMENT);
+ const brw_wm_prog_key *const key =
+ reinterpret_cast<const brw_wm_prog_key *>(v->key);
+ const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
+ const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
+
+ if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
+ return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
+
+ else if (l == FRAG_RESULT_COLOR)
+ return alloc_temporary(v->bld, 4, v->outputs,
+ MAX2(key->nr_color_regions, 1));
+
+ else if (l == FRAG_RESULT_DEPTH)
+ return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
+
+ else if (l == FRAG_RESULT_STENCIL)
+ return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
+
+ else if (l == FRAG_RESULT_SAMPLE_MASK)
+ return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
+
+ else if (l >= FRAG_RESULT_DATA0 &&
+ l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
+ return alloc_temporary(v->bld, 4,
+ &v->outputs[l - FRAG_RESULT_DATA0], 1);
+
+ else
+ unreachable("Invalid location");
+}
+
+void
+fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_FRAGMENT);
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_load_front_face:
+ bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
+ *emit_frontfacing_interpolation());
+ break;
+
+ case nir_intrinsic_load_sample_pos: {
+ fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
+ assert(sample_pos.file != BAD_FILE);
+ dest.type = sample_pos.type;
+ bld.MOV(dest, sample_pos);
+ bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
+ break;
+ }
+
+ case nir_intrinsic_load_layer_id:
+ dest.type = BRW_REGISTER_TYPE_UD;
+ bld.MOV(dest, fetch_render_target_array_index(bld));
+ break;
+
+ case nir_intrinsic_load_helper_invocation:
+ case nir_intrinsic_load_sample_mask_in:
+ case nir_intrinsic_load_sample_id: {
+ gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+ fs_reg val = nir_system_values[sv];
+ assert(val.file != BAD_FILE);
+ dest.type = val.type;
+ bld.MOV(dest, val);
+ break;
+ }
+
+ case nir_intrinsic_store_output: {
+ const fs_reg src = get_nir_src(instr->src[0]);
+ const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
+ assert(const_offset && "Indirect output stores not allowed");
+ const unsigned location = nir_intrinsic_base(instr) +
+ SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
+ const fs_reg new_dest = retype(alloc_frag_output(this, location),
+ src.type);
+
+ for (unsigned j = 0; j < instr->num_components; j++)
+ bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
+ offset(src, bld, j));
+
+ break;
+ }
+
+ case nir_intrinsic_load_output: {
+ const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
+ BRW_NIR_FRAG_OUTPUT_LOCATION);
+ assert(l >= FRAG_RESULT_DATA0);
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+ assert(const_offset && "Indirect output loads not allowed");
+ const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
+ const fs_reg tmp = bld.vgrf(dest.type, 4);
+
+ if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
+ emit_coherent_fb_read(bld, tmp, target);
+ else
+ emit_non_coherent_fb_read(bld, tmp, target);
+
+ for (unsigned j = 0; j < instr->num_components; j++) {
+ bld.MOV(offset(dest, bld, j),
+ offset(tmp, bld, nir_intrinsic_component(instr) + j));
+ }
+
+ break;
+ }
+
+ case nir_intrinsic_discard:
+ case nir_intrinsic_discard_if: {
+ /* We track our discarded pixels in f0.1. By predicating on it, we can
+ * update just the flag bits that aren't yet discarded. If there's no
+ * condition, we emit a CMP of g0 != g0, so all currently executing
+ * channels will get turned off.
+ */
+ fs_inst *cmp;
+ if (instr->intrinsic == nir_intrinsic_discard_if) {
+ cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
+ brw_imm_d(0), BRW_CONDITIONAL_Z);
+ } else {
+ fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
+ BRW_REGISTER_TYPE_UW));
+ cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
+ }
+ cmp->predicate = BRW_PREDICATE_NORMAL;
+ cmp->flag_subreg = 1;
+
+ if (devinfo->gen >= 6) {
+ emit_discard_jump();
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_input: {
+ /* load_input is only used for flat inputs */
+ unsigned base = nir_intrinsic_base(instr);
+ unsigned component = nir_intrinsic_component(instr);
+ unsigned num_components = instr->num_components;
+ enum brw_reg_type type = dest.type;
+
+ /* Special case fields in the VUE header */
+ if (base == VARYING_SLOT_LAYER)
+ component = 1;
+ else if (base == VARYING_SLOT_VIEWPORT)
+ component = 2;
+
+ if (nir_dest_bit_size(instr->dest) == 64) {
+ /* const_index is in 32-bit type size units that could not be aligned
+ * with DF. We need to read the double vector as if it was a float
+ * vector of twice the number of components to fetch the right data.
+ */
+ type = BRW_REGISTER_TYPE_F;
+ num_components *= 2;
+ }
+
+ for (unsigned int i = 0; i < num_components; i++) {
+ struct brw_reg interp = interp_reg(base, component + i);
+ interp = suboffset(interp, 3);
+ bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i),
+ retype(fs_reg(interp), type));
+ }
+
+ if (nir_dest_bit_size(instr->dest) == 64) {
+ shuffle_32bit_load_result_to_64bit_data(bld,
+ dest,
+ retype(dest, type),
+ instr->num_components);
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_barycentric_pixel:
+ case nir_intrinsic_load_barycentric_centroid:
+ case nir_intrinsic_load_barycentric_sample:
+ /* Do nothing - load_interpolated_input handling will handle it later. */
+ break;
+
+ case nir_intrinsic_load_barycentric_at_sample: {
+ const glsl_interp_mode interpolation =
+ (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
+
+ nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
+
+ if (const_sample) {
+ unsigned msg_data = const_sample->i32[0] << 4;
+
+ emit_pixel_interpolater_send(bld,
+ FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+ dest,
+ fs_reg(), /* src */
+ brw_imm_ud(msg_data),
+ interpolation);
+ } else {
+ const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
+ BRW_REGISTER_TYPE_UD);
+
+ if (nir_src_is_dynamically_uniform(instr->src[0])) {
+ const fs_reg sample_id = bld.emit_uniformize(sample_src);
+ const fs_reg msg_data = vgrf(glsl_type::uint_type);
+ bld.exec_all().group(1, 0)
+ .SHL(msg_data, sample_id, brw_imm_ud(4u));
+ emit_pixel_interpolater_send(bld,
+ FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+ dest,
+ fs_reg(), /* src */
+ msg_data,
+ interpolation);
+ } else {
+ /* Make a loop that sends a message to the pixel interpolater
+ * for the sample number in each live channel. If there are
+ * multiple channels with the same sample number then these
+ * will be handled simultaneously with a single interation of
+ * the loop.
+ */
+ bld.emit(BRW_OPCODE_DO);
+
+ /* Get the next live sample number into sample_id_reg */
+ const fs_reg sample_id = bld.emit_uniformize(sample_src);
+
+ /* Set the flag register so that we can perform the send
+ * message on all channels that have the same sample number
+ */
+ bld.CMP(bld.null_reg_ud(),
+ sample_src, sample_id,
+ BRW_CONDITIONAL_EQ);
+ const fs_reg msg_data = vgrf(glsl_type::uint_type);
+ bld.exec_all().group(1, 0)
+ .SHL(msg_data, sample_id, brw_imm_ud(4u));
+ fs_inst *inst =
+ emit_pixel_interpolater_send(bld,
+ FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+ dest,
+ fs_reg(), /* src */
+ msg_data,
+ interpolation);
+ set_predicate(BRW_PREDICATE_NORMAL, inst);
+
+ /* Continue the loop if there are any live channels left */
+ set_predicate_inv(BRW_PREDICATE_NORMAL,
+ true, /* inverse */
+ bld.emit(BRW_OPCODE_WHILE));
+ }
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_barycentric_at_offset: {
+ const glsl_interp_mode interpolation =
+ (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
+
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+
+ if (const_offset) {
+ unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
+ unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
+
+ emit_pixel_interpolater_send(bld,
+ FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
+ dest,
+ fs_reg(), /* src */
+ brw_imm_ud(off_x | (off_y << 4)),
+ interpolation);
+ } else {
+ fs_reg src = vgrf(glsl_type::ivec2_type);
+ fs_reg offset_src = retype(get_nir_src(instr->src[0]),
+ BRW_REGISTER_TYPE_F);
+ for (int i = 0; i < 2; i++) {
+ fs_reg temp = vgrf(glsl_type::float_type);
+ bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
+ fs_reg itemp = vgrf(glsl_type::int_type);
+ /* float to int */
+ bld.MOV(itemp, temp);
+
+ /* Clamp the upper end of the range to +7/16.
+ * ARB_gpu_shader5 requires that we support a maximum offset
+ * of +0.5, which isn't representable in a S0.4 value -- if
+ * we didn't clamp it, we'd end up with -8/16, which is the
+ * opposite of what the shader author wanted.
+ *
+ * This is legal due to ARB_gpu_shader5's quantization
+ * rules:
+ *
+ * "Not all values of <offset> may be supported; x and y
+ * offsets may be rounded to fixed-point values with the
+ * number of fraction bits given by the
+ * implementation-dependent constant
+ * FRAGMENT_INTERPOLATION_OFFSET_BITS"
+ */
+ set_condmod(BRW_CONDITIONAL_L,
+ bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
+ }
+
+ const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
+ emit_pixel_interpolater_send(bld,
+ opcode,
+ dest,
+ src,
+ brw_imm_ud(0u),
+ interpolation);
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_interpolated_input: {
+ if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
+ emit_fragcoord_interpolation(dest);
+ break;
+ }
+
+ assert(instr->src[0].ssa &&
+ instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
+ nir_intrinsic_instr *bary_intrinsic =
+ nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
+ nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
+ enum glsl_interp_mode interp_mode =
+ (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
+ fs_reg dst_xy;
+
+ if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
+ bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
+ /* Use the result of the PI message */
+ dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
+ } else {
+ /* Use the delta_xy values computed from the payload */
+ enum brw_barycentric_mode bary =
+ brw_barycentric_mode(interp_mode, bary_intrin);
+
+ dst_xy = this->delta_xy[bary];
+ }
+
+ for (unsigned int i = 0; i < instr->num_components; i++) {
+ fs_reg interp =
+ fs_reg(interp_reg(nir_intrinsic_base(instr),
+ nir_intrinsic_component(instr) + i));
+ interp.type = BRW_REGISTER_TYPE_F;
+ dest.type = BRW_REGISTER_TYPE_F;
+
+ if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
+ fs_reg tmp = vgrf(glsl_type::float_type);
+ bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
+ bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
+ } else {
+ bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
+ }
+ }
+ break;
+ }
+
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+void
+fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
+ nir_intrinsic_instr *instr)
+{
+ assert(stage == MESA_SHADER_COMPUTE);
+ struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_barrier:
+ emit_barrier();
+ cs_prog_data->uses_barrier = true;
+ break;
+
+ case nir_intrinsic_load_local_invocation_id:
+ case nir_intrinsic_load_work_group_id: {
+ gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+ fs_reg val = nir_system_values[sv];
+ assert(val.file != BAD_FILE);
+ dest.type = val.type;
+ for (unsigned i = 0; i < 3; i++)
+ bld.MOV(offset(dest, bld, i), offset(val, bld, i));
+ break;
+ }
+
+ case nir_intrinsic_load_num_work_groups: {
+ const unsigned surface =
+ cs_prog_data->binding_table.work_groups_start;
+
+ cs_prog_data->uses_num_work_groups = true;
+
+ fs_reg surf_index = brw_imm_ud(surface);
+ brw_mark_surface_used(prog_data, surface);
+
+ /* Read the 3 GLuint components of gl_NumWorkGroups */
+ for (unsigned i = 0; i < 3; i++) {
+ fs_reg read_result =
+ emit_untyped_read(bld, surf_index,
+ brw_imm_ud(i << 2),
+ 1 /* dims */, 1 /* size */,
+ BRW_PREDICATE_NONE);
+ read_result.type = dest.type;
+ bld.MOV(dest, read_result);
+ dest = offset(dest, bld, 1);
+ }
+ break;
+ }
+
+ case nir_intrinsic_shared_atomic_add:
+ nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
+ break;
+ case nir_intrinsic_shared_atomic_imin:
+ nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
+ break;
+ case nir_intrinsic_shared_atomic_umin:
+ nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
+ break;
+ case nir_intrinsic_shared_atomic_imax:
+ nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
+ break;
+ case nir_intrinsic_shared_atomic_umax:
+ nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
+ break;
+ case nir_intrinsic_shared_atomic_and:
+ nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
+ break;
+ case nir_intrinsic_shared_atomic_or:
+ nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
+ break;
+ case nir_intrinsic_shared_atomic_xor:
+ nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
+ break;
+ case nir_intrinsic_shared_atomic_exchange:
+ nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
+ break;
+ case nir_intrinsic_shared_atomic_comp_swap:
+ nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
+ break;
+
+ case nir_intrinsic_load_shared: {
+ assert(devinfo->gen >= 7);
+
+ fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
+
+ /* Get the offset to read from */
+ fs_reg offset_reg;
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+ if (const_offset) {
+ offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
+ } else {
+ offset_reg = vgrf(glsl_type::uint_type);
+ bld.ADD(offset_reg,
+ retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(instr->const_index[0]));
+ }
+
+ /* Read the vector */
+ do_untyped_vector_read(bld, dest, surf_index, offset_reg,
+ instr->num_components);
+ break;
+ }
+
+ case nir_intrinsic_store_shared: {
+ assert(devinfo->gen >= 7);
+
+ /* Block index */
+ fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
+
+ /* Value */
+ fs_reg val_reg = get_nir_src(instr->src[0]);
+
+ /* Writemask */
+ unsigned writemask = instr->const_index[1];
+
+ /* get_nir_src() retypes to integer. Be wary of 64-bit types though
+ * since the untyped writes below operate in units of 32-bits, which
+ * means that we need to write twice as many components each time.
+ * Also, we have to suffle 64-bit data to be in the appropriate layout
+ * expected by our 32-bit write messages.
+ */
+ unsigned type_size = 4;
+ unsigned bit_size = instr->src[0].is_ssa ?
+ instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
+ if (bit_size == 64) {
+ type_size = 8;
+ fs_reg tmp =
+ fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
+ shuffle_64bit_data_for_32bit_write(
+ bld,
+ retype(tmp, BRW_REGISTER_TYPE_F),
+ retype(val_reg, BRW_REGISTER_TYPE_DF),
+ instr->num_components);
+ val_reg = tmp;
+ }
+
+ unsigned type_slots = type_size / 4;
+
+ /* Combine groups of consecutive enabled channels in one write
+ * message. We use ffs to find the first enabled channel and then ffs on
+ * the bit-inverse, down-shifted writemask to determine the length of
+ * the block of enabled bits.
+ */
+ while (writemask) {
+ unsigned first_component = ffs(writemask) - 1;
+ unsigned length = ffs(~(writemask >> first_component)) - 1;
+
+ /* We can't write more than 2 64-bit components at once. Limit the
+ * length of the write to what we can do and let the next iteration
+ * handle the rest
+ */
+ if (type_size > 4)
+ length = MIN2(2, length);
+
+ fs_reg offset_reg;
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
+ if (const_offset) {
+ offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
+ type_size * first_component);
+ } else {
+ offset_reg = vgrf(glsl_type::uint_type);
+ bld.ADD(offset_reg,
+ retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(instr->const_index[0] + type_size * first_component));
+ }
+
+ emit_untyped_write(bld, surf_index, offset_reg,
+ offset(val_reg, bld, first_component * type_slots),
+ 1 /* dims */, length * type_slots,
+ BRW_PREDICATE_NONE);
+
+ /* Clear the bits in the writemask that we just wrote, then try
+ * again to see if more channels are left.
+ */
+ writemask &= (15 << (first_component + length));
+ }
+
+ break;
+ }
+
+ default:
+ nir_emit_intrinsic(bld, instr);
+ break;
+ }
+}
+
+void
+fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
+{
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ switch (instr->intrinsic) {
+ case nir_intrinsic_atomic_counter_inc:
+ case nir_intrinsic_atomic_counter_dec:
+ case nir_intrinsic_atomic_counter_read:
+ case nir_intrinsic_atomic_counter_add:
+ case nir_intrinsic_atomic_counter_min:
+ case nir_intrinsic_atomic_counter_max:
+ case nir_intrinsic_atomic_counter_and:
+ case nir_intrinsic_atomic_counter_or:
+ case nir_intrinsic_atomic_counter_xor:
+ case nir_intrinsic_atomic_counter_exchange:
+ case nir_intrinsic_atomic_counter_comp_swap: {
+ if (stage == MESA_SHADER_FRAGMENT &&
+ instr->intrinsic != nir_intrinsic_atomic_counter_read)
+ brw_wm_prog_data(prog_data)->has_side_effects = true;
+
+ /* Get some metadata from the image intrinsic. */
+ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+
+ /* Get the arguments of the atomic intrinsic. */
+ const fs_reg offset = get_nir_src(instr->src[0]);
+ const unsigned surface = (stage_prog_data->binding_table.abo_start +
+ instr->const_index[0]);
+ const fs_reg src0 = (info->num_srcs >= 2
+ ? get_nir_src(instr->src[1]) : fs_reg());
+ const fs_reg src1 = (info->num_srcs >= 3
+ ? get_nir_src(instr->src[2]) : fs_reg());
+ fs_reg tmp;
+
+ assert(info->num_srcs <= 3);
+
+ /* Emit a surface read or atomic op. */
+ if (instr->intrinsic == nir_intrinsic_atomic_counter_read) {
+ tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
+ } else {
+ tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, src0,
+ src1, 1, 1,
+ get_atomic_counter_op(instr->intrinsic));
+ }
+
+ /* Assign the result. */
+ bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
+
+ /* Mark the surface as used. */
+ brw_mark_surface_used(stage_prog_data, surface);
+ break;
+ }
+
+ case nir_intrinsic_image_load:
+ case nir_intrinsic_image_store:
+ case nir_intrinsic_image_atomic_add:
+ case nir_intrinsic_image_atomic_min:
+ case nir_intrinsic_image_atomic_max:
+ case nir_intrinsic_image_atomic_and:
+ case nir_intrinsic_image_atomic_or:
+ case nir_intrinsic_image_atomic_xor:
+ case nir_intrinsic_image_atomic_exchange:
+ case nir_intrinsic_image_atomic_comp_swap: {
+ using namespace image_access;
+
+ if (stage == MESA_SHADER_FRAGMENT &&
+ instr->intrinsic != nir_intrinsic_image_load)
+ brw_wm_prog_data(prog_data)->has_side_effects = true;
+
+ /* Get the referenced image variable and type. */
+ const nir_variable *var = instr->variables[0]->var;
+ const glsl_type *type = var->type->without_array();
+ const brw_reg_type base_type = get_image_base_type(type);
+
+ /* Get some metadata from the image intrinsic. */
+ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+ const unsigned arr_dims = type->sampler_array ? 1 : 0;
+ const unsigned surf_dims = type->coordinate_components() - arr_dims;
+ const unsigned format = var->data.image.format;
+
+ /* Get the arguments of the image intrinsic. */
+ const fs_reg image = get_nir_image_deref(instr->variables[0]);
+ const fs_reg addr = retype(get_nir_src(instr->src[0]),
+ BRW_REGISTER_TYPE_UD);
+ const fs_reg src0 = (info->num_srcs >= 3 ?
+ retype(get_nir_src(instr->src[2]), base_type) :
+ fs_reg());
+ const fs_reg src1 = (info->num_srcs >= 4 ?
+ retype(get_nir_src(instr->src[3]), base_type) :
+ fs_reg());
+ fs_reg tmp;
+
+ /* Emit an image load, store or atomic op. */
+ if (instr->intrinsic == nir_intrinsic_image_load)
+ tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
+
+ else if (instr->intrinsic == nir_intrinsic_image_store)
+ emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
+ var->data.image.write_only ? GL_NONE : format);
+
+ else
+ tmp = emit_image_atomic(bld, image, addr, src0, src1,
+ surf_dims, arr_dims, info->dest_components,
+ get_image_atomic_op(instr->intrinsic, type));
+
+ /* Assign the result. */
+ for (unsigned c = 0; c < info->dest_components; ++c)
+ bld.MOV(offset(retype(dest, base_type), bld, c),
+ offset(tmp, bld, c));
+ break;
+ }
+
+ case nir_intrinsic_memory_barrier_atomic_counter:
+ case nir_intrinsic_memory_barrier_buffer:
+ case nir_intrinsic_memory_barrier_image:
+ case nir_intrinsic_memory_barrier: {
+ const fs_builder ubld = bld.group(8, 0);
+ const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
+ ->size_written = 2 * REG_SIZE;
+ break;
+ }
+
+ case nir_intrinsic_group_memory_barrier:
+ case nir_intrinsic_memory_barrier_shared:
+ /* We treat these workgroup-level barriers as no-ops. This should be
+ * safe at present and as long as:
+ *
+ * - Memory access instructions are not subsequently reordered by the
+ * compiler back-end.
+ *
+ * - All threads from a given compute shader workgroup fit within a
+ * single subslice and therefore talk to the same HDC shared unit
+ * what supposedly guarantees ordering and coherency between threads
+ * from the same workgroup. This may change in the future when we
+ * start splitting workgroups across multiple subslices.
+ *
+ * - The context is not in fault-and-stream mode, which could cause
+ * memory transactions (including to SLM) prior to the barrier to be
+ * replayed after the barrier if a pagefault occurs. This shouldn't
+ * be a problem up to and including SKL because fault-and-stream is
+ * not usable due to hardware issues, but that's likely to change in
+ * the future.
+ */
+ break;
+
+ case nir_intrinsic_shader_clock: {
+ /* We cannot do anything if there is an event, so ignore it for now */
+ const fs_reg shader_clock = get_timestamp(bld);
+ const fs_reg srcs[] = { component(shader_clock, 0),
+ component(shader_clock, 1) };
+ bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
+ break;
+ }
+
+ case nir_intrinsic_image_size: {
+ /* Get the referenced image variable and type. */
+ const nir_variable *var = instr->variables[0]->var;
+ const glsl_type *type = var->type->without_array();
+
+ /* Get the size of the image. */
+ const fs_reg image = get_nir_image_deref(instr->variables[0]);
+ const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
+
+ /* For 1DArray image types, the array index is stored in the Z component.
+ * Fix this by swizzling the Z component to the Y component.
+ */
+ const bool is_1d_array_image =
+ type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
+ type->sampler_array;
+
+ /* For CubeArray images, we should count the number of cubes instead
+ * of the number of faces. Fix it by dividing the (Z component) by 6.
+ */
+ const bool is_cube_array_image =
+ type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
+ type->sampler_array;
+
+ /* Copy all the components. */
+ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+ for (unsigned c = 0; c < info->dest_components; ++c) {
+ if ((int)c >= type->coordinate_components()) {
+ bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+ brw_imm_d(1));
+ } else if (c == 1 && is_1d_array_image) {
+ bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+ offset(size, bld, 2));
+ } else if (c == 2 && is_cube_array_image) {
+ bld.emit(SHADER_OPCODE_INT_QUOTIENT,
+ offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+ offset(size, bld, c), brw_imm_d(6));
+ } else {
+ bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+ offset(size, bld, c));
+ }
+ }
+
+ break;
+ }
+
+ case nir_intrinsic_image_samples:
+ /* The driver does not support multi-sampled images. */
+ bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
+ break;
+
+ case nir_intrinsic_load_uniform: {
+ /* Offsets are in bytes but they should always be multiples of 4 */
+ assert(instr->const_index[0] % 4 == 0);
+
+ fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
+
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+ if (const_offset) {
+ /* Offsets are in bytes but they should always be multiples of 4 */
+ assert(const_offset->u32[0] % 4 == 0);
+ src.offset = const_offset->u32[0];
+
+ for (unsigned j = 0; j < instr->num_components; j++) {
+ bld.MOV(offset(dest, bld, j), offset(src, bld, j));
+ }
+ } else {
+ fs_reg indirect = retype(get_nir_src(instr->src[0]),
+ BRW_REGISTER_TYPE_UD);
+
+ /* We need to pass a size to the MOV_INDIRECT but we don't want it to
+ * go past the end of the uniform. In order to keep the n'th
+ * component from running past, we subtract off the size of all but
+ * one component of the vector.
+ */
+ assert(instr->const_index[1] >=
+ instr->num_components * (int) type_sz(dest.type));
+ unsigned read_size = instr->const_index[1] -
+ (instr->num_components - 1) * type_sz(dest.type);
+
+ bool supports_64bit_indirects =
+ !devinfo->is_cherryview && !devinfo->is_broxton;
+
+ if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
+ for (unsigned j = 0; j < instr->num_components; j++) {
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT,
+ offset(dest, bld, j), offset(src, bld, j),
+ indirect, brw_imm_ud(read_size));
+ }
+ } else {
+ const unsigned num_mov_indirects =
+ type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
+ /* We read a little bit less per MOV INDIRECT, as they are now
+ * 32-bits ones instead of 64-bit. Fix read_size then.
+ */
+ const unsigned read_size_32bit = read_size -
+ (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
+ for (unsigned j = 0; j < instr->num_components; j++) {
+ for (unsigned i = 0; i < num_mov_indirects; i++) {
+ bld.emit(SHADER_OPCODE_MOV_INDIRECT,
+ subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
+ subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
+ indirect, brw_imm_ud(read_size_32bit));
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_ubo: {
+ nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
+ fs_reg surf_index;
+
+ if (const_index) {
+ const unsigned index = stage_prog_data->binding_table.ubo_start +
+ const_index->u32[0];
+ surf_index = brw_imm_ud(index);
+ brw_mark_surface_used(prog_data, index);
+ } else {
+ /* The block index is not a constant. Evaluate the index expression
+ * per-channel and add the base UBO index; we have to select a value
+ * from any live channel.
+ */
+ surf_index = vgrf(glsl_type::uint_type);
+ bld.ADD(surf_index, get_nir_src(instr->src[0]),
+ brw_imm_ud(stage_prog_data->binding_table.ubo_start));
+ surf_index = bld.emit_uniformize(surf_index);
+
+ /* Assume this may touch any UBO. It would be nice to provide
+ * a tighter bound, but the array information is already lowered away.
+ */
+ brw_mark_surface_used(prog_data,
+ stage_prog_data->binding_table.ubo_start +
+ nir->info->num_ubos - 1);
+ }
+
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
+ if (const_offset == NULL) {
+ fs_reg base_offset = retype(get_nir_src(instr->src[1]),
+ BRW_REGISTER_TYPE_UD);
+
+ for (int i = 0; i < instr->num_components; i++)
+ VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
+ base_offset, i * type_sz(dest.type));
+ } else {
+ /* Even if we are loading doubles, a pull constant load will load
+ * a 32-bit vec4, so should only reserve vgrf space for that. If we
+ * need to load a full dvec4 we will have to emit 2 loads. This is
+ * similar to demote_pull_constants(), except that in that case we
+ * see individual accesses to each component of the vector and then
+ * we let CSE deal with duplicate loads. Here we see a vector access
+ * and we have to split it if necessary.
+ */
+ const unsigned type_size = type_sz(dest.type);
+ const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
+ const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
+ const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
+
+ for (unsigned c = 0; c < instr->num_components;) {
+ const unsigned base = const_offset->u32[0] + c * type_size;
+ /* Number of usable components in the next block-aligned load. */
+ const unsigned count = MIN2(instr->num_components - c,
+ (block_sz - base % block_sz) / type_size);
+
+ ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
+ packed_consts, surf_index,
+ brw_imm_ud(base & ~(block_sz - 1)));
+
+ const fs_reg consts =
+ retype(byte_offset(packed_consts, base & (block_sz - 1)),
+ dest.type);
+
+ for (unsigned d = 0; d < count; d++)
+ bld.MOV(offset(dest, bld, c + d), component(consts, d));
+
+ c += count;
+ }
+ }
+ break;
+ }
+
+ case nir_intrinsic_load_ssbo: {
+ assert(devinfo->gen >= 7);
+
+ nir_const_value *const_uniform_block =
+ nir_src_as_const_value(instr->src[0]);
+
+ fs_reg surf_index;
+ if (const_uniform_block) {
+ unsigned index = stage_prog_data->binding_table.ssbo_start +
+ const_uniform_block->u32[0];
+ surf_index = brw_imm_ud(index);
+ brw_mark_surface_used(prog_data, index);
+ } else {
+ surf_index = vgrf(glsl_type::uint_type);
+ bld.ADD(surf_index, get_nir_src(instr->src[0]),
+ brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
+
+ /* Assume this may touch any UBO. It would be nice to provide
+ * a tighter bound, but the array information is already lowered away.
+ */
+ brw_mark_surface_used(prog_data,
+ stage_prog_data->binding_table.ssbo_start +
+ nir->info->num_ssbos - 1);
+ }
+
+ fs_reg offset_reg;
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
+ if (const_offset) {
+ offset_reg = brw_imm_ud(const_offset->u32[0]);
+ } else {
+ offset_reg = get_nir_src(instr->src[1]);
+ }
+
+ /* Read the vector */
+ do_untyped_vector_read(bld, dest, surf_index, offset_reg,
+ instr->num_components);
+
+ break;
+ }
+
+ case nir_intrinsic_store_ssbo: {
+ assert(devinfo->gen >= 7);
+
+ if (stage == MESA_SHADER_FRAGMENT)
+ brw_wm_prog_data(prog_data)->has_side_effects = true;
+
+ /* Block index */
+ fs_reg surf_index;
+ nir_const_value *const_uniform_block =
+ nir_src_as_const_value(instr->src[1]);
+ if (const_uniform_block) {
+ unsigned index = stage_prog_data->binding_table.ssbo_start +
+ const_uniform_block->u32[0];
+ surf_index = brw_imm_ud(index);
+ brw_mark_surface_used(prog_data, index);
+ } else {
+ surf_index = vgrf(glsl_type::uint_type);
+ bld.ADD(surf_index, get_nir_src(instr->src[1]),
+ brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
+
+ brw_mark_surface_used(prog_data,
+ stage_prog_data->binding_table.ssbo_start +
+ nir->info->num_ssbos - 1);
+ }
+
+ /* Value */
+ fs_reg val_reg = get_nir_src(instr->src[0]);
+
+ /* Writemask */
+ unsigned writemask = instr->const_index[0];
+
+ /* get_nir_src() retypes to integer. Be wary of 64-bit types though
+ * since the untyped writes below operate in units of 32-bits, which
+ * means that we need to write twice as many components each time.
+ * Also, we have to suffle 64-bit data to be in the appropriate layout
+ * expected by our 32-bit write messages.
+ */
+ unsigned type_size = 4;
+ unsigned bit_size = instr->src[0].is_ssa ?
+ instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
+ if (bit_size == 64) {
+ type_size = 8;
+ fs_reg tmp =
+ fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
+ shuffle_64bit_data_for_32bit_write(bld,
+ retype(tmp, BRW_REGISTER_TYPE_F),
+ retype(val_reg, BRW_REGISTER_TYPE_DF),
+ instr->num_components);
+ val_reg = tmp;
+ }
+
+ unsigned type_slots = type_size / 4;
+
+ /* Combine groups of consecutive enabled channels in one write
+ * message. We use ffs to find the first enabled channel and then ffs on
+ * the bit-inverse, down-shifted writemask to determine the length of
+ * the block of enabled bits.
+ */
+ while (writemask) {
+ unsigned first_component = ffs(writemask) - 1;
+ unsigned length = ffs(~(writemask >> first_component)) - 1;
+
+ /* We can't write more than 2 64-bit components at once. Limit the
+ * length of the write to what we can do and let the next iteration
+ * handle the rest
+ */
+ if (type_size > 4)
+ length = MIN2(2, length);
+
+ fs_reg offset_reg;
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
+ if (const_offset) {
+ offset_reg = brw_imm_ud(const_offset->u32[0] +
+ type_size * first_component);
+ } else {
+ offset_reg = vgrf(glsl_type::uint_type);
+ bld.ADD(offset_reg,
+ retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(type_size * first_component));
+ }
+
+
+ emit_untyped_write(bld, surf_index, offset_reg,
+ offset(val_reg, bld, first_component * type_slots),
+ 1 /* dims */, length * type_slots,
+ BRW_PREDICATE_NONE);
+
+ /* Clear the bits in the writemask that we just wrote, then try
+ * again to see if more channels are left.
+ */
+ writemask &= (15 << (first_component + length));
+ }
+ break;
+ }
+
+ case nir_intrinsic_store_output: {
+ fs_reg src = get_nir_src(instr->src[0]);
+
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
+ assert(const_offset && "Indirect output stores not allowed");
+ fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
+ 4 * const_offset->u32[0]), src.type);
+
+ unsigned num_components = instr->num_components;
+ unsigned first_component = nir_intrinsic_component(instr);
+ unsigned bit_size = instr->src[0].is_ssa ?
+ instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
+ if (bit_size == 64) {
+ fs_reg tmp =
+ fs_reg(VGRF, alloc.allocate(2 * num_components),
+ BRW_REGISTER_TYPE_F);
+ shuffle_64bit_data_for_32bit_write(
+ bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components);
+ src = retype(tmp, src.type);
+ num_components *= 2;
+ }
+
+ for (unsigned j = 0; j < num_components; j++) {
+ bld.MOV(offset(new_dest, bld, j + first_component),
+ offset(src, bld, j));
+ }
+ break;
+ }
+
+ case nir_intrinsic_ssbo_atomic_add:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_imin:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_umin:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_imax:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_umax:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_and:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_or:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_xor:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_exchange:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
+ break;
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
+ break;
+
+ case nir_intrinsic_get_buffer_size: {
+ nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
+ unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
+
+ /* A resinfo's sampler message is used to get the buffer size. The
+ * SIMD8's writeback message consists of four registers and SIMD16's
+ * writeback message consists of 8 destination registers (two per each
+ * component). Because we are only interested on the first channel of
+ * the first returned component, where resinfo returns the buffer size
+ * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
+ * the dispatch width.
+ */
+ const fs_builder ubld = bld.exec_all().group(8, 0);
+ fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
+ fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
+
+ /* Set LOD = 0 */
+ ubld.MOV(src_payload, brw_imm_d(0));
+
+ const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
+ fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload,
+ src_payload, brw_imm_ud(index));
+ inst->header_size = 0;
+ inst->mlen = 1;
+ inst->size_written = 4 * REG_SIZE;
+
+ bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
+ brw_mark_surface_used(prog_data, index);
+ break;
+ }
+
+ case nir_intrinsic_load_channel_num: {
+ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UW);
+ dest = retype(dest, BRW_REGISTER_TYPE_UD);
+ const fs_builder allbld8 = bld.group(8, 0).exec_all();
+ allbld8.MOV(tmp, brw_imm_v(0x76543210));
+ if (dispatch_width > 8)
+ allbld8.ADD(byte_offset(tmp, 16), tmp, brw_imm_uw(8u));
+ if (dispatch_width > 16) {
+ const fs_builder allbld16 = bld.group(16, 0).exec_all();
+ allbld16.ADD(byte_offset(tmp, 32), tmp, brw_imm_uw(16u));
+ }
+ bld.MOV(dest, tmp);
+ break;
+ }
+
+ default:
+ unreachable("unknown intrinsic");
+ }
+}
+
+void
+fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
+ int op, nir_intrinsic_instr *instr)
+{
+ if (stage == MESA_SHADER_FRAGMENT)
+ brw_wm_prog_data(prog_data)->has_side_effects = true;
+
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ fs_reg surface;
+ nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
+ if (const_surface) {
+ unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
+ const_surface->u32[0];
+ surface = brw_imm_ud(surf_index);
+ brw_mark_surface_used(prog_data, surf_index);
+ } else {
+ surface = vgrf(glsl_type::uint_type);
+ bld.ADD(surface, get_nir_src(instr->src[0]),
+ brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
+
+ /* Assume this may touch any SSBO. This is the same we do for other
+ * UBO/SSBO accesses with non-constant surface.
+ */
+ brw_mark_surface_used(prog_data,
+ stage_prog_data->binding_table.ssbo_start +
+ nir->info->num_ssbos - 1);
+ }
+
+ fs_reg offset = get_nir_src(instr->src[1]);
+ fs_reg data1 = get_nir_src(instr->src[2]);
+ fs_reg data2;
+ if (op == BRW_AOP_CMPWR)
+ data2 = get_nir_src(instr->src[3]);
+
+ /* Emit the actual atomic operation */
+
+ fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
+ data1, data2,
+ 1 /* dims */, 1 /* rsize */,
+ op,
+ BRW_PREDICATE_NONE);
+ dest.type = atomic_result.type;
+ bld.MOV(dest, atomic_result);
+}
+
+void
+fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
+ int op, nir_intrinsic_instr *instr)
+{
+ fs_reg dest;
+ if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+ dest = get_nir_dest(instr->dest);
+
+ fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
+ fs_reg offset;
+ fs_reg data1 = get_nir_src(instr->src[1]);
+ fs_reg data2;
+ if (op == BRW_AOP_CMPWR)
+ data2 = get_nir_src(instr->src[2]);
+
+ /* Get the offset */
+ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+ if (const_offset) {
+ offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
+ } else {
+ offset = vgrf(glsl_type::uint_type);
+ bld.ADD(offset,
+ retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(instr->const_index[0]));
+ }
+
+ /* Emit the actual atomic operation operation */
+
+ fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
+ data1, data2,
+ 1 /* dims */, 1 /* rsize */,
+ op,
+ BRW_PREDICATE_NONE);
+ dest.type = atomic_result.type;
+ bld.MOV(dest, atomic_result);
+}
+
+void
+fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
+{
+ unsigned texture = instr->texture_index;
+ unsigned sampler = instr->sampler_index;
+
+ fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
+
+ srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
+ srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
+
+ int lod_components = 0;
+
+ /* The hardware requires a LOD for buffer textures */
+ if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
+ srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
+
+ uint32_t header_bits = 0;
+ for (unsigned i = 0; i < instr->num_srcs; i++) {
+ fs_reg src = get_nir_src(instr->src[i].src);
+ switch (instr->src[i].src_type) {
+ case nir_tex_src_bias:
+ srcs[TEX_LOGICAL_SRC_LOD] =
+ retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
+ break;
+ case nir_tex_src_comparator:
+ srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
+ break;
+ case nir_tex_src_coord:
+ switch (instr->op) {
+ case nir_texop_txf:
+ case nir_texop_txf_ms:
+ case nir_texop_txf_ms_mcs:
+ case nir_texop_samples_identical:
+ srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
+ break;
+ default:
+ srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
+ break;
+ }
+ break;
+ case nir_tex_src_ddx:
+ srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
+ lod_components = nir_tex_instr_src_size(instr, i);
+ break;
+ case nir_tex_src_ddy:
+ srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
+ break;
+ case nir_tex_src_lod:
+ switch (instr->op) {
+ case nir_texop_txs:
+ srcs[TEX_LOGICAL_SRC_LOD] =
+ retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
+ break;
+ case nir_texop_txf:
+ srcs[TEX_LOGICAL_SRC_LOD] =
+ retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
+ break;
+ default:
+ srcs[TEX_LOGICAL_SRC_LOD] =
+ retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
+ break;
+ }
+ break;
+ case nir_tex_src_ms_index:
+ srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
+ break;
+
+ case nir_tex_src_offset: {
+ nir_const_value *const_offset =
+ nir_src_as_const_value(instr->src[i].src);
+ unsigned offset_bits = 0;
+ if (const_offset &&
+ brw_texture_offset(const_offset->i32,
+ nir_tex_instr_src_size(instr, i),
+ &offset_bits)) {
+ header_bits |= offset_bits;
+ } else {
+ srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
+ retype(src, BRW_REGISTER_TYPE_D);
+ }
+ break;
+ }
+
+ case nir_tex_src_projector:
+ unreachable("should be lowered");
+
+ case nir_tex_src_texture_offset: {
+ /* Figure out the highest possible texture index and mark it as used */
+ uint32_t max_used = texture + instr->texture_array_size - 1;
+ if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
+ max_used += stage_prog_data->binding_table.gather_texture_start;
+ } else {
+ max_used += stage_prog_data->binding_table.texture_start;
+ }
+ brw_mark_surface_used(prog_data, max_used);
+
+ /* Emit code to evaluate the actual indexing expression */
+ fs_reg tmp = vgrf(glsl_type::uint_type);
+ bld.ADD(tmp, src, brw_imm_ud(texture));
+ srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
+ break;
+ }
+
+ case nir_tex_src_sampler_offset: {
+ /* Emit code to evaluate the actual indexing expression */
+ fs_reg tmp = vgrf(glsl_type::uint_type);
+ bld.ADD(tmp, src, brw_imm_ud(sampler));
+ srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
+ break;
+ }
+
+ case nir_tex_src_ms_mcs:
+ assert(instr->op == nir_texop_txf_ms);
+ srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
+ break;
+
+ case nir_tex_src_plane: {
+ nir_const_value *const_plane =
+ nir_src_as_const_value(instr->src[i].src);
+ const uint32_t plane = const_plane->u32[0];
+ const uint32_t texture_index =
+ instr->texture_index +
+ stage_prog_data->binding_table.plane_start[plane] -
+ stage_prog_data->binding_table.texture_start;
+
+ srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
+ break;
+ }
+
+ default:
+ unreachable("unknown texture source");
+ }
+ }
+
+ if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
+ (instr->op == nir_texop_txf_ms ||
+ instr->op == nir_texop_samples_identical)) {
+ if (devinfo->gen >= 7 &&
+ key_tex->compressed_multisample_layout_mask & (1 << texture)) {
+ srcs[TEX_LOGICAL_SRC_MCS] =
+ emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
+ instr->coord_components,
+ srcs[TEX_LOGICAL_SRC_SURFACE]);
+ } else {
+ srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
+ }
+ }
+
+ srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
+ srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
+
+ if (instr->op == nir_texop_query_levels ||
+ (instr->op == nir_texop_tex && stage != MESA_SHADER_FRAGMENT)) {
+ /* textureQueryLevels() and texture() are implemented in terms of TXS
+ * and TXL respectively, so we need to pass a valid LOD argument.
+ */
+ assert(srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE);
+ srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u);
+ }
+
+ enum opcode opcode;
+ switch (instr->op) {
+ case nir_texop_tex:
+ opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
+ SHADER_OPCODE_TXL_LOGICAL);
+ break;
+ case nir_texop_txb:
+ opcode = FS_OPCODE_TXB_LOGICAL;
+ break;
+ case nir_texop_txl:
+ opcode = SHADER_OPCODE_TXL_LOGICAL;
+ break;
+ case nir_texop_txd:
+ opcode = SHADER_OPCODE_TXD_LOGICAL;
+ break;
+ case nir_texop_txf:
+ opcode = SHADER_OPCODE_TXF_LOGICAL;
+ break;
+ case nir_texop_txf_ms:
+ if ((key_tex->msaa_16 & (1 << sampler)))
+ opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
+ else
+ opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
+ break;
+ case nir_texop_txf_ms_mcs:
+ opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
+ break;
+ case nir_texop_query_levels:
+ case nir_texop_txs:
+ opcode = SHADER_OPCODE_TXS_LOGICAL;
+ break;
+ case nir_texop_lod:
+ opcode = SHADER_OPCODE_LOD_LOGICAL;
+ break;
+ case nir_texop_tg4:
+ if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
+ opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
+ else
+ opcode = SHADER_OPCODE_TG4_LOGICAL;
+ break;
+ case nir_texop_texture_samples:
+ opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
+ break;
+ case nir_texop_samples_identical: {
+ fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
+
+ /* If mcs is an immediate value, it means there is no MCS. In that case
+ * just return false.
+ */
+ if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
+ bld.MOV(dst, brw_imm_ud(0u));
+ } else if ((key_tex->msaa_16 & (1 << sampler))) {
+ fs_reg tmp = vgrf(glsl_type::uint_type);
+ bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
+ offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
+ bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
+ } else {
+ bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
+ BRW_CONDITIONAL_EQ);
+ }
+ return;
+ }
+ default:
+ unreachable("unknown texture opcode");
+ }
+
+ if (instr->op == nir_texop_tg4) {
+ if (instr->component == 1 &&
+ key_tex->gather_channel_quirk_mask & (1 << texture)) {
+ /* gather4 sampler is broken for green channel on RG32F --
+ * we must ask for blue instead.
+ */
+ header_bits |= 2 << 16;
+ } else {
+ header_bits |= instr->component << 16;
+ }
+ }
+
+ fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
+ fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
+ inst->offset = header_bits;
+
+ const unsigned dest_size = nir_tex_instr_dest_size(instr);
+ if (devinfo->gen >= 9 &&
+ instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
+ unsigned write_mask = instr->dest.is_ssa ?
+ nir_ssa_def_components_read(&instr->dest.ssa):
+ (1 << dest_size) - 1;
+ assert(write_mask != 0); /* dead code should have been eliminated */
+ inst->size_written = util_last_bit(write_mask) *
+ inst->dst.component_size(inst->exec_size);
+ } else {
+ inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
+ }
+
+ if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
+ inst->shadow_compare = true;
+
+ if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
+ emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
+
+ fs_reg nir_dest[4];
+ for (unsigned i = 0; i < dest_size; i++)
+ nir_dest[i] = offset(dst, bld, i);
+
+ if (instr->op == nir_texop_query_levels) {
+ /* # levels is in .w */
+ nir_dest[0] = offset(dst, bld, 3);
+ } else if (instr->op == nir_texop_txs &&
+ dest_size >= 3 && devinfo->gen < 7) {
+ /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
+ fs_reg depth = offset(dst, bld, 2);
+ nir_dest[2] = vgrf(glsl_type::int_type);
+ bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
+ }
+
+ bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
+}
+
+void
+fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
+{
+ switch (instr->type) {
+ case nir_jump_break:
+ bld.emit(BRW_OPCODE_BREAK);
+ break;
+ case nir_jump_continue:
+ bld.emit(BRW_OPCODE_CONTINUE);
+ break;
+ case nir_jump_return:
+ default:
+ unreachable("unknown jump");
+ }
+}
+
+/**
+ * This helper takes the result of a load operation that reads 32-bit elements
+ * in this format:
+ *
+ * x x x x x x x x
+ * y y y y y y y y
+ * z z z z z z z z
+ * w w w w w w w w
+ *
+ * and shuffles the data to get this:
+ *
+ * x y x y x y x y
+ * x y x y x y x y
+ * z w z w z w z w
+ * z w z w z w z w
+ *
+ * Which is exactly what we want if the load is reading 64-bit components
+ * like doubles, where x represents the low 32-bit of the x double component
+ * and y represents the high 32-bit of the x double component (likewise with
+ * z and w for double component y). The parameter @components represents
+ * the number of 64-bit components present in @src. This would typically be
+ * 2 at most, since we can only fit 2 double elements in the result of a
+ * vec4 load.
+ *
+ * Notice that @dst and @src can be the same register.
+ */
+void
+shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
+ const fs_reg &dst,
+ const fs_reg &src,
+ uint32_t components)
+{
+ assert(type_sz(src.type) == 4);
+ assert(type_sz(dst.type) == 8);
+
+ /* A temporary that we will use to shuffle the 32-bit data of each
+ * component in the vector into valid 64-bit data. We can't write directly
+ * to dst because dst can be (and would usually be) the same as src
+ * and in that case the first MOV in the loop below would overwrite the
+ * data read in the second MOV.
+ */
+ fs_reg tmp = bld.vgrf(dst.type);
+
+ for (unsigned i = 0; i < components; i++) {
+ const fs_reg component_i = offset(src, bld, 2 * i);
+
+ bld.MOV(subscript(tmp, src.type, 0), component_i);
+ bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
+
+ bld.MOV(offset(dst, bld, i), tmp);
+ }
+}
+
+/**
+ * This helper does the inverse operation of
+ * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
+ *
+ * We need to do this when we are going to use untyped write messsages that
+ * operate with 32-bit components in order to arrange our 64-bit data to be
+ * in the expected layout.
+ *
+ * Notice that callers of this function, unlike in the case of the inverse
+ * operation, would typically need to call this with dst and src being
+ * different registers, since they would otherwise corrupt the original
+ * 64-bit data they are about to write. Because of this the function checks
+ * that the src and dst regions involved in the operation do not overlap.
+ */
+void
+shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
+ const fs_reg &dst,
+ const fs_reg &src,
+ uint32_t components)
+{
+ assert(type_sz(src.type) == 8);
+ assert(type_sz(dst.type) == 4);
+
+ assert(!regions_overlap(
+ dst, 2 * components * dst.component_size(bld.dispatch_width()),
+ src, components * src.component_size(bld.dispatch_width())));
+
+ for (unsigned i = 0; i < components; i++) {
+ const fs_reg component_i = offset(src, bld, i);
+ bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
+ bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
+ }
+}
+
+fs_reg
+setup_imm_df(const fs_builder &bld, double v)
+{
+ const struct gen_device_info *devinfo = bld.shader->devinfo;
+ assert(devinfo->gen >= 7);
+
+ if (devinfo->gen >= 8)
+ return brw_imm_df(v);
+
+ /* gen7.5 does not support DF immediates straighforward but the DIM
+ * instruction allows to set the 64-bit immediate value.
+ */
+ if (devinfo->is_haswell) {
+ const fs_builder ubld = bld.exec_all().group(1, 0);
+ fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
+ ubld.DIM(dst, brw_imm_df(v));
+ return component(dst, 0);
+ }
+
+ /* gen7 does not support DF immediates, so we generate a 64-bit constant by
+ * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
+ * the high 32-bit to suboffset 4 and then applying a stride of 0.
+ *
+ * Alternatively, we could also produce a normal VGRF (without stride 0)
+ * by writing to all the channels in the VGRF, however, that would hit the
+ * gen7 bug where we have to split writes that span more than 1 register
+ * into instructions with a width of 4 (otherwise the write to the second
+ * register written runs into an execmask hardware bug) which isn't very
+ * nice.
+ */
+ union {
+ double d;
+ struct {
+ uint32_t i1;
+ uint32_t i2;
+ };
+ } di;
+
+ di.d = v;
+
+ const fs_builder ubld = bld.exec_all().group(1, 0);
+ const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ ubld.MOV(tmp, brw_imm_ud(di.i1));
+ ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
+
+ return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
+}