summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_copy_propagation.cpp
diff options
context:
space:
mode:
authorJason Ekstrand <[email protected]>2017-02-28 09:10:43 -0800
committerEmil Velikov <[email protected]>2017-03-13 11:16:34 +0000
commit700bebb958e93f4d472c383de62ced9db8e64bec (patch)
tree0075c098c56c338f38ba0db80b9dba3e7e268a17 /src/intel/compiler/brw_fs_copy_propagation.cpp
parentd0d4a5f43b4dd79bd7bfff7c7deaade10bfebf7c (diff)
i965: Move the back-end compiler to src/intel/compiler
Mostly a dummy git mv with a couple of noticable parts: - With the earlier header cleanups, nothing in src/intel depends files from src/mesa/drivers/dri/i965/ - Both Autoconf and Android builds are addressed. Thanks to Mauro and Tapani for the fixups in the latter - brw_util.[ch] is not really compiler specific, so it's moved to i965. v2: - move brw_eu_defines.h instead of brw_defines.h - remove no-longer applicable includes - add missing vulkan/ prefix in the Android build (thanks Tapani) v3: - don't list brw_defines.h in src/intel/Makefile.sources (Jason) - rebase on top of the oa patches [Emil Velikov: commit message, various small fixes througout] Signed-off-by: Emil Velikov <[email protected]> Reviewed-by: Jason Ekstrand <[email protected]>
Diffstat (limited to 'src/intel/compiler/brw_fs_copy_propagation.cpp')
-rw-r--r--src/intel/compiler/brw_fs_copy_propagation.cpp869
1 files changed, 869 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_copy_propagation.cpp b/src/intel/compiler/brw_fs_copy_propagation.cpp
new file mode 100644
index 00000000000..cb117396089
--- /dev/null
+++ b/src/intel/compiler/brw_fs_copy_propagation.cpp
@@ -0,0 +1,869 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+/** @file brw_fs_copy_propagation.cpp
+ *
+ * Support for global copy propagation in two passes: A local pass that does
+ * intra-block copy (and constant) propagation, and a global pass that uses
+ * dataflow analysis on the copies available at the end of each block to re-do
+ * local copy propagation with more copies available.
+ *
+ * See Muchnick's Advanced Compiler Design and Implementation, section
+ * 12.5 (p356).
+ */
+
+#define ACP_HASH_SIZE 16
+
+#include "util/bitset.h"
+#include "brw_fs.h"
+#include "brw_cfg.h"
+#include "brw_eu.h"
+
+namespace { /* avoid conflict with opt_copy_propagation_elements */
+struct acp_entry : public exec_node {
+ fs_reg dst;
+ fs_reg src;
+ uint8_t size_written;
+ uint8_t size_read;
+ enum opcode opcode;
+ bool saturate;
+};
+
+struct block_data {
+ /**
+ * Which entries in the fs_copy_prop_dataflow acp table are live at the
+ * start of this block. This is the useful output of the analysis, since
+ * it lets us plug those into the local copy propagation on the second
+ * pass.
+ */
+ BITSET_WORD *livein;
+
+ /**
+ * Which entries in the fs_copy_prop_dataflow acp table are live at the end
+ * of this block. This is done in initial setup from the per-block acps
+ * returned by the first local copy prop pass.
+ */
+ BITSET_WORD *liveout;
+
+ /**
+ * Which entries in the fs_copy_prop_dataflow acp table are generated by
+ * instructions in this block which reach the end of the block without
+ * being killed.
+ */
+ BITSET_WORD *copy;
+
+ /**
+ * Which entries in the fs_copy_prop_dataflow acp table are killed over the
+ * course of this block.
+ */
+ BITSET_WORD *kill;
+};
+
+class fs_copy_prop_dataflow
+{
+public:
+ fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
+ exec_list *out_acp[ACP_HASH_SIZE]);
+
+ void setup_initial_values();
+ void run();
+
+ void dump_block_data() const UNUSED;
+
+ void *mem_ctx;
+ cfg_t *cfg;
+
+ acp_entry **acp;
+ int num_acp;
+ int bitset_words;
+
+ struct block_data *bd;
+};
+} /* anonymous namespace */
+
+fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
+ exec_list *out_acp[ACP_HASH_SIZE])
+ : mem_ctx(mem_ctx), cfg(cfg)
+{
+ bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
+
+ num_acp = 0;
+ foreach_block (block, cfg) {
+ for (int i = 0; i < ACP_HASH_SIZE; i++) {
+ num_acp += out_acp[block->num][i].length();
+ }
+ }
+
+ acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
+
+ bitset_words = BITSET_WORDS(num_acp);
+
+ int next_acp = 0;
+ foreach_block (block, cfg) {
+ bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
+
+ for (int i = 0; i < ACP_HASH_SIZE; i++) {
+ foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
+ acp[next_acp] = entry;
+
+ /* opt_copy_propagation_local populates out_acp with copies created
+ * in a block which are still live at the end of the block. This
+ * is exactly what we want in the COPY set.
+ */
+ BITSET_SET(bd[block->num].copy, next_acp);
+
+ next_acp++;
+ }
+ }
+ }
+
+ assert(next_acp == num_acp);
+
+ setup_initial_values();
+ run();
+}
+
+/**
+ * Set up initial values for each of the data flow sets, prior to running
+ * the fixed-point algorithm.
+ */
+void
+fs_copy_prop_dataflow::setup_initial_values()
+{
+ /* Initialize the COPY and KILL sets. */
+ foreach_block (block, cfg) {
+ foreach_inst_in_block(fs_inst, inst, block) {
+ if (inst->dst.file != VGRF)
+ continue;
+
+ /* Mark ACP entries which are killed by this instruction. */
+ for (int i = 0; i < num_acp; i++) {
+ if (regions_overlap(inst->dst, inst->size_written,
+ acp[i]->dst, acp[i]->size_written) ||
+ regions_overlap(inst->dst, inst->size_written,
+ acp[i]->src, acp[i]->size_read)) {
+ BITSET_SET(bd[block->num].kill, i);
+ }
+ }
+ }
+ }
+
+ /* Populate the initial values for the livein and liveout sets. For the
+ * block at the start of the program, livein = 0 and liveout = copy.
+ * For the others, set liveout to 0 (the empty set) and livein to ~0
+ * (the universal set).
+ */
+ foreach_block (block, cfg) {
+ if (block->parents.is_empty()) {
+ for (int i = 0; i < bitset_words; i++) {
+ bd[block->num].livein[i] = 0u;
+ bd[block->num].liveout[i] = bd[block->num].copy[i];
+ }
+ } else {
+ for (int i = 0; i < bitset_words; i++) {
+ bd[block->num].liveout[i] = 0u;
+ bd[block->num].livein[i] = ~0u;
+ }
+ }
+ }
+}
+
+/**
+ * Walk the set of instructions in the block, marking which entries in the acp
+ * are killed by the block.
+ */
+void
+fs_copy_prop_dataflow::run()
+{
+ bool progress;
+
+ do {
+ progress = false;
+
+ /* Update liveout for all blocks. */
+ foreach_block (block, cfg) {
+ if (block->parents.is_empty())
+ continue;
+
+ for (int i = 0; i < bitset_words; i++) {
+ const BITSET_WORD old_liveout = bd[block->num].liveout[i];
+
+ bd[block->num].liveout[i] =
+ bd[block->num].copy[i] | (bd[block->num].livein[i] &
+ ~bd[block->num].kill[i]);
+
+ if (old_liveout != bd[block->num].liveout[i])
+ progress = true;
+ }
+ }
+
+ /* Update livein for all blocks. If a copy is live out of all parent
+ * blocks, it's live coming in to this block.
+ */
+ foreach_block (block, cfg) {
+ if (block->parents.is_empty())
+ continue;
+
+ for (int i = 0; i < bitset_words; i++) {
+ const BITSET_WORD old_livein = bd[block->num].livein[i];
+
+ bd[block->num].livein[i] = ~0u;
+ foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
+ bblock_t *parent = parent_link->block;
+ bd[block->num].livein[i] &= bd[parent->num].liveout[i];
+ }
+
+ if (old_livein != bd[block->num].livein[i])
+ progress = true;
+ }
+ }
+ } while (progress);
+}
+
+void
+fs_copy_prop_dataflow::dump_block_data() const
+{
+ foreach_block (block, cfg) {
+ fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
+ block->start_ip, block->end_ip);
+ foreach_list_typed(bblock_link, link, link, &block->parents) {
+ bblock_t *parent = link->block;
+ fprintf(stderr, "%d ", parent->num);
+ }
+ fprintf(stderr, "):\n");
+ fprintf(stderr, " livein = 0x");
+ for (int i = 0; i < bitset_words; i++)
+ fprintf(stderr, "%08x", bd[block->num].livein[i]);
+ fprintf(stderr, ", liveout = 0x");
+ for (int i = 0; i < bitset_words; i++)
+ fprintf(stderr, "%08x", bd[block->num].liveout[i]);
+ fprintf(stderr, ",\n copy = 0x");
+ for (int i = 0; i < bitset_words; i++)
+ fprintf(stderr, "%08x", bd[block->num].copy[i]);
+ fprintf(stderr, ", kill = 0x");
+ for (int i = 0; i < bitset_words; i++)
+ fprintf(stderr, "%08x", bd[block->num].kill[i]);
+ fprintf(stderr, "\n");
+ }
+}
+
+static bool
+is_logic_op(enum opcode opcode)
+{
+ return (opcode == BRW_OPCODE_AND ||
+ opcode == BRW_OPCODE_OR ||
+ opcode == BRW_OPCODE_XOR ||
+ opcode == BRW_OPCODE_NOT);
+}
+
+static bool
+can_take_stride(fs_inst *inst, unsigned arg, unsigned stride,
+ const gen_device_info *devinfo)
+{
+ if (stride > 4)
+ return false;
+
+ /* 3-source instructions can only be Align16, which restricts what strides
+ * they can take. They can only take a stride of 1 (the usual case), or 0
+ * with a special "repctrl" bit. But the repctrl bit doesn't work for
+ * 64-bit datatypes, so if the source type is 64-bit then only a stride of
+ * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
+ * 944:
+ *
+ * This is applicable to 32b datatypes and 16b datatype. 64b datatypes
+ * cannot use the replicate control.
+ */
+ if (inst->is_3src(devinfo)) {
+ if (type_sz(inst->src[arg].type) > 4)
+ return stride == 1;
+ else
+ return stride == 1 || stride == 0;
+ }
+
+ /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
+ * page 391 ("Extended Math Function"):
+ *
+ * The following restrictions apply for align1 mode: Scalar source is
+ * supported. Source and destination horizontal stride must be the
+ * same.
+ *
+ * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
+ * 134 ("Extended Math Function"):
+ *
+ * Scalar source is supported. Source and destination horizontal stride
+ * must be 1.
+ *
+ * and similar language exists for IVB and SNB. Pre-SNB, math instructions
+ * are sends, so the sources are moved to MRF's and there are no
+ * restrictions.
+ */
+ if (inst->is_math()) {
+ if (devinfo->gen == 6 || devinfo->gen == 7) {
+ assert(inst->dst.stride == 1);
+ return stride == 1 || stride == 0;
+ } else if (devinfo->gen >= 8) {
+ return stride == inst->dst.stride || stride == 0;
+ }
+ }
+
+ return true;
+}
+
+bool
+fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
+{
+ if (inst->src[arg].file != VGRF)
+ return false;
+
+ if (entry->src.file == IMM)
+ return false;
+ assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
+ entry->src.file == ATTR);
+
+ if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
+ inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
+ return false;
+
+ assert(entry->dst.file == VGRF);
+ if (inst->src[arg].nr != entry->dst.nr)
+ return false;
+
+ /* Bail if inst is reading a range that isn't contained in the range
+ * that entry is writing.
+ */
+ if (!region_contained_in(inst->src[arg], inst->size_read(arg),
+ entry->dst, entry->size_written))
+ return false;
+
+ /* we can't generally copy-propagate UD negations because we
+ * can end up accessing the resulting values as signed integers
+ * instead. See also resolve_ud_negate() and comment in
+ * fs_generator::generate_code.
+ */
+ if (entry->src.type == BRW_REGISTER_TYPE_UD &&
+ entry->src.negate)
+ return false;
+
+ bool has_source_modifiers = entry->src.abs || entry->src.negate;
+
+ if ((has_source_modifiers || entry->src.file == UNIFORM ||
+ !entry->src.is_contiguous()) &&
+ !inst->can_do_source_mods(devinfo))
+ return false;
+
+ if (has_source_modifiers &&
+ inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
+ return false;
+
+ /* Bail if the result of composing both strides would exceed the
+ * hardware limit.
+ */
+ if (!can_take_stride(inst, arg, entry->src.stride * inst->src[arg].stride,
+ devinfo))
+ return false;
+
+ /* Bail if the instruction type is larger than the execution type of the
+ * copy, what implies that each channel is reading multiple channels of the
+ * destination of the copy, and simply replacing the sources would give a
+ * program with different semantics.
+ */
+ if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type))
+ return false;
+
+ /* Bail if the result of composing both strides cannot be expressed
+ * as another stride. This avoids, for example, trying to transform
+ * this:
+ *
+ * MOV (8) rX<1>UD rY<0;1,0>UD
+ * FOO (8) ... rX<8;8,1>UW
+ *
+ * into this:
+ *
+ * FOO (8) ... rY<0;1,0>UW
+ *
+ * Which would have different semantics.
+ */
+ if (entry->src.stride != 1 &&
+ (inst->src[arg].stride *
+ type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
+ return false;
+
+ /* Since semantics of source modifiers are type-dependent we need to
+ * ensure that the meaning of the instruction remains the same if we
+ * change the type. If the sizes of the types are different the new
+ * instruction will read a different amount of data than the original
+ * and the semantics will always be different.
+ */
+ if (has_source_modifiers &&
+ entry->dst.type != inst->src[arg].type &&
+ (!inst->can_change_types() ||
+ type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
+ return false;
+
+ if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) &&
+ is_logic_op(inst->opcode)) {
+ return false;
+ }
+
+ if (entry->saturate) {
+ switch(inst->opcode) {
+ case BRW_OPCODE_SEL:
+ if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
+ inst->conditional_mod != BRW_CONDITIONAL_L) ||
+ inst->src[1].file != IMM ||
+ inst->src[1].f < 0.0 ||
+ inst->src[1].f > 1.0) {
+ return false;
+ }
+ break;
+ default:
+ return false;
+ }
+ }
+
+ inst->src[arg].file = entry->src.file;
+ inst->src[arg].nr = entry->src.nr;
+ inst->src[arg].stride *= entry->src.stride;
+ inst->saturate = inst->saturate || entry->saturate;
+
+ /* Compute the offset of inst->src[arg] relative to entry->dst */
+ const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
+
+ /* Compute the first component of the copy that the instruction is
+ * reading, and the base byte offset within that component.
+ */
+ assert(entry->dst.offset % REG_SIZE == 0 && entry->dst.stride == 1);
+ const unsigned component = rel_offset / type_sz(entry->dst.type);
+ const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
+
+ /* Calculate the byte offset at the origin of the copy of the given
+ * component and suboffset.
+ */
+ inst->src[arg].offset = suboffset +
+ component * entry->src.stride * type_sz(entry->src.type) +
+ entry->src.offset;
+
+ if (has_source_modifiers) {
+ if (entry->dst.type != inst->src[arg].type) {
+ /* We are propagating source modifiers from a MOV with a different
+ * type. If we got here, then we can just change the source and
+ * destination types of the instruction and keep going.
+ */
+ assert(inst->can_change_types());
+ for (int i = 0; i < inst->sources; i++) {
+ inst->src[i].type = entry->dst.type;
+ }
+ inst->dst.type = entry->dst.type;
+ }
+
+ if (!inst->src[arg].abs) {
+ inst->src[arg].abs = entry->src.abs;
+ inst->src[arg].negate ^= entry->src.negate;
+ }
+ }
+
+ return true;
+}
+
+
+bool
+fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
+{
+ bool progress = false;
+
+ if (entry->src.file != IMM)
+ return false;
+ if (type_sz(entry->src.type) > 4)
+ return false;
+ if (entry->saturate)
+ return false;
+
+ for (int i = inst->sources - 1; i >= 0; i--) {
+ if (inst->src[i].file != VGRF)
+ continue;
+
+ assert(entry->dst.file == VGRF);
+ if (inst->src[i].nr != entry->dst.nr)
+ continue;
+
+ /* Bail if inst is reading a range that isn't contained in the range
+ * that entry is writing.
+ */
+ if (!region_contained_in(inst->src[i], inst->size_read(i),
+ entry->dst, entry->size_written))
+ continue;
+
+ /* If the type sizes don't match each channel of the instruction is
+ * either extracting a portion of the constant (which could be handled
+ * with some effort but the code below doesn't) or reading multiple
+ * channels of the source at once.
+ */
+ if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
+ continue;
+
+ fs_reg val = entry->src;
+ val.type = inst->src[i].type;
+
+ if (inst->src[i].abs) {
+ if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
+ !brw_abs_immediate(val.type, &val.as_brw_reg())) {
+ continue;
+ }
+ }
+
+ if (inst->src[i].negate) {
+ if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
+ !brw_negate_immediate(val.type, &val.as_brw_reg())) {
+ continue;
+ }
+ }
+
+ switch (inst->opcode) {
+ case BRW_OPCODE_MOV:
+ case SHADER_OPCODE_LOAD_PAYLOAD:
+ case FS_OPCODE_PACK:
+ inst->src[i] = val;
+ progress = true;
+ break;
+
+ case SHADER_OPCODE_INT_QUOTIENT:
+ case SHADER_OPCODE_INT_REMAINDER:
+ /* FINISHME: Promote non-float constants and remove this. */
+ if (devinfo->gen < 8)
+ break;
+ /* fallthrough */
+ case SHADER_OPCODE_POW:
+ /* Allow constant propagation into src1 (except on Gen 6 which
+ * doesn't support scalar source math), and let constant combining
+ * promote the constant on Gen < 8.
+ */
+ if (devinfo->gen == 6)
+ break;
+ /* fallthrough */
+ case BRW_OPCODE_BFI1:
+ case BRW_OPCODE_ASR:
+ case BRW_OPCODE_SHL:
+ case BRW_OPCODE_SHR:
+ case BRW_OPCODE_SUBB:
+ if (i == 1) {
+ inst->src[i] = val;
+ progress = true;
+ }
+ break;
+
+ case BRW_OPCODE_MACH:
+ case BRW_OPCODE_MUL:
+ case SHADER_OPCODE_MULH:
+ case BRW_OPCODE_ADD:
+ case BRW_OPCODE_OR:
+ case BRW_OPCODE_AND:
+ case BRW_OPCODE_XOR:
+ case BRW_OPCODE_ADDC:
+ if (i == 1) {
+ inst->src[i] = val;
+ progress = true;
+ } else if (i == 0 && inst->src[1].file != IMM) {
+ /* Fit this constant in by commuting the operands.
+ * Exception: we can't do this for 32-bit integer MUL/MACH
+ * because it's asymmetric.
+ *
+ * The BSpec says for Broadwell that
+ *
+ * "When multiplying DW x DW, the dst cannot be accumulator."
+ *
+ * Integer MUL with a non-accumulator destination will be lowered
+ * by lower_integer_multiplication(), so don't restrict it.
+ */
+ if (((inst->opcode == BRW_OPCODE_MUL &&
+ inst->dst.is_accumulator()) ||
+ inst->opcode == BRW_OPCODE_MACH) &&
+ (inst->src[1].type == BRW_REGISTER_TYPE_D ||
+ inst->src[1].type == BRW_REGISTER_TYPE_UD))
+ break;
+ inst->src[0] = inst->src[1];
+ inst->src[1] = val;
+ progress = true;
+ }
+ break;
+
+ case BRW_OPCODE_CMP:
+ case BRW_OPCODE_IF:
+ if (i == 1) {
+ inst->src[i] = val;
+ progress = true;
+ } else if (i == 0 && inst->src[1].file != IMM) {
+ enum brw_conditional_mod new_cmod;
+
+ new_cmod = brw_swap_cmod(inst->conditional_mod);
+ if (new_cmod != BRW_CONDITIONAL_NONE) {
+ /* Fit this constant in by swapping the operands and
+ * flipping the test
+ */
+ inst->src[0] = inst->src[1];
+ inst->src[1] = val;
+ inst->conditional_mod = new_cmod;
+ progress = true;
+ }
+ }
+ break;
+
+ case BRW_OPCODE_SEL:
+ if (i == 1) {
+ inst->src[i] = val;
+ progress = true;
+ } else if (i == 0 && inst->src[1].file != IMM) {
+ inst->src[0] = inst->src[1];
+ inst->src[1] = val;
+
+ /* If this was predicated, flipping operands means
+ * we also need to flip the predicate.
+ */
+ if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
+ inst->predicate_inverse =
+ !inst->predicate_inverse;
+ }
+ progress = true;
+ }
+ break;
+
+ case SHADER_OPCODE_UNTYPED_ATOMIC:
+ case SHADER_OPCODE_UNTYPED_SURFACE_READ:
+ case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
+ case SHADER_OPCODE_TYPED_ATOMIC:
+ case SHADER_OPCODE_TYPED_SURFACE_READ:
+ case SHADER_OPCODE_TYPED_SURFACE_WRITE:
+ /* We only propagate into the surface argument of the
+ * instruction. Everything else goes through LOAD_PAYLOAD.
+ */
+ if (i == 1) {
+ inst->src[i] = val;
+ progress = true;
+ }
+ break;
+
+ case FS_OPCODE_FB_WRITE_LOGICAL:
+ /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
+ * bit-cast using a strided region so they cannot be immediates.
+ */
+ if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
+ i != FB_WRITE_LOGICAL_SRC_OMASK) {
+ inst->src[i] = val;
+ progress = true;
+ }
+ break;
+
+ case SHADER_OPCODE_TEX_LOGICAL:
+ case SHADER_OPCODE_TXD_LOGICAL:
+ case SHADER_OPCODE_TXF_LOGICAL:
+ case SHADER_OPCODE_TXL_LOGICAL:
+ case SHADER_OPCODE_TXS_LOGICAL:
+ case FS_OPCODE_TXB_LOGICAL:
+ case SHADER_OPCODE_TXF_CMS_LOGICAL:
+ case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
+ case SHADER_OPCODE_TXF_UMS_LOGICAL:
+ case SHADER_OPCODE_TXF_MCS_LOGICAL:
+ case SHADER_OPCODE_LOD_LOGICAL:
+ case SHADER_OPCODE_TG4_LOGICAL:
+ case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
+ case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
+ case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
+ case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
+ case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
+ case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
+ case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
+ inst->src[i] = val;
+ progress = true;
+ break;
+
+ case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
+ case SHADER_OPCODE_BROADCAST:
+ inst->src[i] = val;
+ progress = true;
+ break;
+
+ case BRW_OPCODE_MAD:
+ case BRW_OPCODE_LRP:
+ inst->src[i] = val;
+ progress = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return progress;
+}
+
+static bool
+can_propagate_from(fs_inst *inst)
+{
+ return (inst->opcode == BRW_OPCODE_MOV &&
+ inst->dst.file == VGRF &&
+ ((inst->src[0].file == VGRF &&
+ !regions_overlap(inst->dst, inst->size_written,
+ inst->src[0], inst->size_read(0))) ||
+ inst->src[0].file == ATTR ||
+ inst->src[0].file == UNIFORM ||
+ inst->src[0].file == IMM) &&
+ inst->src[0].type == inst->dst.type &&
+ !inst->is_partial_write());
+}
+
+/* Walks a basic block and does copy propagation on it using the acp
+ * list.
+ */
+bool
+fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
+ exec_list *acp)
+{
+ bool progress = false;
+
+ foreach_inst_in_block(fs_inst, inst, block) {
+ /* Try propagating into this instruction. */
+ for (int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file != VGRF)
+ continue;
+
+ foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
+ if (try_constant_propagate(inst, entry))
+ progress = true;
+ else if (try_copy_propagate(inst, i, entry))
+ progress = true;
+ }
+ }
+
+ /* kill the destination from the ACP */
+ if (inst->dst.file == VGRF) {
+ foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
+ if (regions_overlap(entry->dst, entry->size_written,
+ inst->dst, inst->size_written))
+ entry->remove();
+ }
+
+ /* Oops, we only have the chaining hash based on the destination, not
+ * the source, so walk across the entire table.
+ */
+ for (int i = 0; i < ACP_HASH_SIZE; i++) {
+ foreach_in_list_safe(acp_entry, entry, &acp[i]) {
+ /* Make sure we kill the entry if this instruction overwrites
+ * _any_ of the registers that it reads
+ */
+ if (regions_overlap(entry->src, entry->size_read,
+ inst->dst, inst->size_written))
+ entry->remove();
+ }
+ }
+ }
+
+ /* If this instruction's source could potentially be folded into the
+ * operand of another instruction, add it to the ACP.
+ */
+ if (can_propagate_from(inst)) {
+ acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
+ entry->dst = inst->dst;
+ entry->src = inst->src[0];
+ entry->size_written = inst->size_written;
+ entry->size_read = inst->size_read(0);
+ entry->opcode = inst->opcode;
+ entry->saturate = inst->saturate;
+ acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
+ } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
+ inst->dst.file == VGRF) {
+ int offset = 0;
+ for (int i = 0; i < inst->sources; i++) {
+ int effective_width = i < inst->header_size ? 8 : inst->exec_size;
+ assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
+ const unsigned size_written = effective_width *
+ type_sz(inst->src[i].type);
+ if (inst->src[i].file == VGRF) {
+ acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
+ entry->dst = byte_offset(inst->dst, offset);
+ entry->src = inst->src[i];
+ entry->size_written = size_written;
+ entry->size_read = inst->size_read(i);
+ entry->opcode = inst->opcode;
+ if (!entry->dst.equals(inst->src[i])) {
+ acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
+ } else {
+ ralloc_free(entry);
+ }
+ }
+ offset += size_written;
+ }
+ }
+ }
+
+ return progress;
+}
+
+bool
+fs_visitor::opt_copy_propagation()
+{
+ bool progress = false;
+ void *copy_prop_ctx = ralloc_context(NULL);
+ exec_list *out_acp[cfg->num_blocks];
+
+ for (int i = 0; i < cfg->num_blocks; i++)
+ out_acp[i] = new exec_list [ACP_HASH_SIZE];
+
+ /* First, walk through each block doing local copy propagation and getting
+ * the set of copies available at the end of the block.
+ */
+ foreach_block (block, cfg) {
+ progress = opt_copy_propagation_local(copy_prop_ctx, block,
+ out_acp[block->num]) || progress;
+ }
+
+ /* Do dataflow analysis for those available copies. */
+ fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp);
+
+ /* Next, re-run local copy propagation, this time with the set of copies
+ * provided by the dataflow analysis available at the start of a block.
+ */
+ foreach_block (block, cfg) {
+ exec_list in_acp[ACP_HASH_SIZE];
+
+ for (int i = 0; i < dataflow.num_acp; i++) {
+ if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
+ struct acp_entry *entry = dataflow.acp[i];
+ in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
+ }
+ }
+
+ progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
+ progress;
+ }
+
+ for (int i = 0; i < cfg->num_blocks; i++)
+ delete [] out_acp[i];
+ ralloc_free(copy_prop_ctx);
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}