diff options
author | jtg <jtg> | 1999-08-19 00:55:39 +0000 |
---|---|---|
committer | jtg <jtg> | 1999-08-19 00:55:39 +0000 |
commit | afb833d4e89c312460a4ab9ed6a7a8ca4ebbfe1c (patch) | |
tree | 59d65b4da12fb5379224cf5f6b808fde91523c7f /src/glu/mesa/project.c | |
parent | f2544d4920ce168bec9cd94d774b7ea5103a3d74 (diff) |
Initial revision
Diffstat (limited to 'src/glu/mesa/project.c')
-rw-r--r-- | src/glu/mesa/project.c | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/src/glu/mesa/project.c b/src/glu/mesa/project.c new file mode 100644 index 00000000000..32142c959e9 --- /dev/null +++ b/src/glu/mesa/project.c @@ -0,0 +1,318 @@ +/* $Id: project.c,v 1.1 1999/08/19 00:55:42 jtg Exp $ */ + +/* + * Mesa 3-D graphics library + * Version: 3.1 + * Copyright (C) 1995-1999 Brian Paul + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + + +/* + * $Log: project.c,v $ + * Revision 1.1 1999/08/19 00:55:42 jtg + * Initial revision + * + * Revision 1.7 1999/01/03 03:23:15 brianp + * now using GLAPIENTRY and GLCALLBACK keywords (Ted Jump) + * + * Revision 1.6 1998/07/08 01:43:43 brianp + * new version of invert_matrix() (also in src/matrix.c) + * + * Revision 1.5 1997/07/24 01:28:44 brianp + * changed precompiled header symbol from PCH to PC_HEADER + * + * Revision 1.4 1997/05/28 02:29:38 brianp + * added support for precompiled headers (PCH), inserted APIENTRY keyword + * + * Revision 1.3 1997/04/11 23:22:42 brianp + * added divide by zero checks to gluProject() and gluUnproject() + * + * Revision 1.2 1997/01/29 19:05:29 brianp + * faster invert_matrix() function from Stephane Rehel + * + * Revision 1.1 1996/09/27 01:19:39 brianp + * Initial revision + * + */ + + +#ifdef PC_HEADER +#include "all.h" +#else +#include <stdio.h> +#include <string.h> +#include <math.h> +#include "gluP.h" +#endif + + +/* + * This code was contributed by Marc Buffat ([email protected]). + * Thanks Marc!!! + */ + + + +/* implementation de gluProject et gluUnproject */ +/* M. Buffat 17/2/95 */ + + + +/* + * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in + * Input: m - the 4x4 matrix + * in - the 4x1 vector + * Output: out - the resulting 4x1 vector. + */ +static void transform_point( GLdouble out[4], const GLdouble m[16], + const GLdouble in[4] ) +{ +#define M(row,col) m[col*4+row] + out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3]; + out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3]; + out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3]; + out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3]; +#undef M +} + + + + +/* + * Perform a 4x4 matrix multiplication (product = a x b). + * Input: a, b - matrices to multiply + * Output: product - product of a and b + */ +static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b ) +{ + /* This matmul was contributed by Thomas Malik */ + GLdouble temp[16]; + GLint i; + +#define A(row,col) a[(col<<2)+row] +#define B(row,col) b[(col<<2)+row] +#define T(row,col) temp[(col<<2)+row] + + /* i-te Zeile */ + for (i = 0; i < 4; i++) + { + T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0); + T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1); + T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2); + T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3); + } + +#undef A +#undef B +#undef T + MEMCPY( product, temp, 16*sizeof(GLdouble) ); +} + + +static GLdouble Identity[16] = { + 1.0, 0.0, 0.0, 0.0, + 0.0, 1.0, 0.0, 0.0, + 0.0, 0.0, 1.0, 0.0, + 0.0, 0.0, 0.0, 1.0 +}; + + + +/* + * Compute inverse of 4x4 transformation matrix. + * Code contributed by Jacques Leroy [email protected] + * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) + */ +static GLboolean invert_matrix( const GLdouble *m, GLdouble *out ) +{ +/* NB. OpenGL Matrices are COLUMN major. */ +#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } +#define MAT(m,r,c) (m)[(c)*4+(r)] + + GLdouble wtmp[4][8]; + GLdouble m0, m1, m2, m3, s; + GLdouble *r0, *r1, *r2, *r3; + + r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; + + r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), + r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), + r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, + + r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), + r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), + r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, + + r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), + r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), + r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, + + r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), + r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), + r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; + + /* choose pivot - or die */ + if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); + if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); + if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); + if (0.0 == r0[0]) return GL_FALSE; + + /* eliminate first variable */ + m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; + s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; + s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; + s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; + s = r0[4]; + if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } + s = r0[5]; + if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } + s = r0[6]; + if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } + s = r0[7]; + if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } + + /* choose pivot - or die */ + if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); + if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); + if (0.0 == r1[1]) return GL_FALSE; + + /* eliminate second variable */ + m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; + r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; + r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; + s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } + s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } + s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } + s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } + + /* choose pivot - or die */ + if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); + if (0.0 == r2[2]) return GL_FALSE; + + /* eliminate third variable */ + m3 = r3[2]/r2[2]; + r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], + r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], + r3[7] -= m3 * r2[7]; + + /* last check */ + if (0.0 == r3[3]) return GL_FALSE; + + s = 1.0/r3[3]; /* now back substitute row 3 */ + r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; + + m2 = r2[3]; /* now back substitute row 2 */ + s = 1.0/r2[2]; + r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), + r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); + m1 = r1[3]; + r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, + r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; + m0 = r0[3]; + r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, + r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; + + m1 = r1[2]; /* now back substitute row 1 */ + s = 1.0/r1[1]; + r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), + r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); + m0 = r0[2]; + r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, + r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; + + m0 = r0[1]; /* now back substitute row 0 */ + s = 1.0/r0[0]; + r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), + r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); + + MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], + MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], + MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], + MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], + MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], + MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], + MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], + MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; + + return GL_TRUE; + +#undef MAT +#undef SWAP_ROWS +} + + + +/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */ +GLint GLAPIENTRY gluProject(GLdouble objx,GLdouble objy,GLdouble objz, + const GLdouble model[16],const GLdouble proj[16], + const GLint viewport[4], + GLdouble *winx,GLdouble *winy,GLdouble *winz) +{ + /* matrice de transformation */ + GLdouble in[4],out[4]; + + /* initilise la matrice et le vecteur a transformer */ + in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0; + transform_point(out,model,in); + transform_point(in,proj,out); + + /* d'ou le resultat normalise entre -1 et 1*/ + if (in[3]==0.0) + return GL_FALSE; + + in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3]; + + /* en coordonnees ecran */ + *winx = viewport[0]+(1+in[0])*viewport[2]/2; + *winy = viewport[1]+(1+in[1])*viewport[3]/2; + /* entre 0 et 1 suivant z */ + *winz = (1+in[2])/2; + return GL_TRUE; +} + + + +/* transformation du point ecran (winx,winy,winz) en point objet */ +GLint GLAPIENTRY gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz, + const GLdouble model[16],const GLdouble proj[16], + const GLint viewport[4], + GLdouble *objx,GLdouble *objy,GLdouble *objz) +{ + /* matrice de transformation */ + GLdouble m[16], A[16]; + GLdouble in[4],out[4]; + + /* transformation coordonnees normalisees entre -1 et 1 */ + in[0]=(winx-viewport[0])*2/viewport[2] - 1.0; + in[1]=(winy-viewport[1])*2/viewport[3] - 1.0; + in[2]=2*winz - 1.0; + in[3]=1.0; + + /* calcul transformation inverse */ + matmul(A,proj,model); + invert_matrix(A,m); + + /* d'ou les coordonnees objets */ + transform_point(out,m,in); + if (out[3]==0.0) + return GL_FALSE; + *objx=out[0]/out[3]; + *objy=out[1]/out[3]; + *objz=out[2]/out[3]; + return GL_TRUE; +} + |