diff options
author | Jason Ekstrand <[email protected]> | 2014-10-31 11:17:09 -0700 |
---|---|---|
committer | Jason Ekstrand <[email protected]> | 2015-01-15 07:19:00 -0800 |
commit | 943ddb945877fc8a48dd7a435d40e1a9e7b9eead (patch) | |
tree | d7c3b95f93108c796c49237cb733ca766561ebb3 /src/glsl/nir/nir_from_ssa.c | |
parent | 4f44120ff51fba27258376941ee965078aa8494e (diff) |
nir: Add a better out-of-SSA pass
This commit rewrites the out-of-SSA pass to not be nearly as naieve. It's
based on "Revisiting Out-of-SSA Translation for Correctness, Code Quality,
and Efficiency" by Boissinot et. al. It should be fairly close to
state-of-the art.
Reviewed-by: Connor Abbott <[email protected]>
Diffstat (limited to 'src/glsl/nir/nir_from_ssa.c')
-rw-r--r-- | src/glsl/nir/nir_from_ssa.c | 789 |
1 files changed, 716 insertions, 73 deletions
diff --git a/src/glsl/nir/nir_from_ssa.c b/src/glsl/nir/nir_from_ssa.c index c88583af971..9f8c27df497 100644 --- a/src/glsl/nir/nir_from_ssa.c +++ b/src/glsl/nir/nir_from_ssa.c @@ -28,52 +28,469 @@ #include "nir.h" /* - * Implements a quick-and-dirty out-of-ssa pass. + * This file implements an out-of-SSA pass as described in "Revisiting + * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by + * Boissinot et. al. */ struct from_ssa_state { void *mem_ctx; void *dead_ctx; struct hash_table *ssa_table; - nir_function_impl *current_impl; + struct hash_table *merge_node_table; + nir_instr *instr; + nir_function_impl *impl; }; +/* Returns true if a dominates b */ static bool -rewrite_ssa_src(nir_src *src, void *void_state) +ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) +{ + if (a->live_index == 0) { + /* SSA undefs always dominate */ + return true; + } else if (b->live_index < a->live_index) { + return false; + } else if (a->parent_instr->block == b->parent_instr->block) { + return a->live_index <= b->live_index; + } else { + nir_block *block = b->parent_instr->block; + while (block->imm_dom != NULL) { + if (block->imm_dom == a->parent_instr->block) + return true; + block = block->imm_dom; + } + return false; + } +} + + +/* The following data structure, which I have named merge_set is a way of + * representing a set registers of non-interfering registers. This is + * based on the concept of a "dominence forest" presented in "Fast Copy + * Coalescing and Live-Range Identification" by Budimlic et. al. but the + * implementation concept is taken from "Revisiting Out-of-SSA Translation + * for Correctness, Code Quality, and Efficiency" by Boissinot et. al.. + * + * Each SSA definition is associated with a merge_node and the association + * is represented by a combination of a hash table and the "def" parameter + * in the merge_node structure. The merge_set stores a linked list of + * merge_node's in dominence order of the ssa definitions. (Since the + * liveness analysis pass indexes the SSA values in dominence order for us, + * this is an easy thing to keep up.) It is assumed that no pair of the + * nodes in a given set interfere. Merging two sets or checking for + * interference can be done in a single linear-time merge-sort walk of the + * two lists of nodes. + */ +struct merge_set; + +typedef struct { + struct exec_node node; + struct merge_set *set; + nir_ssa_def *def; +} merge_node; + +typedef struct merge_set { + struct exec_list nodes; + unsigned size; + nir_register *reg; +} merge_set; + +#if 0 +static void +merge_set_dump(merge_set *set, FILE *fp) +{ + nir_ssa_def *dom[set->size]; + int dom_idx = -1; + + foreach_list_typed(merge_node, node, node, &set->nodes) { + while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) + dom_idx--; + + for (int i = 0; i <= dom_idx; i++) + fprintf(fp, " "); + + if (node->def->name) + fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); + else + fprintf(fp, "ssa_%d\n", node->def->index); + + dom[++dom_idx] = node->def; + } +} +#endif + +static merge_node * +get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) +{ + struct hash_entry *entry = + _mesa_hash_table_search(state->merge_node_table, def); + if (entry) + return entry->data; + + merge_set *set = ralloc(state->dead_ctx, merge_set); + exec_list_make_empty(&set->nodes); + set->size = 1; + set->reg = NULL; + + merge_node *node = ralloc(state->dead_ctx, merge_node); + node->set = set; + node->def = def; + exec_list_push_head(&set->nodes, &node->node); + + _mesa_hash_table_insert(state->merge_node_table, def, node); + + return node; +} + +static bool +merge_nodes_interfere(merge_node *a, merge_node *b) +{ + return nir_ssa_defs_interfere(a->def, b->def); +} + +/* Merges b into a */ +static merge_set * +merge_merge_sets(merge_set *a, merge_set *b) +{ + struct exec_node *an = exec_list_get_head(&a->nodes); + struct exec_node *bn = exec_list_get_head(&b->nodes); + while (!exec_node_is_tail_sentinel(bn)) { + merge_node *a_node = exec_node_data(merge_node, an, node); + merge_node *b_node = exec_node_data(merge_node, bn, node); + + if (exec_node_is_tail_sentinel(an) || + a_node->def->live_index > b_node->def->live_index) { + struct exec_node *next = bn->next; + exec_node_remove(bn); + exec_node_insert_node_before(an, bn); + exec_node_data(merge_node, bn, node)->set = a; + bn = next; + } else { + an = an->next; + } + } + + a->size += b->size; + b->size = 0; + + return a; +} + +/* Checks for any interference between two merge sets + * + * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA + * Translation for Correctness, Code Quality, and Efficiency" by + * Boissinot et. al. + */ +static bool +merge_sets_interfere(merge_set *a, merge_set *b) +{ + merge_node *dom[a->size + b->size]; + int dom_idx = -1; + + struct exec_node *an = exec_list_get_head(&a->nodes); + struct exec_node *bn = exec_list_get_head(&b->nodes); + while (!exec_node_is_tail_sentinel(an) || + !exec_node_is_tail_sentinel(bn)) { + + merge_node *current; + if (exec_node_is_tail_sentinel(an)) { + current = exec_node_data(merge_node, bn, node); + bn = bn->next; + } else if (exec_node_is_tail_sentinel(bn)) { + current = exec_node_data(merge_node, an, node); + an = an->next; + } else { + merge_node *a_node = exec_node_data(merge_node, an, node); + merge_node *b_node = exec_node_data(merge_node, bn, node); + + if (a_node->def->live_index <= b_node->def->live_index) { + current = a_node; + an = an->next; + } else { + current = b_node; + bn = bn->next; + } + } + + while (dom_idx >= 0 && + !ssa_def_dominates(dom[dom_idx]->def, current->def)) + dom_idx--; + + if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) + return true; + + dom[++dom_idx] = current; + } + + return false; +} + +static nir_parallel_copy_instr * +block_get_parallel_copy_at_end(nir_block *block, void *mem_ctx) +{ + nir_instr *last_instr = nir_block_last_instr(block); + + /* First we try and find a parallel copy if it already exists. If the + * last instruction is a jump, it will be right before the jump; + * otherwise, it will be the last instruction. + */ + nir_instr *pcopy_instr; + if (last_instr != NULL && last_instr->type == nir_instr_type_jump) + pcopy_instr = nir_instr_prev(last_instr); + else + pcopy_instr = last_instr; + + if (pcopy_instr != NULL && + pcopy_instr->type == nir_instr_type_parallel_copy) { + /* A parallel copy already exists. */ + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(pcopy_instr); + + /* This parallel copy may be the copy for the beginning of some + * block, so we need to check for that before we return it. + */ + if (pcopy->at_end) + return pcopy; + } + + /* At this point, we haven't found a suitable parallel copy, so we + * have to create one. + */ + nir_parallel_copy_instr *pcopy = nir_parallel_copy_instr_create(mem_ctx); + pcopy->at_end = true; + + if (last_instr && last_instr->type == nir_instr_type_jump) { + nir_instr_insert_before(last_instr, &pcopy->instr); + } else { + nir_instr_insert_after_block(block, &pcopy->instr); + } + + return pcopy; +} + +static bool +isolate_phi_nodes_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; - if (src->is_ssa) { - struct hash_entry *entry = - _mesa_hash_table_search(state->ssa_table, src->ssa); - assert(entry); - memset(src, 0, sizeof *src); - src->reg.reg = (nir_register *)entry->data; + nir_instr *last_phi_instr = NULL; + nir_foreach_instr(block, instr) { + /* Phi nodes only ever come at the start of a block */ + if (instr->type != nir_instr_type_phi) + break; + + last_phi_instr = instr; + } + + /* If we don't have any phi's, then there's nothing for us to do. */ + if (last_phi_instr == NULL) + return true; + + /* If we have phi nodes, we need to create a parallel copy at the + * start of this block but after the phi nodes. + */ + nir_parallel_copy_instr *block_pcopy = + nir_parallel_copy_instr_create(state->dead_ctx); + nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); + + nir_foreach_instr(block, instr) { + /* Phi nodes only ever come at the start of a block */ + if (instr->type != nir_instr_type_phi) + break; + + nir_phi_instr *phi = nir_instr_as_phi(instr); + assert(phi->dest.is_ssa); + foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { + nir_parallel_copy_instr *pcopy = + block_get_parallel_copy_at_end(src->pred, state->dead_ctx); + + nir_parallel_copy_copy *copy = ralloc(state->dead_ctx, + nir_parallel_copy_copy); + exec_list_push_tail(&pcopy->copies, ©->node); + + copy->src = nir_src_copy(src->src, state->dead_ctx); + _mesa_set_add(src->src.ssa->uses, + _mesa_hash_pointer(&pcopy->instr), &pcopy->instr); + + copy->dest.is_ssa = true; + nir_ssa_def_init(state->impl, &pcopy->instr, ©->dest.ssa, + phi->dest.ssa.num_components, src->src.ssa->name); + + struct set_entry *entry = _mesa_set_search(src->src.ssa->uses, + _mesa_hash_pointer(instr), + instr); + if (entry) + /* It is possible that a phi node can use the same source twice + * but for different basic blocks. If that happens, entry will + * be NULL because we already deleted it. This is safe + * because, by the time the loop is done, we will have deleted + * all of the sources of the phi from their respective use sets + * and moved them to the parallel copy definitions. + */ + _mesa_set_remove(src->src.ssa->uses, entry); + + src->src.ssa = ©->dest.ssa; + _mesa_set_add(copy->dest.ssa.uses, _mesa_hash_pointer(instr), instr); + } + + nir_parallel_copy_copy *copy = ralloc(state->dead_ctx, + nir_parallel_copy_copy); + exec_list_push_tail(&block_pcopy->copies, ©->node); + + copy->dest.is_ssa = true; + nir_ssa_def_init(state->impl, &block_pcopy->instr, ©->dest.ssa, + phi->dest.ssa.num_components, phi->dest.ssa.name); + + nir_src copy_dest_src = { + .ssa = ©->dest.ssa, + .is_ssa = true, + }; + nir_ssa_def_rewrite_uses(&phi->dest.ssa, copy_dest_src, state->mem_ctx); + + copy->src.is_ssa = true; + copy->src.ssa = &phi->dest.ssa; + _mesa_set_add(phi->dest.ssa.uses, + _mesa_hash_pointer(&block_pcopy->instr), + &block_pcopy->instr); + } + + return true; +} + +static bool +coalesce_phi_nodes_block(nir_block *block, void *void_state) +{ + struct from_ssa_state *state = void_state; + + nir_foreach_instr(block, instr) { + /* Phi nodes only ever come at the start of a block */ + if (instr->type != nir_instr_type_phi) + break; + + nir_phi_instr *phi = nir_instr_as_phi(instr); + + assert(phi->dest.is_ssa); + merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); + + foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { + assert(src->src.is_ssa); + merge_node *src_node = get_merge_node(src->src.ssa, state); + if (src_node->set != dest_node->set) + merge_merge_sets(dest_node->set, src_node->set); + } + } + + return true; +} + +static void +agressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, + struct from_ssa_state *state) +{ + foreach_list_typed_safe(nir_parallel_copy_copy, copy, node, &pcopy->copies) { + if (!copy->src.is_ssa) + continue; + + /* Don't try and coalesce these */ + if (copy->dest.ssa.num_components != copy->src.ssa->num_components) + continue; + + merge_node *src_node = get_merge_node(copy->src.ssa, state); + merge_node *dest_node = get_merge_node(©->dest.ssa, state); + + if (src_node->set == dest_node->set) + continue; + + if (!merge_sets_interfere(src_node->set, dest_node->set)) + merge_merge_sets(src_node->set, dest_node->set); + } +} + +static bool +agressive_coalesce_block(nir_block *block, void *void_state) +{ + struct from_ssa_state *state = void_state; + + nir_foreach_instr(block, instr) { + /* Phi nodes only ever come at the start of a block */ + if (instr->type != nir_instr_type_phi) { + if (instr->type != nir_instr_type_parallel_copy) + break; /* The parallel copy must be right after the phis */ + + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr); + + agressive_coalesce_parallel_copy(pcopy, state); + + if (pcopy->at_end) + return true; + + break; + } + } + + nir_instr *last_instr = nir_block_last_instr(block); + if (last_instr && last_instr->type == nir_instr_type_parallel_copy) { + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(last_instr); + if (pcopy->at_end) + agressive_coalesce_parallel_copy(pcopy, state); } return true; } static nir_register * -reg_create_from_def(nir_ssa_def *def, struct from_ssa_state *state) +get_register_for_ssa_def(nir_ssa_def *def, struct from_ssa_state *state) +{ + struct hash_entry *entry = + _mesa_hash_table_search(state->merge_node_table, def); + if (entry) { + merge_node *node = (merge_node *)entry->data; + + /* If it doesn't have a register yet, create one. Note that all of + * the things in the merge set should be the same so it doesn't + * matter which node's definition we use. + */ + if (node->set->reg == NULL) { + node->set->reg = nir_local_reg_create(state->impl); + node->set->reg->name = def->name; + node->set->reg->num_components = def->num_components; + node->set->reg->num_array_elems = 0; + } + + return node->set->reg; + } + + entry = _mesa_hash_table_search(state->ssa_table, def); + if (entry) { + return (nir_register *)entry->data; + } else { + nir_register *reg = nir_local_reg_create(state->impl); + reg->name = def->name; + reg->num_components = def->num_components; + reg->num_array_elems = 0; + + _mesa_hash_table_insert(state->ssa_table, def, reg); + return reg; + } +} + +static bool +rewrite_ssa_src(nir_src *src, void *void_state) { - nir_register *reg = nir_local_reg_create(state->current_impl); - reg->name = def->name; - reg->num_components = def->num_components; - reg->num_array_elems = 0; + struct from_ssa_state *state = void_state; - /* Might as well steal the use-def information from SSA */ - _mesa_set_destroy(reg->uses, NULL); - reg->uses = def->uses; - _mesa_set_destroy(reg->if_uses, NULL); - reg->if_uses = def->if_uses; - _mesa_set_add(reg->defs, _mesa_hash_pointer(def->parent_instr), - def->parent_instr); + if (src->is_ssa) { + /* We don't need to remove it from the uses set because that is going + * away. We just need to add it to the one for the register. */ + nir_register *reg = get_register_for_ssa_def(src->ssa, state); + memset(src, 0, sizeof *src); + src->reg.reg = reg; - /* Add the new register to the table and rewrite the destination */ - _mesa_hash_table_insert(state->ssa_table, def, reg); + _mesa_set_add(reg->uses, _mesa_hash_pointer(state->instr), state->instr); + } - return reg; + return true; } static bool @@ -82,80 +499,292 @@ rewrite_ssa_dest(nir_dest *dest, void *void_state) struct from_ssa_state *state = void_state; if (dest->is_ssa) { - nir_register *reg = reg_create_from_def(&dest->ssa, state); + _mesa_set_destroy(dest->ssa.uses, NULL); + _mesa_set_destroy(dest->ssa.if_uses, NULL); + + nir_register *reg = get_register_for_ssa_def(&dest->ssa, state); memset(dest, 0, sizeof *dest); dest->reg.reg = reg; + + _mesa_set_add(reg->defs, _mesa_hash_pointer(state->instr), state->instr); } return true; } +/* Resolves ssa definitions to registers. While we're at it, we also + * remove phi nodes and ssa_undef instructions + */ static bool -convert_from_ssa_block(nir_block *block, void *void_state) +resolve_registers_block(nir_block *block, void *void_state) { struct from_ssa_state *state = void_state; nir_foreach_instr_safe(block, instr) { - if (instr->type == nir_instr_type_ssa_undef) { - nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); - reg_create_from_def(&undef->def, state); - exec_node_remove(&instr->node); + state->instr = instr; + nir_foreach_src(instr, rewrite_ssa_src, state); + nir_foreach_dest(instr, rewrite_ssa_dest, state); + + if (instr->type == nir_instr_type_ssa_undef || + instr->type == nir_instr_type_phi) { + nir_instr_remove(instr); ralloc_steal(state->dead_ctx, instr); - } else { - nir_foreach_src(instr, rewrite_ssa_src, state); - nir_foreach_dest(instr, rewrite_ssa_dest, state); + continue; } } + state->instr = NULL; nir_if *following_if = nir_block_following_if(block); - if (following_if) - rewrite_ssa_src(&following_if->condition, state); + if (following_if && following_if->condition.is_ssa) { + nir_register *reg = get_register_for_ssa_def(following_if->condition.ssa, + state); + memset(&following_if->condition, 0, sizeof following_if->condition); + following_if->condition.reg.reg = reg; + + _mesa_set_add(reg->if_uses, _mesa_hash_pointer(following_if), + following_if); + } return true; } -static bool -remove_phi_nodes(nir_block *block, void *void_state) +static void +emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src, + void *mem_ctx) { - struct from_ssa_state *state = void_state; + assert(!dest_src.is_ssa && + dest_src.reg.indirect == NULL && + dest_src.reg.base_offset == 0); + nir_dest dest = { + .reg.reg = dest_src.reg.reg, + .reg.indirect = NULL, + .reg.base_offset = 0, + .is_ssa = false, + }; - nir_foreach_instr_safe(block, instr) { - /* Phi nodes only ever come at the start of a block */ - if (instr->type != nir_instr_type_phi) - break; + if (src.is_ssa) + assert(src.ssa->num_components >= dest.reg.reg->num_components); + else + assert(src.reg.reg->num_components >= dest.reg.reg->num_components); - nir_foreach_dest(instr, rewrite_ssa_dest, state); + nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov); + mov->src[0].src = nir_src_copy(src, mem_ctx); + mov->dest.dest = nir_dest_copy(dest, mem_ctx); + mov->dest.write_mask = (1 << dest.reg.reg->num_components) - 1; - nir_phi_instr *phi = nir_instr_as_phi(instr); - foreach_list_typed(nir_phi_src, src, node, &phi->srcs) { - assert(src->src.is_ssa); - struct hash_entry *entry = - _mesa_hash_table_search(state->ssa_table, src->src.ssa); - nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx, nir_op_imov); - mov->dest.dest = nir_dest_copy(phi->dest, state->mem_ctx); - if (entry) { - nir_register *reg = (nir_register *)entry->data; - mov->src[0].src.reg.reg = reg; - mov->dest.write_mask = (1 << reg->num_components) - 1; - } else { - mov->src[0].src = nir_src_copy(src->src, state->mem_ctx); - mov->dest.write_mask = (1 << src->src.ssa->num_components) - 1; - } + nir_instr_insert_before(&pcopy->instr, &mov->instr); +} + +/* Resolves a single parallel copy operation into a sequence of mov's + * + * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for + * Correctness, Code Quality, and Efficiency" by Boissinot et. al.. + * However, I never got the algorithm to work as written, so this version + * is slightly modified. + * + * The algorithm works by playing this little shell game with the values. + * We start by recording where every source value is and which source value + * each destination value should recieve. We then grab any copy whose + * destination is "empty", i.e. not used as a source, and do the following: + * - Find where its source value currently lives + * - Emit the move instruction + * - Set the location of the source value to the destination + * - Mark the location containing the source value + * - Mark the destination as no longer needing to be copied + * + * When we run out of "empty" destinations, we have a cycle and so we + * create a temporary register, copy to that register, and mark the value + * we copied as living in that temporary. Now, the cycle is broken, so we + * can continue with the above steps. + */ +static void +resolve_parallel_copy(nir_parallel_copy_instr *pcopy, + struct from_ssa_state *state) +{ + unsigned num_copies = 0; + foreach_list_typed_safe(nir_parallel_copy_copy, copy, node, &pcopy->copies) { + /* Sources may be SSA */ + if (!copy->src.is_ssa && copy->src.reg.reg == copy->dest.reg.reg) + continue; + + /* Set both indices equal to UINT_MAX to mark them as not indexed yet. */ + num_copies++; + } + + if (num_copies == 0) { + /* Hooray, we don't need any copies! */ + nir_instr_remove(&pcopy->instr); + return; + } + + /* The register/source corresponding to the given index */ + nir_src values[num_copies * 2]; + memset(values, 0, sizeof values); - nir_instr *block_end = nir_block_last_instr(src->pred); - if (block_end && block_end->type == nir_instr_type_jump) { - /* If the last instruction in the block is a jump, we want to - * place the moves after the jump. Otherwise, we want to place - * them at the very end. + /* The current location of a given piece of data */ + int loc[num_copies * 2]; + + /* The piece of data that the given piece of data is to be copied from */ + int pred[num_copies * 2]; + + /* Initialize loc and pred. We will use -1 for "null" */ + memset(loc, -1, sizeof loc); + memset(pred, -1, sizeof pred); + + /* The destinations we have yet to properly fill */ + int to_do[num_copies * 2]; + int to_do_idx = -1; + + /* Now we set everything up: + * - All values get assigned a temporary index + * - Current locations are set from sources + * - Predicessors are recorded from sources and destinations + */ + int num_vals = 0; + foreach_list_typed(nir_parallel_copy_copy, copy, node, &pcopy->copies) { + /* Sources may be SSA */ + if (!copy->src.is_ssa && copy->src.reg.reg == copy->dest.reg.reg) + continue; + + int src_idx = -1; + for (int i = 0; i < num_vals; ++i) { + if (nir_srcs_equal(values[i], copy->src)) + src_idx = i; + } + if (src_idx < 0) { + src_idx = num_vals++; + values[src_idx] = copy->src; + } + + nir_src dest_src = { + .reg.reg = copy->dest.reg.reg, + .reg.indirect = NULL, + .reg.base_offset = 0, + .is_ssa = false, + }; + + int dest_idx = -1; + for (int i = 0; i < num_vals; ++i) { + if (nir_srcs_equal(values[i], dest_src)) { + /* Each destination of a parallel copy instruction should be + * unique. A destination may get used as a source, so we still + * have to walk the list. However, the predecessor should not, + * at this point, be set yet, so we should have -1 here. */ - exec_node_insert_node_before(&block_end->node, &mov->instr.node); - } else { - exec_list_push_tail(&src->pred->instr_list, &mov->instr.node); + assert(pred[i] == -1); + dest_idx = i; } } + if (dest_idx < 0) { + dest_idx = num_vals++; + values[dest_idx] = dest_src; + } + + loc[src_idx] = src_idx; + pred[dest_idx] = src_idx; + + to_do[++to_do_idx] = dest_idx; + } + + /* Currently empty destinations we can go ahead and fill */ + int ready[num_copies * 2]; + int ready_idx = -1; - exec_node_remove(&instr->node); - ralloc_steal(state->dead_ctx, instr); + /* Mark the ones that are ready for copying. We know an index is a + * destination if it has a predecessor and it's ready for copying if + * it's not marked as containing data. + */ + for (int i = 0; i < num_vals; i++) { + if (pred[i] != -1 && loc[i] == -1) + ready[++ready_idx] = i; + } + + while (to_do_idx >= 0) { + while (ready_idx >= 0) { + int b = ready[ready_idx--]; + int a = pred[b]; + emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx); + + /* If any other copies want a they can find it at b */ + loc[a] = b; + + /* b has been filled, mark it as not needing to be copied */ + pred[b] = -1; + + /* If a needs to be filled, it's ready for copying now */ + if (pred[a] != -1) + ready[++ready_idx] = a; + } + int b = to_do[to_do_idx--]; + if (pred[b] == -1) + continue; + + /* If we got here, then we don't have any more trivial copies that we + * can do. We have to break a cycle, so we create a new temporary + * register for that purpose. Normally, if going out of SSA after + * register allocation, you would want to avoid creating temporary + * registers. However, we are going out of SSA before register + * allocation, so we would rather not create extra register + * dependencies for the backend to deal with. If it wants, the + * backend can coalesce the (possibly multiple) temporaries. + */ + assert(num_vals < num_copies * 2); + nir_register *reg = nir_local_reg_create(state->impl); + reg->name = "copy_temp"; + reg->num_array_elems = 0; + if (values[b].is_ssa) + reg->num_components = values[b].ssa->num_components; + else + reg->num_components = values[b].reg.reg->num_components; + values[num_vals].is_ssa = false; + values[num_vals].reg.reg = reg; + + emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx); + loc[b] = num_vals; + ready[++ready_idx] = b; + num_vals++; + } + + nir_instr_remove(&pcopy->instr); +} + +/* Resolves the parallel copies in a block. Each block can have at most + * two: One at the beginning, right after all the phi noces, and one at + * the end (or right before the final jump if it exists). + */ +static bool +resolve_parallel_copies_block(nir_block *block, void *void_state) +{ + struct from_ssa_state *state = void_state; + + /* At this point, we have removed all of the phi nodes. If a parallel + * copy existed right after the phi nodes in this block, it is now the + * first instruction. + */ + nir_instr *first_instr = nir_block_first_instr(block); + if (first_instr == NULL) + return true; /* Empty, nothing to do. */ + + if (first_instr->type == nir_instr_type_parallel_copy) { + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); + + resolve_parallel_copy(pcopy, state); + } + + nir_instr *last_instr = nir_block_last_instr(block); + if (last_instr == NULL) + return true; /* Now empty, nothing to do. */ + + /* If the last instruction is a jump, the parallel copy will be before + * the jump. + */ + if (last_instr->type == nir_instr_type_jump) + last_instr = nir_instr_prev(last_instr); + + if (last_instr && last_instr->type == nir_instr_type_parallel_copy) { + nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(last_instr); + if (pcopy->at_end) + resolve_parallel_copy(pcopy, state); } return true; @@ -168,16 +797,30 @@ nir_convert_from_ssa_impl(nir_function_impl *impl) state.mem_ctx = ralloc_parent(impl); state.dead_ctx = ralloc_context(NULL); - state.current_impl = impl; + state.impl = impl; + state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, + _mesa_key_pointer_equal); + + nir_foreach_block(impl, isolate_phi_nodes_block, &state); + + nir_metadata_dirty(impl, nir_metadata_block_index | + nir_metadata_dominance); + nir_metadata_require(impl, nir_metadata_live_variables | + nir_metadata_dominance); + + nir_foreach_block(impl, coalesce_phi_nodes_block, &state); + nir_foreach_block(impl, agressive_coalesce_block, &state); + state.ssa_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); + nir_foreach_block(impl, resolve_registers_block, &state); - nir_foreach_block(impl, remove_phi_nodes, &state); - nir_foreach_block(impl, convert_from_ssa_block, &state); + nir_foreach_block(impl, resolve_parallel_copies_block, &state); - /* Clean up dead instructions and the hash table */ - ralloc_free(state.dead_ctx); + /* Clean up dead instructions and the hash tables */ _mesa_hash_table_destroy(state.ssa_table, NULL); + _mesa_hash_table_destroy(state.merge_node_table, NULL); + ralloc_free(state.dead_ctx); } void |