diff options
author | Emil Velikov <[email protected]> | 2016-01-18 12:16:48 +0200 |
---|---|---|
committer | Emil Velikov <[email protected]> | 2016-01-26 16:08:33 +0000 |
commit | eb63640c1d38a200a7b1540405051d3ff79d0d8a (patch) | |
tree | da46321a41f309b1d02aeb14d5d5487791c45aeb /src/glsl/ir_constant_expression.cpp | |
parent | a39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff) |
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]>
Acked-by: Matt Turner <[email protected]>
Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/glsl/ir_constant_expression.cpp')
-rw-r--r-- | src/glsl/ir_constant_expression.cpp | 2092 |
1 files changed, 0 insertions, 2092 deletions
diff --git a/src/glsl/ir_constant_expression.cpp b/src/glsl/ir_constant_expression.cpp deleted file mode 100644 index fbbf7794da6..00000000000 --- a/src/glsl/ir_constant_expression.cpp +++ /dev/null @@ -1,2092 +0,0 @@ -/* - * Copyright © 2010 Intel Corporation - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice (including the next - * paragraph) shall be included in all copies or substantial portions of the - * Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - * DEALINGS IN THE SOFTWARE. - */ - -/** - * \file ir_constant_expression.cpp - * Evaluate and process constant valued expressions - * - * In GLSL, constant valued expressions are used in several places. These - * must be processed and evaluated very early in the compilation process. - * - * * Sizes of arrays - * * Initializers for uniforms - * * Initializers for \c const variables - */ - -#include <math.h> -#include "main/core.h" /* for MAX2, MIN2, CLAMP */ -#include "util/rounding.h" /* for _mesa_roundeven */ -#include "util/half_float.h" -#include "ir.h" -#include "compiler/glsl_types.h" -#include "program/hash_table.h" - -static float -dot_f(ir_constant *op0, ir_constant *op1) -{ - assert(op0->type->is_float() && op1->type->is_float()); - - float result = 0; - for (unsigned c = 0; c < op0->type->components(); c++) - result += op0->value.f[c] * op1->value.f[c]; - - return result; -} - -static double -dot_d(ir_constant *op0, ir_constant *op1) -{ - assert(op0->type->is_double() && op1->type->is_double()); - - double result = 0; - for (unsigned c = 0; c < op0->type->components(); c++) - result += op0->value.d[c] * op1->value.d[c]; - - return result; -} - -/* This method is the only one supported by gcc. Unions in particular - * are iffy, and read-through-converted-pointer is killed by strict - * aliasing. OTOH, the compiler sees through the memcpy, so the - * resulting asm is reasonable. - */ -static float -bitcast_u2f(unsigned int u) -{ - assert(sizeof(float) == sizeof(unsigned int)); - float f; - memcpy(&f, &u, sizeof(f)); - return f; -} - -static unsigned int -bitcast_f2u(float f) -{ - assert(sizeof(float) == sizeof(unsigned int)); - unsigned int u; - memcpy(&u, &f, sizeof(f)); - return u; -} - -/** - * Evaluate one component of a floating-point 4x8 unpacking function. - */ -typedef uint8_t -(*pack_1x8_func_t)(float); - -/** - * Evaluate one component of a floating-point 2x16 unpacking function. - */ -typedef uint16_t -(*pack_1x16_func_t)(float); - -/** - * Evaluate one component of a floating-point 4x8 unpacking function. - */ -typedef float -(*unpack_1x8_func_t)(uint8_t); - -/** - * Evaluate one component of a floating-point 2x16 unpacking function. - */ -typedef float -(*unpack_1x16_func_t)(uint16_t); - -/** - * Evaluate a 2x16 floating-point packing function. - */ -static uint32_t -pack_2x16(pack_1x16_func_t pack_1x16, - float x, float y) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * packSnorm2x16 - * ------------- - * The first component of the vector will be written to the least - * significant bits of the output; the last component will be written to - * the most significant bits. - * - * The specifications for the other packing functions contain similar - * language. - */ - uint32_t u = 0; - u |= ((uint32_t) pack_1x16(x) << 0); - u |= ((uint32_t) pack_1x16(y) << 16); - return u; -} - -/** - * Evaluate a 4x8 floating-point packing function. - */ -static uint32_t -pack_4x8(pack_1x8_func_t pack_1x8, - float x, float y, float z, float w) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * packSnorm4x8 - * ------------ - * The first component of the vector will be written to the least - * significant bits of the output; the last component will be written to - * the most significant bits. - * - * The specifications for the other packing functions contain similar - * language. - */ - uint32_t u = 0; - u |= ((uint32_t) pack_1x8(x) << 0); - u |= ((uint32_t) pack_1x8(y) << 8); - u |= ((uint32_t) pack_1x8(z) << 16); - u |= ((uint32_t) pack_1x8(w) << 24); - return u; -} - -/** - * Evaluate a 2x16 floating-point unpacking function. - */ -static void -unpack_2x16(unpack_1x16_func_t unpack_1x16, - uint32_t u, - float *x, float *y) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * unpackSnorm2x16 - * --------------- - * The first component of the returned vector will be extracted from - * the least significant bits of the input; the last component will be - * extracted from the most significant bits. - * - * The specifications for the other unpacking functions contain similar - * language. - */ - *x = unpack_1x16((uint16_t) (u & 0xffff)); - *y = unpack_1x16((uint16_t) (u >> 16)); -} - -/** - * Evaluate a 4x8 floating-point unpacking function. - */ -static void -unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u, - float *x, float *y, float *z, float *w) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * unpackSnorm4x8 - * -------------- - * The first component of the returned vector will be extracted from - * the least significant bits of the input; the last component will be - * extracted from the most significant bits. - * - * The specifications for the other unpacking functions contain similar - * language. - */ - *x = unpack_1x8((uint8_t) (u & 0xff)); - *y = unpack_1x8((uint8_t) (u >> 8)); - *z = unpack_1x8((uint8_t) (u >> 16)); - *w = unpack_1x8((uint8_t) (u >> 24)); -} - -/** - * Evaluate one component of packSnorm4x8. - */ -static uint8_t -pack_snorm_1x8(float x) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * packSnorm4x8 - * ------------ - * The conversion for component c of v to fixed point is done as - * follows: - * - * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) - */ - return (uint8_t) - _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f); -} - -/** - * Evaluate one component of packSnorm2x16. - */ -static uint16_t -pack_snorm_1x16(float x) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * packSnorm2x16 - * ------------- - * The conversion for component c of v to fixed point is done as - * follows: - * - * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) - */ - return (uint16_t) - _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f); -} - -/** - * Evaluate one component of unpackSnorm4x8. - */ -static float -unpack_snorm_1x8(uint8_t u) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * unpackSnorm4x8 - * -------------- - * The conversion for unpacked fixed-point value f to floating point is - * done as follows: - * - * unpackSnorm4x8: clamp(f / 127.0, -1, +1) - */ - return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); -} - -/** - * Evaluate one component of unpackSnorm2x16. - */ -static float -unpack_snorm_1x16(uint16_t u) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * unpackSnorm2x16 - * --------------- - * The conversion for unpacked fixed-point value f to floating point is - * done as follows: - * - * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) - */ - return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); -} - -/** - * Evaluate one component packUnorm4x8. - */ -static uint8_t -pack_unorm_1x8(float x) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * packUnorm4x8 - * ------------ - * The conversion for component c of v to fixed point is done as - * follows: - * - * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) - */ - return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f); -} - -/** - * Evaluate one component packUnorm2x16. - */ -static uint16_t -pack_unorm_1x16(float x) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * packUnorm2x16 - * ------------- - * The conversion for component c of v to fixed point is done as - * follows: - * - * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) - */ - return (uint16_t) (int) - _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f); -} - -/** - * Evaluate one component of unpackUnorm4x8. - */ -static float -unpack_unorm_1x8(uint8_t u) -{ - /* From section 8.4 of the GLSL 4.30 spec: - * - * unpackUnorm4x8 - * -------------- - * The conversion for unpacked fixed-point value f to floating point is - * done as follows: - * - * unpackUnorm4x8: f / 255.0 - */ - return (float) u / 255.0f; -} - -/** - * Evaluate one component of unpackUnorm2x16. - */ -static float -unpack_unorm_1x16(uint16_t u) -{ - /* From section 8.4 of the GLSL ES 3.00 spec: - * - * unpackUnorm2x16 - * --------------- - * The conversion for unpacked fixed-point value f to floating point is - * done as follows: - * - * unpackUnorm2x16: f / 65535.0 - */ - return (float) u / 65535.0f; -} - -/** - * Evaluate one component of packHalf2x16. - */ -static uint16_t -pack_half_1x16(float x) -{ - return _mesa_float_to_half(x); -} - -/** - * Evaluate one component of unpackHalf2x16. - */ -static float -unpack_half_1x16(uint16_t u) -{ - return _mesa_half_to_float(u); -} - -/** - * Get the constant that is ultimately referenced by an r-value, in a constant - * expression evaluation context. - * - * The offset is used when the reference is to a specific column of a matrix. - */ -static bool -constant_referenced(const ir_dereference *deref, - struct hash_table *variable_context, - ir_constant *&store, int &offset) -{ - store = NULL; - offset = 0; - - if (variable_context == NULL) - return false; - - switch (deref->ir_type) { - case ir_type_dereference_array: { - const ir_dereference_array *const da = - (const ir_dereference_array *) deref; - - ir_constant *const index_c = - da->array_index->constant_expression_value(variable_context); - - if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) - break; - - const int index = index_c->type->base_type == GLSL_TYPE_INT ? - index_c->get_int_component(0) : - index_c->get_uint_component(0); - - ir_constant *substore; - int suboffset; - - const ir_dereference *const deref = da->array->as_dereference(); - if (!deref) - break; - - if (!constant_referenced(deref, variable_context, substore, suboffset)) - break; - - const glsl_type *const vt = da->array->type; - if (vt->is_array()) { - store = substore->get_array_element(index); - offset = 0; - } else if (vt->is_matrix()) { - store = substore; - offset = index * vt->vector_elements; - } else if (vt->is_vector()) { - store = substore; - offset = suboffset + index; - } - - break; - } - - case ir_type_dereference_record: { - const ir_dereference_record *const dr = - (const ir_dereference_record *) deref; - - const ir_dereference *const deref = dr->record->as_dereference(); - if (!deref) - break; - - ir_constant *substore; - int suboffset; - - if (!constant_referenced(deref, variable_context, substore, suboffset)) - break; - - /* Since we're dropping it on the floor... - */ - assert(suboffset == 0); - - store = substore->get_record_field(dr->field); - break; - } - - case ir_type_dereference_variable: { - const ir_dereference_variable *const dv = - (const ir_dereference_variable *) deref; - - store = (ir_constant *) hash_table_find(variable_context, dv->var); - break; - } - - default: - assert(!"Should not get here."); - break; - } - - return store != NULL; -} - - -ir_constant * -ir_rvalue::constant_expression_value(struct hash_table *) -{ - assert(this->type->is_error()); - return NULL; -} - -ir_constant * -ir_expression::constant_expression_value(struct hash_table *variable_context) -{ - if (this->type->is_error()) - return NULL; - - ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, }; - ir_constant_data data; - - memset(&data, 0, sizeof(data)); - - for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { - op[operand] = this->operands[operand]->constant_expression_value(variable_context); - if (!op[operand]) - return NULL; - } - - if (op[1] != NULL) - switch (this->operation) { - case ir_binop_lshift: - case ir_binop_rshift: - case ir_binop_ldexp: - case ir_binop_interpolate_at_offset: - case ir_binop_interpolate_at_sample: - case ir_binop_vector_extract: - case ir_triop_csel: - case ir_triop_bitfield_extract: - break; - - default: - assert(op[0]->type->base_type == op[1]->type->base_type); - break; - } - - bool op0_scalar = op[0]->type->is_scalar(); - bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); - - /* When iterating over a vector or matrix's components, we want to increase - * the loop counter. However, for scalars, we want to stay at 0. - */ - unsigned c0_inc = op0_scalar ? 0 : 1; - unsigned c1_inc = op1_scalar ? 0 : 1; - unsigned components; - if (op1_scalar || !op[1]) { - components = op[0]->type->components(); - } else { - components = op[1]->type->components(); - } - - void *ctx = ralloc_parent(this); - - /* Handle array operations here, rather than below. */ - if (op[0]->type->is_array()) { - assert(op[1] != NULL && op[1]->type->is_array()); - switch (this->operation) { - case ir_binop_all_equal: - return new(ctx) ir_constant(op[0]->has_value(op[1])); - case ir_binop_any_nequal: - return new(ctx) ir_constant(!op[0]->has_value(op[1])); - default: - break; - } - return NULL; - } - - switch (this->operation) { - case ir_unop_bit_not: - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - for (unsigned c = 0; c < components; c++) - data.i[c] = ~ op[0]->value.i[c]; - break; - case GLSL_TYPE_UINT: - for (unsigned c = 0; c < components; c++) - data.u[c] = ~ op[0]->value.u[c]; - break; - default: - assert(0); - } - break; - - case ir_unop_logic_not: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = !op[0]->value.b[c]; - break; - - case ir_unop_f2i: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = (int) op[0]->value.f[c]; - } - break; - case ir_unop_f2u: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = (unsigned) op[0]->value.f[c]; - } - break; - case ir_unop_i2f: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.i[c]; - } - break; - case ir_unop_u2f: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.u[c]; - } - break; - case ir_unop_b2f: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; - } - break; - case ir_unop_f2b: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; - } - break; - case ir_unop_b2i: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.b[c] ? 1 : 0; - } - break; - case ir_unop_i2b: - assert(op[0]->type->is_integer()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.u[c] ? true : false; - } - break; - case ir_unop_u2i: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = op[0]->value.u[c]; - } - break; - case ir_unop_i2u: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.i[c]; - } - break; - case ir_unop_bitcast_i2f: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = bitcast_u2f(op[0]->value.i[c]); - } - break; - case ir_unop_bitcast_f2i: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = bitcast_f2u(op[0]->value.f[c]); - } - break; - case ir_unop_bitcast_u2f: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = bitcast_u2f(op[0]->value.u[c]); - } - break; - case ir_unop_bitcast_f2u: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = bitcast_f2u(op[0]->value.f[c]); - } - break; - case ir_unop_d2f: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = op[0]->value.d[c]; - } - break; - case ir_unop_f2d: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.f[c]; - } - break; - case ir_unop_d2i: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = op[0]->value.d[c]; - } - break; - case ir_unop_i2d: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.i[c]; - } - break; - case ir_unop_d2u: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.d[c]; - } - break; - case ir_unop_u2d: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.u[c]; - } - break; - case ir_unop_d2b: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.d[c] != 0.0; - } - break; - case ir_unop_trunc: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = trunc(op[0]->value.d[c]); - else - data.f[c] = truncf(op[0]->value.f[c]); - } - break; - - case ir_unop_round_even: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = _mesa_roundeven(op[0]->value.d[c]); - else - data.f[c] = _mesa_roundevenf(op[0]->value.f[c]); - } - break; - - case ir_unop_ceil: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = ceil(op[0]->value.d[c]); - else - data.f[c] = ceilf(op[0]->value.f[c]); - } - break; - - case ir_unop_floor: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = floor(op[0]->value.d[c]); - else - data.f[c] = floorf(op[0]->value.f[c]); - } - break; - - case ir_unop_fract: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = 0; - break; - case GLSL_TYPE_INT: - data.i[c] = 0; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sin: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = sinf(op[0]->value.f[c]); - } - break; - - case ir_unop_cos: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = cosf(op[0]->value.f[c]); - } - break; - - case ir_unop_neg: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = -((int) op[0]->value.u[c]); - break; - case GLSL_TYPE_INT: - data.i[c] = -op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = -op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = -op[0]->value.d[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_abs: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c]; - if (data.i[c] < 0) - data.i[c] = -data.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = fabs(op[0]->value.f[c]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = fabs(op[0]->value.d[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sign: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.i[c] > 0; - break; - case GLSL_TYPE_INT: - data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0)); - break; - default: - assert(0); - } - } - break; - - case ir_unop_rcp: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - if (op[0]->value.u[c] != 0.0) - data.u[c] = 1 / op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - if (op[0]->value.i[c] != 0.0) - data.i[c] = 1 / op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - if (op[0]->value.f[c] != 0.0) - data.f[c] = 1.0F / op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - if (op[0]->value.d[c] != 0.0) - data.d[c] = 1.0 / op[0]->value.d[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_rsq: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = 1.0 / sqrt(op[0]->value.d[c]); - else - data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]); - } - break; - - case ir_unop_sqrt: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = sqrt(op[0]->value.d[c]); - else - data.f[c] = sqrtf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = expf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = exp2f(op[0]->value.f[c]); - } - break; - - case ir_unop_log: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = logf(op[0]->value.f[c]); - } - break; - - case ir_unop_log2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = log2f(op[0]->value.f[c]); - } - break; - - case ir_unop_dFdx: - case ir_unop_dFdx_coarse: - case ir_unop_dFdx_fine: - case ir_unop_dFdy: - case ir_unop_dFdy_coarse: - case ir_unop_dFdy_fine: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = 0.0; - } - break; - - case ir_unop_pack_snorm_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_snorm_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_pack_snorm_4x8: - assert(op[0]->type == glsl_type::vec4_type); - data.u[0] = pack_4x8(pack_snorm_1x8, - op[0]->value.f[0], - op[0]->value.f[1], - op[0]->value.f[2], - op[0]->value.f[3]); - break; - case ir_unop_unpack_snorm_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_snorm_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_unop_unpack_snorm_4x8: - assert(op[0]->type == glsl_type::uint_type); - unpack_4x8(unpack_snorm_1x8, - op[0]->value.u[0], - &data.f[0], &data.f[1], &data.f[2], &data.f[3]); - break; - case ir_unop_pack_unorm_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_unorm_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_pack_unorm_4x8: - assert(op[0]->type == glsl_type::vec4_type); - data.u[0] = pack_4x8(pack_unorm_1x8, - op[0]->value.f[0], - op[0]->value.f[1], - op[0]->value.f[2], - op[0]->value.f[3]); - break; - case ir_unop_unpack_unorm_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_unorm_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_unop_unpack_unorm_4x8: - assert(op[0]->type == glsl_type::uint_type); - unpack_4x8(unpack_unorm_1x8, - op[0]->value.u[0], - &data.f[0], &data.f[1], &data.f[2], &data.f[3]); - break; - case ir_unop_pack_half_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_half_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_unpack_half_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_half_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_binop_pow: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); - } - break; - - case ir_binop_dot: - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[0] = dot_d(op[0], op[1]); - else - data.f[0] = dot_f(op[0], op[1]); - break; - - case ir_binop_min: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - - break; - case ir_binop_max: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - break; - - case ir_binop_add: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_sub: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mul: - /* Check for equal types, or unequal types involving scalars */ - if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) - || op0_scalar || op1_scalar) { - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - } else { - assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); - - /* Multiply an N-by-M matrix with an M-by-P matrix. Since either - * matrix can be a GLSL vector, either N or P can be 1. - * - * For vec*mat, the vector is treated as a row vector. This - * means the vector is a 1-row x M-column matrix. - * - * For mat*vec, the vector is treated as a column vector. Since - * matrix_columns is 1 for vectors, this just works. - */ - const unsigned n = op[0]->type->is_vector() - ? 1 : op[0]->type->vector_elements; - const unsigned m = op[1]->type->vector_elements; - const unsigned p = op[1]->type->matrix_columns; - for (unsigned j = 0; j < p; j++) { - for (unsigned i = 0; i < n; i++) { - for (unsigned k = 0; k < m; k++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j]; - else - data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; - } - } - } - } - - break; - case ir_binop_div: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) { - data.u[c] = 0; - } else { - data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; - } - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) { - data.i[c] = 0; - } else { - data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; - } - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mod: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) { - data.u[c] = 0; - } else { - data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; - } - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) { - data.i[c] = 0; - } else { - data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; - } - break; - case GLSL_TYPE_FLOAT: - /* We don't use fmod because it rounds toward zero; GLSL specifies - * the use of floor. - */ - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] - * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - /* We don't use fmod because it rounds toward zero; GLSL specifies - * the use of floor. - */ - data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1] - * floor(op[0]->value.d[c0] / op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - - break; - - case ir_binop_logic_and: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; - break; - case ir_binop_logic_xor: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; - break; - case ir_binop_logic_or: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; - break; - - case ir_binop_less: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] < op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_greater: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] > op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_lequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_gequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_equal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] == op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_nequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] != op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_all_equal: - data.b[0] = op[0]->has_value(op[1]); - break; - case ir_binop_any_nequal: - data.b[0] = !op[0]->has_value(op[1]); - break; - - case ir_binop_lshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; - } - } - break; - - case ir_binop_rshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; - } - } - break; - - case ir_binop_bit_and: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_bit_or: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_vector_extract: { - const int c = CLAMP(op[1]->value.i[0], 0, - (int) op[0]->type->vector_elements - 1); - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[0] = op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.i[0] = op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[0] = op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.d[0] = op[0]->value.d[c]; - break; - case GLSL_TYPE_BOOL: - data.b[0] = op[0]->value.b[c]; - break; - default: - assert(0); - } - break; - } - - case ir_binop_bit_xor: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_bitfield_reverse: - /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ - for (unsigned c = 0; c < components; c++) { - unsigned int v = op[0]->value.u[c]; // input bits to be reversed - unsigned int r = v; // r will be reversed bits of v; first get LSB of v - int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end - - for (v >>= 1; v; v >>= 1) { - r <<= 1; - r |= v & 1; - s--; - } - r <<= s; // shift when v's highest bits are zero - - data.u[c] = r; - } - break; - - case ir_unop_bit_count: - for (unsigned c = 0; c < components; c++) { - unsigned count = 0; - unsigned v = op[0]->value.u[c]; - - for (; v; count++) { - v &= v - 1; - } - data.u[c] = count; - } - break; - - case ir_unop_find_msb: - for (unsigned c = 0; c < components; c++) { - int v = op[0]->value.i[c]; - - if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1)) - data.i[c] = -1; - else { - int count = 0; - unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT - ? 0 : v & (1u << 31); - - while (((v & (1u << 31)) == top_bit) && count != 32) { - count++; - v <<= 1; - } - - data.i[c] = 31 - count; - } - } - break; - - case ir_unop_find_lsb: - for (unsigned c = 0; c < components; c++) { - if (op[0]->value.i[c] == 0) - data.i[c] = -1; - else { - unsigned pos = 0; - unsigned v = op[0]->value.u[c]; - - for (; !(v & 1); v >>= 1) { - pos++; - } - data.u[c] = pos; - } - } - break; - - case ir_unop_saturate: - for (unsigned c = 0; c < components; c++) { - data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f); - } - break; - case ir_unop_pack_double_2x32: { - /* XXX needs to be checked on big-endian */ - uint64_t temp; - temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32); - data.d[0] = *(double *)&temp; - - break; - } - case ir_unop_unpack_double_2x32: - /* XXX needs to be checked on big-endian */ - data.u[0] = *(uint32_t *)&op[0]->value.d[0]; - data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1); - break; - - case ir_triop_bitfield_extract: { - for (unsigned c = 0; c < components; c++) { - int offset = op[1]->value.i[c]; - int bits = op[2]->value.i[c]; - - if (bits == 0) - data.u[c] = 0; - else if (offset < 0 || bits < 0) - data.u[c] = 0; /* Undefined, per spec. */ - else if (offset + bits > 32) - data.u[c] = 0; /* Undefined, per spec. */ - else { - if (op[0]->type->base_type == GLSL_TYPE_INT) { - /* int so that the right shift will sign-extend. */ - int value = op[0]->value.i[c]; - value <<= 32 - bits - offset; - value >>= 32 - bits; - data.i[c] = value; - } else { - unsigned value = op[0]->value.u[c]; - value <<= 32 - bits - offset; - value >>= 32 - bits; - data.u[c] = value; - } - } - } - break; - } - - case ir_binop_ldexp: - for (unsigned c = 0; c < components; c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) { - data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]); - /* Flush subnormal values to zero. */ - if (!isnormal(data.d[c])) - data.d[c] = copysign(0.0, op[0]->value.d[c]); - } else { - data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]); - /* Flush subnormal values to zero. */ - if (!isnormal(data.f[c])) - data.f[c] = copysignf(0.0f, op[0]->value.f[c]); - } - } - break; - - case ir_triop_fma: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || - op[0]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || - op[1]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || - op[2]->type->base_type == GLSL_TYPE_DOUBLE); - - for (unsigned c = 0; c < components; c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.d[c] * op[1]->value.d[c] - + op[2]->value.d[c]; - else - data.f[c] = op[0]->value.f[c] * op[1]->value.f[c] - + op[2]->value.f[c]; - } - break; - - case ir_triop_lrp: { - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || - op[0]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || - op[1]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || - op[2]->type->base_type == GLSL_TYPE_DOUBLE); - - unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; - for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) + - (op[1]->value.d[c] * op[2]->value.d[c2]); - else - data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) + - (op[1]->value.f[c] * op[2]->value.f[c2]); - } - break; - } - - case ir_triop_csel: - for (unsigned c = 0; c < components; c++) { - if (op[1]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c] - : op[2]->value.d[c]; - else - data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c] - : op[2]->value.u[c]; - } - break; - - case ir_triop_vector_insert: { - const unsigned idx = op[2]->value.u[0]; - - memcpy(&data, &op[0]->value, sizeof(data)); - - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[idx] = op[1]->value.i[0]; - break; - case GLSL_TYPE_UINT: - data.u[idx] = op[1]->value.u[0]; - break; - case GLSL_TYPE_FLOAT: - data.f[idx] = op[1]->value.f[0]; - break; - case GLSL_TYPE_BOOL: - data.b[idx] = op[1]->value.b[0]; - break; - case GLSL_TYPE_DOUBLE: - data.d[idx] = op[1]->value.d[0]; - break; - default: - assert(!"Should not get here."); - break; - } - break; - } - - case ir_quadop_bitfield_insert: { - for (unsigned c = 0; c < components; c++) { - int offset = op[2]->value.i[c]; - int bits = op[3]->value.i[c]; - - if (bits == 0) - data.u[c] = op[0]->value.u[c]; - else if (offset < 0 || bits < 0) - data.u[c] = 0; /* Undefined, per spec. */ - else if (offset + bits > 32) - data.u[c] = 0; /* Undefined, per spec. */ - else { - unsigned insert_mask = ((1ull << bits) - 1) << offset; - - unsigned insert = op[1]->value.u[c]; - insert <<= offset; - insert &= insert_mask; - - unsigned base = op[0]->value.u[c]; - base &= ~insert_mask; - - data.u[c] = base | insert; - } - } - break; - } - - case ir_quadop_vector: - for (unsigned c = 0; c < this->type->vector_elements; c++) { - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[c]->value.i[0]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[c]->value.u[0]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[c]->value.f[0]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[c]->value.d[0]; - break; - default: - assert(0); - } - } - break; - - default: - /* FINISHME: Should handle all expression types. */ - return NULL; - } - - return new(ctx) ir_constant(this->type, &data); -} - - -ir_constant * -ir_texture::constant_expression_value(struct hash_table *) -{ - /* texture lookups aren't constant expressions */ - return NULL; -} - - -ir_constant * -ir_swizzle::constant_expression_value(struct hash_table *variable_context) -{ - ir_constant *v = this->val->constant_expression_value(variable_context); - - if (v != NULL) { - ir_constant_data data = { { 0 } }; - - const unsigned swiz_idx[4] = { - this->mask.x, this->mask.y, this->mask.z, this->mask.w - }; - - for (unsigned i = 0; i < this->mask.num_components; i++) { - switch (v->type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; - case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; - case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; - case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; - default: assert(!"Should not get here."); break; - } - } - - void *ctx = ralloc_parent(this); - return new(ctx) ir_constant(this->type, &data); - } - return NULL; -} - - -ir_constant * -ir_dereference_variable::constant_expression_value(struct hash_table *variable_context) -{ - assert(var); - - /* Give priority to the context hashtable, if it exists */ - if (variable_context) { - ir_constant *value = (ir_constant *)hash_table_find(variable_context, var); - if(value) - return value; - } - - /* The constant_value of a uniform variable is its initializer, - * not the lifetime constant value of the uniform. - */ - if (var->data.mode == ir_var_uniform) - return NULL; - - if (!var->constant_value) - return NULL; - - return var->constant_value->clone(ralloc_parent(var), NULL); -} - - -ir_constant * -ir_dereference_array::constant_expression_value(struct hash_table *variable_context) -{ - ir_constant *array = this->array->constant_expression_value(variable_context); - ir_constant *idx = this->array_index->constant_expression_value(variable_context); - - if ((array != NULL) && (idx != NULL)) { - void *ctx = ralloc_parent(this); - if (array->type->is_matrix()) { - /* Array access of a matrix results in a vector. - */ - const unsigned column = idx->value.u[0]; - - const glsl_type *const column_type = array->type->column_type(); - - /* Offset in the constant matrix to the first element of the column - * to be extracted. - */ - const unsigned mat_idx = column * column_type->vector_elements; - - ir_constant_data data = { { 0 } }; - - switch (column_type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - for (unsigned i = 0; i < column_type->vector_elements; i++) - data.u[i] = array->value.u[mat_idx + i]; - - break; - - case GLSL_TYPE_FLOAT: - for (unsigned i = 0; i < column_type->vector_elements; i++) - data.f[i] = array->value.f[mat_idx + i]; - - break; - - case GLSL_TYPE_DOUBLE: - for (unsigned i = 0; i < column_type->vector_elements; i++) - data.d[i] = array->value.d[mat_idx + i]; - - break; - - default: - assert(!"Should not get here."); - break; - } - - return new(ctx) ir_constant(column_type, &data); - } else if (array->type->is_vector()) { - const unsigned component = idx->value.u[0]; - - return new(ctx) ir_constant(array, component); - } else { - const unsigned index = idx->value.u[0]; - return array->get_array_element(index)->clone(ctx, NULL); - } - } - return NULL; -} - - -ir_constant * -ir_dereference_record::constant_expression_value(struct hash_table *) -{ - ir_constant *v = this->record->constant_expression_value(); - - return (v != NULL) ? v->get_record_field(this->field) : NULL; -} - - -ir_constant * -ir_assignment::constant_expression_value(struct hash_table *) -{ - /* FINISHME: Handle CEs involving assignment (return RHS) */ - return NULL; -} - - -ir_constant * -ir_constant::constant_expression_value(struct hash_table *) -{ - return this; -} - - -ir_constant * -ir_call::constant_expression_value(struct hash_table *variable_context) -{ - return this->callee->constant_expression_value(&this->actual_parameters, variable_context); -} - - -bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body, - struct hash_table *variable_context, - ir_constant **result) -{ - foreach_in_list(ir_instruction, inst, &body) { - switch(inst->ir_type) { - - /* (declare () type symbol) */ - case ir_type_variable: { - ir_variable *var = inst->as_variable(); - hash_table_insert(variable_context, ir_constant::zero(this, var->type), var); - break; - } - - /* (assign [condition] (write-mask) (ref) (value)) */ - case ir_type_assignment: { - ir_assignment *asg = inst->as_assignment(); - if (asg->condition) { - ir_constant *cond = asg->condition->constant_expression_value(variable_context); - if (!cond) - return false; - if (!cond->get_bool_component(0)) - break; - } - - ir_constant *store = NULL; - int offset = 0; - - if (!constant_referenced(asg->lhs, variable_context, store, offset)) - return false; - - ir_constant *value = asg->rhs->constant_expression_value(variable_context); - - if (!value) - return false; - - store->copy_masked_offset(value, offset, asg->write_mask); - break; - } - - /* (return (expression)) */ - case ir_type_return: - assert (result); - *result = inst->as_return()->value->constant_expression_value(variable_context); - return *result != NULL; - - /* (call name (ref) (params))*/ - case ir_type_call: { - ir_call *call = inst->as_call(); - - /* Just say no to void functions in constant expressions. We - * don't need them at that point. - */ - - if (!call->return_deref) - return false; - - ir_constant *store = NULL; - int offset = 0; - - if (!constant_referenced(call->return_deref, variable_context, - store, offset)) - return false; - - ir_constant *value = call->constant_expression_value(variable_context); - - if(!value) - return false; - - store->copy_offset(value, offset); - break; - } - - /* (if condition (then-instructions) (else-instructions)) */ - case ir_type_if: { - ir_if *iif = inst->as_if(); - - ir_constant *cond = iif->condition->constant_expression_value(variable_context); - if (!cond || !cond->type->is_boolean()) - return false; - - exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; - - *result = NULL; - if (!constant_expression_evaluate_expression_list(branch, variable_context, result)) - return false; - - /* If there was a return in the branch chosen, drop out now. */ - if (*result) - return true; - - break; - } - - /* Every other expression type, we drop out. */ - default: - return false; - } - } - - /* Reaching the end of the block is not an error condition */ - if (result) - *result = NULL; - - return true; -} - -ir_constant * -ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context) -{ - const glsl_type *type = this->return_type; - if (type == glsl_type::void_type) - return NULL; - - /* From the GLSL 1.20 spec, page 23: - * "Function calls to user-defined functions (non-built-in functions) - * cannot be used to form constant expressions." - */ - if (!this->is_builtin()) - return NULL; - - /* - * Of the builtin functions, only the texture lookups and the noise - * ones must not be used in constant expressions. They all include - * specific opcodes so they don't need to be special-cased at this - * point. - */ - - /* Initialize the table of dereferencable names with the function - * parameters. Verify their const-ness on the way. - * - * We expect the correctness of the number of parameters to have - * been checked earlier. - */ - hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash, - hash_table_pointer_compare); - - /* If "origin" is non-NULL, then the function body is there. So we - * have to use the variable objects from the object with the body, - * but the parameter instanciation on the current object. - */ - const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head; - - foreach_in_list(ir_rvalue, n, actual_parameters) { - ir_constant *constant = n->constant_expression_value(variable_context); - if (constant == NULL) { - hash_table_dtor(deref_hash); - return NULL; - } - - - ir_variable *var = (ir_variable *)parameter_info; - hash_table_insert(deref_hash, constant, var); - - parameter_info = parameter_info->next; - } - - ir_constant *result = NULL; - - /* Now run the builtin function until something non-constant - * happens or we get the result. - */ - if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result) - result = result->clone(ralloc_parent(this), NULL); - - hash_table_dtor(deref_hash); - - return result; -} |