aboutsummaryrefslogtreecommitdiffstats
path: root/src/glsl/ir_constant_expression.cpp
diff options
context:
space:
mode:
authorEmil Velikov <[email protected]>2016-01-18 12:16:48 +0200
committerEmil Velikov <[email protected]>2016-01-26 16:08:33 +0000
commiteb63640c1d38a200a7b1540405051d3ff79d0d8a (patch)
treeda46321a41f309b1d02aeb14d5d5487791c45aeb /src/glsl/ir_constant_expression.cpp
parenta39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff)
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]> Acked-by: Matt Turner <[email protected]> Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/glsl/ir_constant_expression.cpp')
-rw-r--r--src/glsl/ir_constant_expression.cpp2092
1 files changed, 0 insertions, 2092 deletions
diff --git a/src/glsl/ir_constant_expression.cpp b/src/glsl/ir_constant_expression.cpp
deleted file mode 100644
index fbbf7794da6..00000000000
--- a/src/glsl/ir_constant_expression.cpp
+++ /dev/null
@@ -1,2092 +0,0 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file ir_constant_expression.cpp
- * Evaluate and process constant valued expressions
- *
- * In GLSL, constant valued expressions are used in several places. These
- * must be processed and evaluated very early in the compilation process.
- *
- * * Sizes of arrays
- * * Initializers for uniforms
- * * Initializers for \c const variables
- */
-
-#include <math.h>
-#include "main/core.h" /* for MAX2, MIN2, CLAMP */
-#include "util/rounding.h" /* for _mesa_roundeven */
-#include "util/half_float.h"
-#include "ir.h"
-#include "compiler/glsl_types.h"
-#include "program/hash_table.h"
-
-static float
-dot_f(ir_constant *op0, ir_constant *op1)
-{
- assert(op0->type->is_float() && op1->type->is_float());
-
- float result = 0;
- for (unsigned c = 0; c < op0->type->components(); c++)
- result += op0->value.f[c] * op1->value.f[c];
-
- return result;
-}
-
-static double
-dot_d(ir_constant *op0, ir_constant *op1)
-{
- assert(op0->type->is_double() && op1->type->is_double());
-
- double result = 0;
- for (unsigned c = 0; c < op0->type->components(); c++)
- result += op0->value.d[c] * op1->value.d[c];
-
- return result;
-}
-
-/* This method is the only one supported by gcc. Unions in particular
- * are iffy, and read-through-converted-pointer is killed by strict
- * aliasing. OTOH, the compiler sees through the memcpy, so the
- * resulting asm is reasonable.
- */
-static float
-bitcast_u2f(unsigned int u)
-{
- assert(sizeof(float) == sizeof(unsigned int));
- float f;
- memcpy(&f, &u, sizeof(f));
- return f;
-}
-
-static unsigned int
-bitcast_f2u(float f)
-{
- assert(sizeof(float) == sizeof(unsigned int));
- unsigned int u;
- memcpy(&u, &f, sizeof(f));
- return u;
-}
-
-/**
- * Evaluate one component of a floating-point 4x8 unpacking function.
- */
-typedef uint8_t
-(*pack_1x8_func_t)(float);
-
-/**
- * Evaluate one component of a floating-point 2x16 unpacking function.
- */
-typedef uint16_t
-(*pack_1x16_func_t)(float);
-
-/**
- * Evaluate one component of a floating-point 4x8 unpacking function.
- */
-typedef float
-(*unpack_1x8_func_t)(uint8_t);
-
-/**
- * Evaluate one component of a floating-point 2x16 unpacking function.
- */
-typedef float
-(*unpack_1x16_func_t)(uint16_t);
-
-/**
- * Evaluate a 2x16 floating-point packing function.
- */
-static uint32_t
-pack_2x16(pack_1x16_func_t pack_1x16,
- float x, float y)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * packSnorm2x16
- * -------------
- * The first component of the vector will be written to the least
- * significant bits of the output; the last component will be written to
- * the most significant bits.
- *
- * The specifications for the other packing functions contain similar
- * language.
- */
- uint32_t u = 0;
- u |= ((uint32_t) pack_1x16(x) << 0);
- u |= ((uint32_t) pack_1x16(y) << 16);
- return u;
-}
-
-/**
- * Evaluate a 4x8 floating-point packing function.
- */
-static uint32_t
-pack_4x8(pack_1x8_func_t pack_1x8,
- float x, float y, float z, float w)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * packSnorm4x8
- * ------------
- * The first component of the vector will be written to the least
- * significant bits of the output; the last component will be written to
- * the most significant bits.
- *
- * The specifications for the other packing functions contain similar
- * language.
- */
- uint32_t u = 0;
- u |= ((uint32_t) pack_1x8(x) << 0);
- u |= ((uint32_t) pack_1x8(y) << 8);
- u |= ((uint32_t) pack_1x8(z) << 16);
- u |= ((uint32_t) pack_1x8(w) << 24);
- return u;
-}
-
-/**
- * Evaluate a 2x16 floating-point unpacking function.
- */
-static void
-unpack_2x16(unpack_1x16_func_t unpack_1x16,
- uint32_t u,
- float *x, float *y)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * unpackSnorm2x16
- * ---------------
- * The first component of the returned vector will be extracted from
- * the least significant bits of the input; the last component will be
- * extracted from the most significant bits.
- *
- * The specifications for the other unpacking functions contain similar
- * language.
- */
- *x = unpack_1x16((uint16_t) (u & 0xffff));
- *y = unpack_1x16((uint16_t) (u >> 16));
-}
-
-/**
- * Evaluate a 4x8 floating-point unpacking function.
- */
-static void
-unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
- float *x, float *y, float *z, float *w)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * unpackSnorm4x8
- * --------------
- * The first component of the returned vector will be extracted from
- * the least significant bits of the input; the last component will be
- * extracted from the most significant bits.
- *
- * The specifications for the other unpacking functions contain similar
- * language.
- */
- *x = unpack_1x8((uint8_t) (u & 0xff));
- *y = unpack_1x8((uint8_t) (u >> 8));
- *z = unpack_1x8((uint8_t) (u >> 16));
- *w = unpack_1x8((uint8_t) (u >> 24));
-}
-
-/**
- * Evaluate one component of packSnorm4x8.
- */
-static uint8_t
-pack_snorm_1x8(float x)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * packSnorm4x8
- * ------------
- * The conversion for component c of v to fixed point is done as
- * follows:
- *
- * packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
- */
- return (uint8_t)
- _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
-}
-
-/**
- * Evaluate one component of packSnorm2x16.
- */
-static uint16_t
-pack_snorm_1x16(float x)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * packSnorm2x16
- * -------------
- * The conversion for component c of v to fixed point is done as
- * follows:
- *
- * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
- */
- return (uint16_t)
- _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
-}
-
-/**
- * Evaluate one component of unpackSnorm4x8.
- */
-static float
-unpack_snorm_1x8(uint8_t u)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * unpackSnorm4x8
- * --------------
- * The conversion for unpacked fixed-point value f to floating point is
- * done as follows:
- *
- * unpackSnorm4x8: clamp(f / 127.0, -1, +1)
- */
- return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
-}
-
-/**
- * Evaluate one component of unpackSnorm2x16.
- */
-static float
-unpack_snorm_1x16(uint16_t u)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * unpackSnorm2x16
- * ---------------
- * The conversion for unpacked fixed-point value f to floating point is
- * done as follows:
- *
- * unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
- */
- return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
-}
-
-/**
- * Evaluate one component packUnorm4x8.
- */
-static uint8_t
-pack_unorm_1x8(float x)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * packUnorm4x8
- * ------------
- * The conversion for component c of v to fixed point is done as
- * follows:
- *
- * packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
- */
- return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
-}
-
-/**
- * Evaluate one component packUnorm2x16.
- */
-static uint16_t
-pack_unorm_1x16(float x)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * packUnorm2x16
- * -------------
- * The conversion for component c of v to fixed point is done as
- * follows:
- *
- * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
- */
- return (uint16_t) (int)
- _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
-}
-
-/**
- * Evaluate one component of unpackUnorm4x8.
- */
-static float
-unpack_unorm_1x8(uint8_t u)
-{
- /* From section 8.4 of the GLSL 4.30 spec:
- *
- * unpackUnorm4x8
- * --------------
- * The conversion for unpacked fixed-point value f to floating point is
- * done as follows:
- *
- * unpackUnorm4x8: f / 255.0
- */
- return (float) u / 255.0f;
-}
-
-/**
- * Evaluate one component of unpackUnorm2x16.
- */
-static float
-unpack_unorm_1x16(uint16_t u)
-{
- /* From section 8.4 of the GLSL ES 3.00 spec:
- *
- * unpackUnorm2x16
- * ---------------
- * The conversion for unpacked fixed-point value f to floating point is
- * done as follows:
- *
- * unpackUnorm2x16: f / 65535.0
- */
- return (float) u / 65535.0f;
-}
-
-/**
- * Evaluate one component of packHalf2x16.
- */
-static uint16_t
-pack_half_1x16(float x)
-{
- return _mesa_float_to_half(x);
-}
-
-/**
- * Evaluate one component of unpackHalf2x16.
- */
-static float
-unpack_half_1x16(uint16_t u)
-{
- return _mesa_half_to_float(u);
-}
-
-/**
- * Get the constant that is ultimately referenced by an r-value, in a constant
- * expression evaluation context.
- *
- * The offset is used when the reference is to a specific column of a matrix.
- */
-static bool
-constant_referenced(const ir_dereference *deref,
- struct hash_table *variable_context,
- ir_constant *&store, int &offset)
-{
- store = NULL;
- offset = 0;
-
- if (variable_context == NULL)
- return false;
-
- switch (deref->ir_type) {
- case ir_type_dereference_array: {
- const ir_dereference_array *const da =
- (const ir_dereference_array *) deref;
-
- ir_constant *const index_c =
- da->array_index->constant_expression_value(variable_context);
-
- if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer())
- break;
-
- const int index = index_c->type->base_type == GLSL_TYPE_INT ?
- index_c->get_int_component(0) :
- index_c->get_uint_component(0);
-
- ir_constant *substore;
- int suboffset;
-
- const ir_dereference *const deref = da->array->as_dereference();
- if (!deref)
- break;
-
- if (!constant_referenced(deref, variable_context, substore, suboffset))
- break;
-
- const glsl_type *const vt = da->array->type;
- if (vt->is_array()) {
- store = substore->get_array_element(index);
- offset = 0;
- } else if (vt->is_matrix()) {
- store = substore;
- offset = index * vt->vector_elements;
- } else if (vt->is_vector()) {
- store = substore;
- offset = suboffset + index;
- }
-
- break;
- }
-
- case ir_type_dereference_record: {
- const ir_dereference_record *const dr =
- (const ir_dereference_record *) deref;
-
- const ir_dereference *const deref = dr->record->as_dereference();
- if (!deref)
- break;
-
- ir_constant *substore;
- int suboffset;
-
- if (!constant_referenced(deref, variable_context, substore, suboffset))
- break;
-
- /* Since we're dropping it on the floor...
- */
- assert(suboffset == 0);
-
- store = substore->get_record_field(dr->field);
- break;
- }
-
- case ir_type_dereference_variable: {
- const ir_dereference_variable *const dv =
- (const ir_dereference_variable *) deref;
-
- store = (ir_constant *) hash_table_find(variable_context, dv->var);
- break;
- }
-
- default:
- assert(!"Should not get here.");
- break;
- }
-
- return store != NULL;
-}
-
-
-ir_constant *
-ir_rvalue::constant_expression_value(struct hash_table *)
-{
- assert(this->type->is_error());
- return NULL;
-}
-
-ir_constant *
-ir_expression::constant_expression_value(struct hash_table *variable_context)
-{
- if (this->type->is_error())
- return NULL;
-
- ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
- ir_constant_data data;
-
- memset(&data, 0, sizeof(data));
-
- for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
- op[operand] = this->operands[operand]->constant_expression_value(variable_context);
- if (!op[operand])
- return NULL;
- }
-
- if (op[1] != NULL)
- switch (this->operation) {
- case ir_binop_lshift:
- case ir_binop_rshift:
- case ir_binop_ldexp:
- case ir_binop_interpolate_at_offset:
- case ir_binop_interpolate_at_sample:
- case ir_binop_vector_extract:
- case ir_triop_csel:
- case ir_triop_bitfield_extract:
- break;
-
- default:
- assert(op[0]->type->base_type == op[1]->type->base_type);
- break;
- }
-
- bool op0_scalar = op[0]->type->is_scalar();
- bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
-
- /* When iterating over a vector or matrix's components, we want to increase
- * the loop counter. However, for scalars, we want to stay at 0.
- */
- unsigned c0_inc = op0_scalar ? 0 : 1;
- unsigned c1_inc = op1_scalar ? 0 : 1;
- unsigned components;
- if (op1_scalar || !op[1]) {
- components = op[0]->type->components();
- } else {
- components = op[1]->type->components();
- }
-
- void *ctx = ralloc_parent(this);
-
- /* Handle array operations here, rather than below. */
- if (op[0]->type->is_array()) {
- assert(op[1] != NULL && op[1]->type->is_array());
- switch (this->operation) {
- case ir_binop_all_equal:
- return new(ctx) ir_constant(op[0]->has_value(op[1]));
- case ir_binop_any_nequal:
- return new(ctx) ir_constant(!op[0]->has_value(op[1]));
- default:
- break;
- }
- return NULL;
- }
-
- switch (this->operation) {
- case ir_unop_bit_not:
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_INT:
- for (unsigned c = 0; c < components; c++)
- data.i[c] = ~ op[0]->value.i[c];
- break;
- case GLSL_TYPE_UINT:
- for (unsigned c = 0; c < components; c++)
- data.u[c] = ~ op[0]->value.u[c];
- break;
- default:
- assert(0);
- }
- break;
-
- case ir_unop_logic_not:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++)
- data.b[c] = !op[0]->value.b[c];
- break;
-
- case ir_unop_f2i:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.i[c] = (int) op[0]->value.f[c];
- }
- break;
- case ir_unop_f2u:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.i[c] = (unsigned) op[0]->value.f[c];
- }
- break;
- case ir_unop_i2f:
- assert(op[0]->type->base_type == GLSL_TYPE_INT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = (float) op[0]->value.i[c];
- }
- break;
- case ir_unop_u2f:
- assert(op[0]->type->base_type == GLSL_TYPE_UINT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = (float) op[0]->value.u[c];
- }
- break;
- case ir_unop_b2f:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
- }
- break;
- case ir_unop_f2b:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
- }
- break;
- case ir_unop_b2i:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.u[c] = op[0]->value.b[c] ? 1 : 0;
- }
- break;
- case ir_unop_i2b:
- assert(op[0]->type->is_integer());
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.b[c] = op[0]->value.u[c] ? true : false;
- }
- break;
- case ir_unop_u2i:
- assert(op[0]->type->base_type == GLSL_TYPE_UINT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.i[c] = op[0]->value.u[c];
- }
- break;
- case ir_unop_i2u:
- assert(op[0]->type->base_type == GLSL_TYPE_INT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.u[c] = op[0]->value.i[c];
- }
- break;
- case ir_unop_bitcast_i2f:
- assert(op[0]->type->base_type == GLSL_TYPE_INT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = bitcast_u2f(op[0]->value.i[c]);
- }
- break;
- case ir_unop_bitcast_f2i:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.i[c] = bitcast_f2u(op[0]->value.f[c]);
- }
- break;
- case ir_unop_bitcast_u2f:
- assert(op[0]->type->base_type == GLSL_TYPE_UINT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = bitcast_u2f(op[0]->value.u[c]);
- }
- break;
- case ir_unop_bitcast_f2u:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.u[c] = bitcast_f2u(op[0]->value.f[c]);
- }
- break;
- case ir_unop_d2f:
- assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = op[0]->value.d[c];
- }
- break;
- case ir_unop_f2d:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.d[c] = op[0]->value.f[c];
- }
- break;
- case ir_unop_d2i:
- assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.i[c] = op[0]->value.d[c];
- }
- break;
- case ir_unop_i2d:
- assert(op[0]->type->base_type == GLSL_TYPE_INT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.d[c] = op[0]->value.i[c];
- }
- break;
- case ir_unop_d2u:
- assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.u[c] = op[0]->value.d[c];
- }
- break;
- case ir_unop_u2d:
- assert(op[0]->type->base_type == GLSL_TYPE_UINT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.d[c] = op[0]->value.u[c];
- }
- break;
- case ir_unop_d2b:
- assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.b[c] = op[0]->value.d[c] != 0.0;
- }
- break;
- case ir_unop_trunc:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = trunc(op[0]->value.d[c]);
- else
- data.f[c] = truncf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_round_even:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = _mesa_roundeven(op[0]->value.d[c]);
- else
- data.f[c] = _mesa_roundevenf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_ceil:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = ceil(op[0]->value.d[c]);
- else
- data.f[c] = ceilf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_floor:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = floor(op[0]->value.d[c]);
- else
- data.f[c] = floorf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_fract:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = 0;
- break;
- case GLSL_TYPE_INT:
- data.i[c] = 0;
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]);
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_sin:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = sinf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_cos:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = cosf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_neg:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = -((int) op[0]->value.u[c]);
- break;
- case GLSL_TYPE_INT:
- data.i[c] = -op[0]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = -op[0]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = -op[0]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_abs:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c];
- if (data.i[c] < 0)
- data.i[c] = -data.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = fabs(op[0]->value.f[c]);
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = fabs(op[0]->value.d[c]);
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_sign:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.i[c] > 0;
- break;
- case GLSL_TYPE_INT:
- data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0));
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_rcp:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_UINT:
- if (op[0]->value.u[c] != 0.0)
- data.u[c] = 1 / op[0]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- if (op[0]->value.i[c] != 0.0)
- data.i[c] = 1 / op[0]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- if (op[0]->value.f[c] != 0.0)
- data.f[c] = 1.0F / op[0]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- if (op[0]->value.d[c] != 0.0)
- data.d[c] = 1.0 / op[0]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_rsq:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = 1.0 / sqrt(op[0]->value.d[c]);
- else
- data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_sqrt:
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = sqrt(op[0]->value.d[c]);
- else
- data.f[c] = sqrtf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_exp:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = expf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_exp2:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = exp2f(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_log:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = logf(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_log2:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = log2f(op[0]->value.f[c]);
- }
- break;
-
- case ir_unop_dFdx:
- case ir_unop_dFdx_coarse:
- case ir_unop_dFdx_fine:
- case ir_unop_dFdy:
- case ir_unop_dFdy_coarse:
- case ir_unop_dFdy_fine:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = 0.0;
- }
- break;
-
- case ir_unop_pack_snorm_2x16:
- assert(op[0]->type == glsl_type::vec2_type);
- data.u[0] = pack_2x16(pack_snorm_1x16,
- op[0]->value.f[0],
- op[0]->value.f[1]);
- break;
- case ir_unop_pack_snorm_4x8:
- assert(op[0]->type == glsl_type::vec4_type);
- data.u[0] = pack_4x8(pack_snorm_1x8,
- op[0]->value.f[0],
- op[0]->value.f[1],
- op[0]->value.f[2],
- op[0]->value.f[3]);
- break;
- case ir_unop_unpack_snorm_2x16:
- assert(op[0]->type == glsl_type::uint_type);
- unpack_2x16(unpack_snorm_1x16,
- op[0]->value.u[0],
- &data.f[0], &data.f[1]);
- break;
- case ir_unop_unpack_snorm_4x8:
- assert(op[0]->type == glsl_type::uint_type);
- unpack_4x8(unpack_snorm_1x8,
- op[0]->value.u[0],
- &data.f[0], &data.f[1], &data.f[2], &data.f[3]);
- break;
- case ir_unop_pack_unorm_2x16:
- assert(op[0]->type == glsl_type::vec2_type);
- data.u[0] = pack_2x16(pack_unorm_1x16,
- op[0]->value.f[0],
- op[0]->value.f[1]);
- break;
- case ir_unop_pack_unorm_4x8:
- assert(op[0]->type == glsl_type::vec4_type);
- data.u[0] = pack_4x8(pack_unorm_1x8,
- op[0]->value.f[0],
- op[0]->value.f[1],
- op[0]->value.f[2],
- op[0]->value.f[3]);
- break;
- case ir_unop_unpack_unorm_2x16:
- assert(op[0]->type == glsl_type::uint_type);
- unpack_2x16(unpack_unorm_1x16,
- op[0]->value.u[0],
- &data.f[0], &data.f[1]);
- break;
- case ir_unop_unpack_unorm_4x8:
- assert(op[0]->type == glsl_type::uint_type);
- unpack_4x8(unpack_unorm_1x8,
- op[0]->value.u[0],
- &data.f[0], &data.f[1], &data.f[2], &data.f[3]);
- break;
- case ir_unop_pack_half_2x16:
- assert(op[0]->type == glsl_type::vec2_type);
- data.u[0] = pack_2x16(pack_half_1x16,
- op[0]->value.f[0],
- op[0]->value.f[1]);
- break;
- case ir_unop_unpack_half_2x16:
- assert(op[0]->type == glsl_type::uint_type);
- unpack_2x16(unpack_half_1x16,
- op[0]->value.u[0],
- &data.f[0], &data.f[1]);
- break;
- case ir_binop_pow:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
- }
- break;
-
- case ir_binop_dot:
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[0] = dot_d(op[0], op[1]);
- else
- data.f[0] = dot_f(op[0], op[1]);
- break;
-
- case ir_binop_min:
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
- break;
- case GLSL_TYPE_INT:
- data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]);
- break;
- default:
- assert(0);
- }
- }
-
- break;
- case ir_binop_max:
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
- break;
- case GLSL_TYPE_INT:
- data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]);
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_binop_add:
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
- break;
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1];
- break;
- default:
- assert(0);
- }
- }
-
- break;
- case ir_binop_sub:
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
- break;
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1];
- break;
- default:
- assert(0);
- }
- }
-
- break;
- case ir_binop_mul:
- /* Check for equal types, or unequal types involving scalars */
- if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
- || op0_scalar || op1_scalar) {
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
- break;
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1];
- break;
- default:
- assert(0);
- }
- }
- } else {
- assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
-
- /* Multiply an N-by-M matrix with an M-by-P matrix. Since either
- * matrix can be a GLSL vector, either N or P can be 1.
- *
- * For vec*mat, the vector is treated as a row vector. This
- * means the vector is a 1-row x M-column matrix.
- *
- * For mat*vec, the vector is treated as a column vector. Since
- * matrix_columns is 1 for vectors, this just works.
- */
- const unsigned n = op[0]->type->is_vector()
- ? 1 : op[0]->type->vector_elements;
- const unsigned m = op[1]->type->vector_elements;
- const unsigned p = op[1]->type->matrix_columns;
- for (unsigned j = 0; j < p; j++) {
- for (unsigned i = 0; i < n; i++) {
- for (unsigned k = 0; k < m; k++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
- else
- data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
- }
- }
- }
- }
-
- break;
- case ir_binop_div:
- /* FINISHME: Emit warning when division-by-zero is detected. */
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- if (op[1]->value.u[c1] == 0) {
- data.u[c] = 0;
- } else {
- data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
- }
- break;
- case GLSL_TYPE_INT:
- if (op[1]->value.i[c1] == 0) {
- data.i[c] = 0;
- } else {
- data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
- }
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1];
- break;
- default:
- assert(0);
- }
- }
-
- break;
- case ir_binop_mod:
- /* FINISHME: Emit warning when division-by-zero is detected. */
- assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- if (op[1]->value.u[c1] == 0) {
- data.u[c] = 0;
- } else {
- data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
- }
- break;
- case GLSL_TYPE_INT:
- if (op[1]->value.i[c1] == 0) {
- data.i[c] = 0;
- } else {
- data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
- }
- break;
- case GLSL_TYPE_FLOAT:
- /* We don't use fmod because it rounds toward zero; GLSL specifies
- * the use of floor.
- */
- data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
- * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
- break;
- case GLSL_TYPE_DOUBLE:
- /* We don't use fmod because it rounds toward zero; GLSL specifies
- * the use of floor.
- */
- data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]
- * floor(op[0]->value.d[c0] / op[1]->value.d[c1]);
- break;
- default:
- assert(0);
- }
- }
-
- break;
-
- case ir_binop_logic_and:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++)
- data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
- break;
- case ir_binop_logic_xor:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++)
- data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
- break;
- case ir_binop_logic_or:
- assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
- for (unsigned c = 0; c < op[0]->type->components(); c++)
- data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
- break;
-
- case ir_binop_less:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] < op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_greater:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] > op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_lequal:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_gequal:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < op[0]->type->components(); c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_equal:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < components; c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
- break;
- case GLSL_TYPE_BOOL:
- data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] == op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_nequal:
- assert(op[0]->type == op[1]->type);
- for (unsigned c = 0; c < components; c++) {
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
- break;
- case GLSL_TYPE_BOOL:
- data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.b[c] = op[0]->value.d[c] != op[1]->value.d[c];
- break;
- default:
- assert(0);
- }
- }
- break;
- case ir_binop_all_equal:
- data.b[0] = op[0]->has_value(op[1]);
- break;
- case ir_binop_any_nequal:
- data.b[0] = !op[0]->has_value(op[1]);
- break;
-
- case ir_binop_lshift:
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- if (op[0]->type->base_type == GLSL_TYPE_INT &&
- op[1]->type->base_type == GLSL_TYPE_INT) {
- data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
- op[1]->type->base_type == GLSL_TYPE_UINT) {
- data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
- op[1]->type->base_type == GLSL_TYPE_INT) {
- data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
- op[1]->type->base_type == GLSL_TYPE_UINT) {
- data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
- }
- }
- break;
-
- case ir_binop_rshift:
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- if (op[0]->type->base_type == GLSL_TYPE_INT &&
- op[1]->type->base_type == GLSL_TYPE_INT) {
- data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
- op[1]->type->base_type == GLSL_TYPE_UINT) {
- data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
- op[1]->type->base_type == GLSL_TYPE_INT) {
- data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
-
- } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
- op[1]->type->base_type == GLSL_TYPE_UINT) {
- data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
- }
- }
- break;
-
- case ir_binop_bit_and:
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
- break;
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_binop_bit_or:
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
- break;
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_binop_vector_extract: {
- const int c = CLAMP(op[1]->value.i[0], 0,
- (int) op[0]->type->vector_elements - 1);
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[0] = op[0]->value.u[c];
- break;
- case GLSL_TYPE_INT:
- data.i[0] = op[0]->value.i[c];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[0] = op[0]->value.f[c];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[0] = op[0]->value.d[c];
- break;
- case GLSL_TYPE_BOOL:
- data.b[0] = op[0]->value.b[c];
- break;
- default:
- assert(0);
- }
- break;
- }
-
- case ir_binop_bit_xor:
- for (unsigned c = 0, c0 = 0, c1 = 0;
- c < components;
- c0 += c0_inc, c1 += c1_inc, c++) {
-
- switch (op[0]->type->base_type) {
- case GLSL_TYPE_INT:
- data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
- break;
- case GLSL_TYPE_UINT:
- data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- case ir_unop_bitfield_reverse:
- /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
- for (unsigned c = 0; c < components; c++) {
- unsigned int v = op[0]->value.u[c]; // input bits to be reversed
- unsigned int r = v; // r will be reversed bits of v; first get LSB of v
- int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
-
- for (v >>= 1; v; v >>= 1) {
- r <<= 1;
- r |= v & 1;
- s--;
- }
- r <<= s; // shift when v's highest bits are zero
-
- data.u[c] = r;
- }
- break;
-
- case ir_unop_bit_count:
- for (unsigned c = 0; c < components; c++) {
- unsigned count = 0;
- unsigned v = op[0]->value.u[c];
-
- for (; v; count++) {
- v &= v - 1;
- }
- data.u[c] = count;
- }
- break;
-
- case ir_unop_find_msb:
- for (unsigned c = 0; c < components; c++) {
- int v = op[0]->value.i[c];
-
- if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1))
- data.i[c] = -1;
- else {
- int count = 0;
- unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT
- ? 0 : v & (1u << 31);
-
- while (((v & (1u << 31)) == top_bit) && count != 32) {
- count++;
- v <<= 1;
- }
-
- data.i[c] = 31 - count;
- }
- }
- break;
-
- case ir_unop_find_lsb:
- for (unsigned c = 0; c < components; c++) {
- if (op[0]->value.i[c] == 0)
- data.i[c] = -1;
- else {
- unsigned pos = 0;
- unsigned v = op[0]->value.u[c];
-
- for (; !(v & 1); v >>= 1) {
- pos++;
- }
- data.u[c] = pos;
- }
- }
- break;
-
- case ir_unop_saturate:
- for (unsigned c = 0; c < components; c++) {
- data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f);
- }
- break;
- case ir_unop_pack_double_2x32: {
- /* XXX needs to be checked on big-endian */
- uint64_t temp;
- temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32);
- data.d[0] = *(double *)&temp;
-
- break;
- }
- case ir_unop_unpack_double_2x32:
- /* XXX needs to be checked on big-endian */
- data.u[0] = *(uint32_t *)&op[0]->value.d[0];
- data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1);
- break;
-
- case ir_triop_bitfield_extract: {
- for (unsigned c = 0; c < components; c++) {
- int offset = op[1]->value.i[c];
- int bits = op[2]->value.i[c];
-
- if (bits == 0)
- data.u[c] = 0;
- else if (offset < 0 || bits < 0)
- data.u[c] = 0; /* Undefined, per spec. */
- else if (offset + bits > 32)
- data.u[c] = 0; /* Undefined, per spec. */
- else {
- if (op[0]->type->base_type == GLSL_TYPE_INT) {
- /* int so that the right shift will sign-extend. */
- int value = op[0]->value.i[c];
- value <<= 32 - bits - offset;
- value >>= 32 - bits;
- data.i[c] = value;
- } else {
- unsigned value = op[0]->value.u[c];
- value <<= 32 - bits - offset;
- value >>= 32 - bits;
- data.u[c] = value;
- }
- }
- }
- break;
- }
-
- case ir_binop_ldexp:
- for (unsigned c = 0; c < components; c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) {
- data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]);
- /* Flush subnormal values to zero. */
- if (!isnormal(data.d[c]))
- data.d[c] = copysign(0.0, op[0]->value.d[c]);
- } else {
- data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]);
- /* Flush subnormal values to zero. */
- if (!isnormal(data.f[c]))
- data.f[c] = copysignf(0.0f, op[0]->value.f[c]);
- }
- }
- break;
-
- case ir_triop_fma:
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
- op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
- op[1]->type->base_type == GLSL_TYPE_DOUBLE);
- assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
- op[2]->type->base_type == GLSL_TYPE_DOUBLE);
-
- for (unsigned c = 0; c < components; c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = op[0]->value.d[c] * op[1]->value.d[c]
- + op[2]->value.d[c];
- else
- data.f[c] = op[0]->value.f[c] * op[1]->value.f[c]
- + op[2]->value.f[c];
- }
- break;
-
- case ir_triop_lrp: {
- assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
- op[0]->type->base_type == GLSL_TYPE_DOUBLE);
- assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
- op[1]->type->base_type == GLSL_TYPE_DOUBLE);
- assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
- op[2]->type->base_type == GLSL_TYPE_DOUBLE);
-
- unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
- for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
- if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) +
- (op[1]->value.d[c] * op[2]->value.d[c2]);
- else
- data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) +
- (op[1]->value.f[c] * op[2]->value.f[c2]);
- }
- break;
- }
-
- case ir_triop_csel:
- for (unsigned c = 0; c < components; c++) {
- if (op[1]->type->base_type == GLSL_TYPE_DOUBLE)
- data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c]
- : op[2]->value.d[c];
- else
- data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c]
- : op[2]->value.u[c];
- }
- break;
-
- case ir_triop_vector_insert: {
- const unsigned idx = op[2]->value.u[0];
-
- memcpy(&data, &op[0]->value, sizeof(data));
-
- switch (this->type->base_type) {
- case GLSL_TYPE_INT:
- data.i[idx] = op[1]->value.i[0];
- break;
- case GLSL_TYPE_UINT:
- data.u[idx] = op[1]->value.u[0];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[idx] = op[1]->value.f[0];
- break;
- case GLSL_TYPE_BOOL:
- data.b[idx] = op[1]->value.b[0];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[idx] = op[1]->value.d[0];
- break;
- default:
- assert(!"Should not get here.");
- break;
- }
- break;
- }
-
- case ir_quadop_bitfield_insert: {
- for (unsigned c = 0; c < components; c++) {
- int offset = op[2]->value.i[c];
- int bits = op[3]->value.i[c];
-
- if (bits == 0)
- data.u[c] = op[0]->value.u[c];
- else if (offset < 0 || bits < 0)
- data.u[c] = 0; /* Undefined, per spec. */
- else if (offset + bits > 32)
- data.u[c] = 0; /* Undefined, per spec. */
- else {
- unsigned insert_mask = ((1ull << bits) - 1) << offset;
-
- unsigned insert = op[1]->value.u[c];
- insert <<= offset;
- insert &= insert_mask;
-
- unsigned base = op[0]->value.u[c];
- base &= ~insert_mask;
-
- data.u[c] = base | insert;
- }
- }
- break;
- }
-
- case ir_quadop_vector:
- for (unsigned c = 0; c < this->type->vector_elements; c++) {
- switch (this->type->base_type) {
- case GLSL_TYPE_INT:
- data.i[c] = op[c]->value.i[0];
- break;
- case GLSL_TYPE_UINT:
- data.u[c] = op[c]->value.u[0];
- break;
- case GLSL_TYPE_FLOAT:
- data.f[c] = op[c]->value.f[0];
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[c] = op[c]->value.d[0];
- break;
- default:
- assert(0);
- }
- }
- break;
-
- default:
- /* FINISHME: Should handle all expression types. */
- return NULL;
- }
-
- return new(ctx) ir_constant(this->type, &data);
-}
-
-
-ir_constant *
-ir_texture::constant_expression_value(struct hash_table *)
-{
- /* texture lookups aren't constant expressions */
- return NULL;
-}
-
-
-ir_constant *
-ir_swizzle::constant_expression_value(struct hash_table *variable_context)
-{
- ir_constant *v = this->val->constant_expression_value(variable_context);
-
- if (v != NULL) {
- ir_constant_data data = { { 0 } };
-
- const unsigned swiz_idx[4] = {
- this->mask.x, this->mask.y, this->mask.z, this->mask.w
- };
-
- for (unsigned i = 0; i < this->mask.num_components; i++) {
- switch (v->type->base_type) {
- case GLSL_TYPE_UINT:
- case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
- case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
- case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
- case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
- default: assert(!"Should not get here."); break;
- }
- }
-
- void *ctx = ralloc_parent(this);
- return new(ctx) ir_constant(this->type, &data);
- }
- return NULL;
-}
-
-
-ir_constant *
-ir_dereference_variable::constant_expression_value(struct hash_table *variable_context)
-{
- assert(var);
-
- /* Give priority to the context hashtable, if it exists */
- if (variable_context) {
- ir_constant *value = (ir_constant *)hash_table_find(variable_context, var);
- if(value)
- return value;
- }
-
- /* The constant_value of a uniform variable is its initializer,
- * not the lifetime constant value of the uniform.
- */
- if (var->data.mode == ir_var_uniform)
- return NULL;
-
- if (!var->constant_value)
- return NULL;
-
- return var->constant_value->clone(ralloc_parent(var), NULL);
-}
-
-
-ir_constant *
-ir_dereference_array::constant_expression_value(struct hash_table *variable_context)
-{
- ir_constant *array = this->array->constant_expression_value(variable_context);
- ir_constant *idx = this->array_index->constant_expression_value(variable_context);
-
- if ((array != NULL) && (idx != NULL)) {
- void *ctx = ralloc_parent(this);
- if (array->type->is_matrix()) {
- /* Array access of a matrix results in a vector.
- */
- const unsigned column = idx->value.u[0];
-
- const glsl_type *const column_type = array->type->column_type();
-
- /* Offset in the constant matrix to the first element of the column
- * to be extracted.
- */
- const unsigned mat_idx = column * column_type->vector_elements;
-
- ir_constant_data data = { { 0 } };
-
- switch (column_type->base_type) {
- case GLSL_TYPE_UINT:
- case GLSL_TYPE_INT:
- for (unsigned i = 0; i < column_type->vector_elements; i++)
- data.u[i] = array->value.u[mat_idx + i];
-
- break;
-
- case GLSL_TYPE_FLOAT:
- for (unsigned i = 0; i < column_type->vector_elements; i++)
- data.f[i] = array->value.f[mat_idx + i];
-
- break;
-
- case GLSL_TYPE_DOUBLE:
- for (unsigned i = 0; i < column_type->vector_elements; i++)
- data.d[i] = array->value.d[mat_idx + i];
-
- break;
-
- default:
- assert(!"Should not get here.");
- break;
- }
-
- return new(ctx) ir_constant(column_type, &data);
- } else if (array->type->is_vector()) {
- const unsigned component = idx->value.u[0];
-
- return new(ctx) ir_constant(array, component);
- } else {
- const unsigned index = idx->value.u[0];
- return array->get_array_element(index)->clone(ctx, NULL);
- }
- }
- return NULL;
-}
-
-
-ir_constant *
-ir_dereference_record::constant_expression_value(struct hash_table *)
-{
- ir_constant *v = this->record->constant_expression_value();
-
- return (v != NULL) ? v->get_record_field(this->field) : NULL;
-}
-
-
-ir_constant *
-ir_assignment::constant_expression_value(struct hash_table *)
-{
- /* FINISHME: Handle CEs involving assignment (return RHS) */
- return NULL;
-}
-
-
-ir_constant *
-ir_constant::constant_expression_value(struct hash_table *)
-{
- return this;
-}
-
-
-ir_constant *
-ir_call::constant_expression_value(struct hash_table *variable_context)
-{
- return this->callee->constant_expression_value(&this->actual_parameters, variable_context);
-}
-
-
-bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body,
- struct hash_table *variable_context,
- ir_constant **result)
-{
- foreach_in_list(ir_instruction, inst, &body) {
- switch(inst->ir_type) {
-
- /* (declare () type symbol) */
- case ir_type_variable: {
- ir_variable *var = inst->as_variable();
- hash_table_insert(variable_context, ir_constant::zero(this, var->type), var);
- break;
- }
-
- /* (assign [condition] (write-mask) (ref) (value)) */
- case ir_type_assignment: {
- ir_assignment *asg = inst->as_assignment();
- if (asg->condition) {
- ir_constant *cond = asg->condition->constant_expression_value(variable_context);
- if (!cond)
- return false;
- if (!cond->get_bool_component(0))
- break;
- }
-
- ir_constant *store = NULL;
- int offset = 0;
-
- if (!constant_referenced(asg->lhs, variable_context, store, offset))
- return false;
-
- ir_constant *value = asg->rhs->constant_expression_value(variable_context);
-
- if (!value)
- return false;
-
- store->copy_masked_offset(value, offset, asg->write_mask);
- break;
- }
-
- /* (return (expression)) */
- case ir_type_return:
- assert (result);
- *result = inst->as_return()->value->constant_expression_value(variable_context);
- return *result != NULL;
-
- /* (call name (ref) (params))*/
- case ir_type_call: {
- ir_call *call = inst->as_call();
-
- /* Just say no to void functions in constant expressions. We
- * don't need them at that point.
- */
-
- if (!call->return_deref)
- return false;
-
- ir_constant *store = NULL;
- int offset = 0;
-
- if (!constant_referenced(call->return_deref, variable_context,
- store, offset))
- return false;
-
- ir_constant *value = call->constant_expression_value(variable_context);
-
- if(!value)
- return false;
-
- store->copy_offset(value, offset);
- break;
- }
-
- /* (if condition (then-instructions) (else-instructions)) */
- case ir_type_if: {
- ir_if *iif = inst->as_if();
-
- ir_constant *cond = iif->condition->constant_expression_value(variable_context);
- if (!cond || !cond->type->is_boolean())
- return false;
-
- exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
-
- *result = NULL;
- if (!constant_expression_evaluate_expression_list(branch, variable_context, result))
- return false;
-
- /* If there was a return in the branch chosen, drop out now. */
- if (*result)
- return true;
-
- break;
- }
-
- /* Every other expression type, we drop out. */
- default:
- return false;
- }
- }
-
- /* Reaching the end of the block is not an error condition */
- if (result)
- *result = NULL;
-
- return true;
-}
-
-ir_constant *
-ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context)
-{
- const glsl_type *type = this->return_type;
- if (type == glsl_type::void_type)
- return NULL;
-
- /* From the GLSL 1.20 spec, page 23:
- * "Function calls to user-defined functions (non-built-in functions)
- * cannot be used to form constant expressions."
- */
- if (!this->is_builtin())
- return NULL;
-
- /*
- * Of the builtin functions, only the texture lookups and the noise
- * ones must not be used in constant expressions. They all include
- * specific opcodes so they don't need to be special-cased at this
- * point.
- */
-
- /* Initialize the table of dereferencable names with the function
- * parameters. Verify their const-ness on the way.
- *
- * We expect the correctness of the number of parameters to have
- * been checked earlier.
- */
- hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash,
- hash_table_pointer_compare);
-
- /* If "origin" is non-NULL, then the function body is there. So we
- * have to use the variable objects from the object with the body,
- * but the parameter instanciation on the current object.
- */
- const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head;
-
- foreach_in_list(ir_rvalue, n, actual_parameters) {
- ir_constant *constant = n->constant_expression_value(variable_context);
- if (constant == NULL) {
- hash_table_dtor(deref_hash);
- return NULL;
- }
-
-
- ir_variable *var = (ir_variable *)parameter_info;
- hash_table_insert(deref_hash, constant, var);
-
- parameter_info = parameter_info->next;
- }
-
- ir_constant *result = NULL;
-
- /* Now run the builtin function until something non-constant
- * happens or we get the result.
- */
- if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result)
- result = result->clone(ralloc_parent(this), NULL);
-
- hash_table_dtor(deref_hash);
-
- return result;
-}