summaryrefslogtreecommitdiffstats
path: root/src/glsl/ast_function.cpp
diff options
context:
space:
mode:
authorEmil Velikov <[email protected]>2016-01-18 12:16:48 +0200
committerEmil Velikov <[email protected]>2016-01-26 16:08:33 +0000
commiteb63640c1d38a200a7b1540405051d3ff79d0d8a (patch)
treeda46321a41f309b1d02aeb14d5d5487791c45aeb /src/glsl/ast_function.cpp
parenta39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff)
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]> Acked-by: Matt Turner <[email protected]> Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/glsl/ast_function.cpp')
-rw-r--r--src/glsl/ast_function.cpp2098
1 files changed, 0 insertions, 2098 deletions
diff --git a/src/glsl/ast_function.cpp b/src/glsl/ast_function.cpp
deleted file mode 100644
index 0eb456a2b1f..00000000000
--- a/src/glsl/ast_function.cpp
+++ /dev/null
@@ -1,2098 +0,0 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-#include "glsl_symbol_table.h"
-#include "ast.h"
-#include "compiler/glsl_types.h"
-#include "ir.h"
-#include "main/core.h" /* for MIN2 */
-#include "main/shaderobj.h"
-
-static ir_rvalue *
-convert_component(ir_rvalue *src, const glsl_type *desired_type);
-
-bool
-apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
- struct _mesa_glsl_parse_state *state);
-
-static unsigned
-process_parameters(exec_list *instructions, exec_list *actual_parameters,
- exec_list *parameters,
- struct _mesa_glsl_parse_state *state)
-{
- unsigned count = 0;
-
- foreach_list_typed(ast_node, ast, link, parameters) {
- ir_rvalue *result = ast->hir(instructions, state);
-
- ir_constant *const constant = result->constant_expression_value();
- if (constant != NULL)
- result = constant;
-
- actual_parameters->push_tail(result);
- count++;
- }
-
- return count;
-}
-
-
-/**
- * Generate a source prototype for a function signature
- *
- * \param return_type Return type of the function. May be \c NULL.
- * \param name Name of the function.
- * \param parameters List of \c ir_instruction nodes representing the
- * parameter list for the function. This may be either a
- * formal (\c ir_variable) or actual (\c ir_rvalue)
- * parameter list. Only the type is used.
- *
- * \return
- * A ralloced string representing the prototype of the function.
- */
-char *
-prototype_string(const glsl_type *return_type, const char *name,
- exec_list *parameters)
-{
- char *str = NULL;
-
- if (return_type != NULL)
- str = ralloc_asprintf(NULL, "%s ", return_type->name);
-
- ralloc_asprintf_append(&str, "%s(", name);
-
- const char *comma = "";
- foreach_in_list(const ir_variable, param, parameters) {
- ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
- comma = ", ";
- }
-
- ralloc_strcat(&str, ")");
- return str;
-}
-
-static bool
-verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
- const ir_variable *formal, const ir_variable *actual)
-{
- /**
- * From the ARB_shader_image_load_store specification:
- *
- * "The values of image variables qualified with coherent,
- * volatile, restrict, readonly, or writeonly may not be passed
- * to functions whose formal parameters lack such
- * qualifiers. [...] It is legal to have additional qualifiers
- * on a formal parameter, but not to have fewer."
- */
- if (actual->data.image_coherent && !formal->data.image_coherent) {
- _mesa_glsl_error(loc, state,
- "function call parameter `%s' drops "
- "`coherent' qualifier", formal->name);
- return false;
- }
-
- if (actual->data.image_volatile && !formal->data.image_volatile) {
- _mesa_glsl_error(loc, state,
- "function call parameter `%s' drops "
- "`volatile' qualifier", formal->name);
- return false;
- }
-
- if (actual->data.image_restrict && !formal->data.image_restrict) {
- _mesa_glsl_error(loc, state,
- "function call parameter `%s' drops "
- "`restrict' qualifier", formal->name);
- return false;
- }
-
- if (actual->data.image_read_only && !formal->data.image_read_only) {
- _mesa_glsl_error(loc, state,
- "function call parameter `%s' drops "
- "`readonly' qualifier", formal->name);
- return false;
- }
-
- if (actual->data.image_write_only && !formal->data.image_write_only) {
- _mesa_glsl_error(loc, state,
- "function call parameter `%s' drops "
- "`writeonly' qualifier", formal->name);
- return false;
- }
-
- return true;
-}
-
-static bool
-verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
- ir_variable *var)
-{
- if (!var ||
- (!var->is_in_shader_storage_block() &&
- var->data.mode != ir_var_shader_shared)) {
- _mesa_glsl_error(loc, state, "First argument to atomic function "
- "must be a buffer or shared variable");
- return false;
- }
- return true;
-}
-
-static bool
-is_atomic_function(const char *func_name)
-{
- return !strcmp(func_name, "atomicAdd") ||
- !strcmp(func_name, "atomicMin") ||
- !strcmp(func_name, "atomicMax") ||
- !strcmp(func_name, "atomicAnd") ||
- !strcmp(func_name, "atomicOr") ||
- !strcmp(func_name, "atomicXor") ||
- !strcmp(func_name, "atomicExchange") ||
- !strcmp(func_name, "atomicCompSwap");
-}
-
-/**
- * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
- * that 'const_in' formal parameters (an extension in our IR) correspond to
- * ir_constant actual parameters.
- */
-static bool
-verify_parameter_modes(_mesa_glsl_parse_state *state,
- ir_function_signature *sig,
- exec_list &actual_ir_parameters,
- exec_list &actual_ast_parameters)
-{
- exec_node *actual_ir_node = actual_ir_parameters.head;
- exec_node *actual_ast_node = actual_ast_parameters.head;
-
- foreach_in_list(const ir_variable, formal, &sig->parameters) {
- /* The lists must be the same length. */
- assert(!actual_ir_node->is_tail_sentinel());
- assert(!actual_ast_node->is_tail_sentinel());
-
- const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
- const ast_expression *const actual_ast =
- exec_node_data(ast_expression, actual_ast_node, link);
-
- /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
- * FIXME: 0:0(0).
- */
- YYLTYPE loc = actual_ast->get_location();
-
- /* Verify that 'const_in' parameters are ir_constants. */
- if (formal->data.mode == ir_var_const_in &&
- actual->ir_type != ir_type_constant) {
- _mesa_glsl_error(&loc, state,
- "parameter `in %s' must be a constant expression",
- formal->name);
- return false;
- }
-
- /* Verify that shader_in parameters are shader inputs */
- if (formal->data.must_be_shader_input) {
- ir_variable *var = actual->variable_referenced();
- if (var && var->data.mode != ir_var_shader_in) {
- _mesa_glsl_error(&loc, state,
- "parameter `%s` must be a shader input",
- formal->name);
- return false;
- }
-
- if (actual->ir_type == ir_type_swizzle) {
- _mesa_glsl_error(&loc, state,
- "parameter `%s` must not be swizzled",
- formal->name);
- return false;
- }
- }
-
- /* Verify that 'out' and 'inout' actual parameters are lvalues. */
- if (formal->data.mode == ir_var_function_out
- || formal->data.mode == ir_var_function_inout) {
- const char *mode = NULL;
- switch (formal->data.mode) {
- case ir_var_function_out: mode = "out"; break;
- case ir_var_function_inout: mode = "inout"; break;
- default: assert(false); break;
- }
-
- /* This AST-based check catches errors like f(i++). The IR-based
- * is_lvalue() is insufficient because the actual parameter at the
- * IR-level is just a temporary value, which is an l-value.
- */
- if (actual_ast->non_lvalue_description != NULL) {
- _mesa_glsl_error(&loc, state,
- "function parameter '%s %s' references a %s",
- mode, formal->name,
- actual_ast->non_lvalue_description);
- return false;
- }
-
- ir_variable *var = actual->variable_referenced();
- if (var)
- var->data.assigned = true;
-
- if (var && var->data.read_only) {
- _mesa_glsl_error(&loc, state,
- "function parameter '%s %s' references the "
- "read-only variable '%s'",
- mode, formal->name,
- actual->variable_referenced()->name);
- return false;
- } else if (!actual->is_lvalue()) {
- _mesa_glsl_error(&loc, state,
- "function parameter '%s %s' is not an lvalue",
- mode, formal->name);
- return false;
- }
- }
-
- if (formal->type->is_image() &&
- actual->variable_referenced()) {
- if (!verify_image_parameter(&loc, state, formal,
- actual->variable_referenced()))
- return false;
- }
-
- actual_ir_node = actual_ir_node->next;
- actual_ast_node = actual_ast_node->next;
- }
-
- /* The first parameter of atomic functions must be a buffer variable */
- const char *func_name = sig->function_name();
- bool is_atomic = is_atomic_function(func_name);
- if (is_atomic) {
- const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.head;
-
- const ast_expression *const actual_ast =
- exec_node_data(ast_expression, actual_ast_parameters.head, link);
- YYLTYPE loc = actual_ast->get_location();
-
- if (!verify_first_atomic_parameter(&loc, state,
- actual->variable_referenced())) {
- return false;
- }
- }
-
- return true;
-}
-
-static void
-fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
- exec_list *before_instructions, exec_list *after_instructions,
- bool parameter_is_inout)
-{
- ir_expression *const expr = actual->as_expression();
-
- /* If the types match exactly and the parameter is not a vector-extract,
- * nothing needs to be done to fix the parameter.
- */
- if (formal_type == actual->type
- && (expr == NULL || expr->operation != ir_binop_vector_extract))
- return;
-
- /* To convert an out parameter, we need to create a temporary variable to
- * hold the value before conversion, and then perform the conversion after
- * the function call returns.
- *
- * This has the effect of transforming code like this:
- *
- * void f(out int x);
- * float value;
- * f(value);
- *
- * Into IR that's equivalent to this:
- *
- * void f(out int x);
- * float value;
- * int out_parameter_conversion;
- * f(out_parameter_conversion);
- * value = float(out_parameter_conversion);
- *
- * If the parameter is an ir_expression of ir_binop_vector_extract,
- * additional conversion is needed in the post-call re-write.
- */
- ir_variable *tmp =
- new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
-
- before_instructions->push_tail(tmp);
-
- /* If the parameter is an inout parameter, copy the value of the actual
- * parameter to the new temporary. Note that no type conversion is allowed
- * here because inout parameters must match types exactly.
- */
- if (parameter_is_inout) {
- /* Inout parameters should never require conversion, since that would
- * require an implicit conversion to exist both to and from the formal
- * parameter type, and there are no bidirectional implicit conversions.
- */
- assert (actual->type == formal_type);
-
- ir_dereference_variable *const deref_tmp_1 =
- new(mem_ctx) ir_dereference_variable(tmp);
- ir_assignment *const assignment =
- new(mem_ctx) ir_assignment(deref_tmp_1, actual);
- before_instructions->push_tail(assignment);
- }
-
- /* Replace the parameter in the call with a dereference of the new
- * temporary.
- */
- ir_dereference_variable *const deref_tmp_2 =
- new(mem_ctx) ir_dereference_variable(tmp);
- actual->replace_with(deref_tmp_2);
-
-
- /* Copy the temporary variable to the actual parameter with optional
- * type conversion applied.
- */
- ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
- if (actual->type != formal_type)
- rhs = convert_component(rhs, actual->type);
-
- ir_rvalue *lhs = actual;
- if (expr != NULL && expr->operation == ir_binop_vector_extract) {
- lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, NULL),
- expr->operands[1]->clone(mem_ctx, NULL));
- }
-
- ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
- after_instructions->push_tail(assignment_2);
-}
-
-/**
- * Generate a function call.
- *
- * For non-void functions, this returns a dereference of the temporary variable
- * which stores the return value for the call. For void functions, this returns
- * NULL.
- */
-static ir_rvalue *
-generate_call(exec_list *instructions, ir_function_signature *sig,
- exec_list *actual_parameters,
- ir_variable *sub_var,
- ir_rvalue *array_idx,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- exec_list post_call_conversions;
-
- /* Perform implicit conversion of arguments. For out parameters, we need
- * to place them in a temporary variable and do the conversion after the
- * call takes place. Since we haven't emitted the call yet, we'll place
- * the post-call conversions in a temporary exec_list, and emit them later.
- */
- foreach_two_lists(formal_node, &sig->parameters,
- actual_node, actual_parameters) {
- ir_rvalue *actual = (ir_rvalue *) actual_node;
- ir_variable *formal = (ir_variable *) formal_node;
-
- if (formal->type->is_numeric() || formal->type->is_boolean()) {
- switch (formal->data.mode) {
- case ir_var_const_in:
- case ir_var_function_in: {
- ir_rvalue *converted
- = convert_component(actual, formal->type);
- actual->replace_with(converted);
- break;
- }
- case ir_var_function_out:
- case ir_var_function_inout:
- fix_parameter(ctx, actual, formal->type,
- instructions, &post_call_conversions,
- formal->data.mode == ir_var_function_inout);
- break;
- default:
- assert (!"Illegal formal parameter mode");
- break;
- }
- }
- }
-
- /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
- *
- * "Initializers for const declarations must be formed from literal
- * values, other const variables (not including function call
- * paramaters), or expressions of these.
- *
- * Constructors may be used in such expressions, but function calls may
- * not."
- *
- * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
- *
- * "A constant expression is one of
- *
- * ...
- *
- * - a built-in function call whose arguments are all constant
- * expressions, with the exception of the texture lookup
- * functions, the noise functions, and ftransform. The built-in
- * functions dFdx, dFdy, and fwidth must return 0 when evaluated
- * inside an initializer with an argument that is a constant
- * expression."
- *
- * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
- *
- * "A constant expression is one of
- *
- * ...
- *
- * - a built-in function call whose arguments are all constant
- * expressions, with the exception of the texture lookup
- * functions."
- *
- * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
- *
- * "A constant expression is one of
- *
- * ...
- *
- * - a built-in function call whose arguments are all constant
- * expressions, with the exception of the texture lookup
- * functions. The built-in functions dFdx, dFdy, and fwidth must
- * return 0 when evaluated inside an initializer with an argument
- * that is a constant expression."
- *
- * If the function call is a constant expression, don't generate any
- * instructions; just generate an ir_constant.
- */
- if (state->is_version(120, 100)) {
- ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
- if (value != NULL) {
- return value;
- }
- }
-
- ir_dereference_variable *deref = NULL;
- if (!sig->return_type->is_void()) {
- /* Create a new temporary to hold the return value. */
- char *const name = ir_variable::temporaries_allocate_names
- ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
- : NULL;
-
- ir_variable *var;
-
- var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
- instructions->push_tail(var);
-
- ralloc_free(name);
-
- deref = new(ctx) ir_dereference_variable(var);
- }
-
- ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx);
- instructions->push_tail(call);
-
- /* Also emit any necessary out-parameter conversions. */
- instructions->append_list(&post_call_conversions);
-
- return deref ? deref->clone(ctx, NULL) : NULL;
-}
-
-/**
- * Given a function name and parameter list, find the matching signature.
- */
-static ir_function_signature *
-match_function_by_name(const char *name,
- exec_list *actual_parameters,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- ir_function *f = state->symbols->get_function(name);
- ir_function_signature *local_sig = NULL;
- ir_function_signature *sig = NULL;
-
- /* Is the function hidden by a record type constructor? */
- if (state->symbols->get_type(name))
- goto done; /* no match */
-
- /* Is the function hidden by a variable (impossible in 1.10)? */
- if (!state->symbols->separate_function_namespace
- && state->symbols->get_variable(name))
- goto done; /* no match */
-
- if (f != NULL) {
- /* In desktop GL, the presence of a user-defined signature hides any
- * built-in signatures, so we must ignore them. In contrast, in ES2
- * user-defined signatures add new overloads, so we must consider them.
- */
- bool allow_builtins = state->es_shader || !f->has_user_signature();
-
- /* Look for a match in the local shader. If exact, we're done. */
- bool is_exact = false;
- sig = local_sig = f->matching_signature(state, actual_parameters,
- allow_builtins, &is_exact);
- if (is_exact)
- goto done;
-
- if (!allow_builtins)
- goto done;
- }
-
- /* Local shader has no exact candidates; check the built-ins. */
- _mesa_glsl_initialize_builtin_functions();
- sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
-
-done:
- if (sig != NULL) {
- /* If the match is from a linked built-in shader, import the prototype. */
- if (sig != local_sig) {
- if (f == NULL) {
- f = new(ctx) ir_function(name);
- state->symbols->add_global_function(f);
- emit_function(state, f);
- }
- f->add_signature(sig->clone_prototype(f, NULL));
- }
- }
- return sig;
-}
-
-static ir_function_signature *
-match_subroutine_by_name(const char *name,
- exec_list *actual_parameters,
- struct _mesa_glsl_parse_state *state,
- ir_variable **var_r)
-{
- void *ctx = state;
- ir_function_signature *sig = NULL;
- ir_function *f, *found = NULL;
- const char *new_name;
- ir_variable *var;
- bool is_exact = false;
-
- new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name);
- var = state->symbols->get_variable(new_name);
- if (!var)
- return NULL;
-
- for (int i = 0; i < state->num_subroutine_types; i++) {
- f = state->subroutine_types[i];
- if (strcmp(f->name, var->type->without_array()->name))
- continue;
- found = f;
- break;
- }
-
- if (!found)
- return NULL;
- *var_r = var;
- sig = found->matching_signature(state, actual_parameters,
- false, &is_exact);
- return sig;
-}
-
-static ir_rvalue *
-generate_array_index(void *mem_ctx, exec_list *instructions,
- struct _mesa_glsl_parse_state *state, YYLTYPE loc,
- const ast_expression *array, ast_expression *idx,
- const char **function_name, exec_list *actual_parameters)
-{
- if (array->oper == ast_array_index) {
- /* This handles arrays of arrays */
- ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
- state, loc,
- array->subexpressions[0],
- array->subexpressions[1],
- function_name, actual_parameters);
- ir_rvalue *outer_array_idx = idx->hir(instructions, state);
-
- YYLTYPE index_loc = idx->get_location();
- return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
- outer_array_idx, loc,
- index_loc);
- } else {
- ir_variable *sub_var = NULL;
- *function_name = array->primary_expression.identifier;
-
- match_subroutine_by_name(*function_name, actual_parameters,
- state, &sub_var);
-
- ir_rvalue *outer_array_idx = idx->hir(instructions, state);
- return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
- }
-}
-
-static void
-print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
- ir_function *f)
-{
- if (f == NULL)
- return;
-
- foreach_in_list(ir_function_signature, sig, &f->signatures) {
- if (sig->is_builtin() && !sig->is_builtin_available(state))
- continue;
-
- char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
- _mesa_glsl_error(loc, state, " %s", str);
- ralloc_free(str);
- }
-}
-
-/**
- * Raise a "no matching function" error, listing all possible overloads the
- * compiler considered so developers can figure out what went wrong.
- */
-static void
-no_matching_function_error(const char *name,
- YYLTYPE *loc,
- exec_list *actual_parameters,
- _mesa_glsl_parse_state *state)
-{
- gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
-
- if (state->symbols->get_function(name) == NULL
- && (!state->uses_builtin_functions
- || sh->symbols->get_function(name) == NULL)) {
- _mesa_glsl_error(loc, state, "no function with name '%s'", name);
- } else {
- char *str = prototype_string(NULL, name, actual_parameters);
- _mesa_glsl_error(loc, state,
- "no matching function for call to `%s'; candidates are:",
- str);
- ralloc_free(str);
-
- print_function_prototypes(state, loc, state->symbols->get_function(name));
-
- if (state->uses_builtin_functions) {
- print_function_prototypes(state, loc, sh->symbols->get_function(name));
- }
- }
-}
-
-/**
- * Perform automatic type conversion of constructor parameters
- *
- * This implements the rules in the "Conversion and Scalar Constructors"
- * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
- */
-static ir_rvalue *
-convert_component(ir_rvalue *src, const glsl_type *desired_type)
-{
- void *ctx = ralloc_parent(src);
- const unsigned a = desired_type->base_type;
- const unsigned b = src->type->base_type;
- ir_expression *result = NULL;
-
- if (src->type->is_error())
- return src;
-
- assert(a <= GLSL_TYPE_BOOL);
- assert(b <= GLSL_TYPE_BOOL);
-
- if (a == b)
- return src;
-
- switch (a) {
- case GLSL_TYPE_UINT:
- switch (b) {
- case GLSL_TYPE_INT:
- result = new(ctx) ir_expression(ir_unop_i2u, src);
- break;
- case GLSL_TYPE_FLOAT:
- result = new(ctx) ir_expression(ir_unop_f2u, src);
- break;
- case GLSL_TYPE_BOOL:
- result = new(ctx) ir_expression(ir_unop_i2u,
- new(ctx) ir_expression(ir_unop_b2i, src));
- break;
- case GLSL_TYPE_DOUBLE:
- result = new(ctx) ir_expression(ir_unop_d2u, src);
- break;
- }
- break;
- case GLSL_TYPE_INT:
- switch (b) {
- case GLSL_TYPE_UINT:
- result = new(ctx) ir_expression(ir_unop_u2i, src);
- break;
- case GLSL_TYPE_FLOAT:
- result = new(ctx) ir_expression(ir_unop_f2i, src);
- break;
- case GLSL_TYPE_BOOL:
- result = new(ctx) ir_expression(ir_unop_b2i, src);
- break;
- case GLSL_TYPE_DOUBLE:
- result = new(ctx) ir_expression(ir_unop_d2i, src);
- break;
- }
- break;
- case GLSL_TYPE_FLOAT:
- switch (b) {
- case GLSL_TYPE_UINT:
- result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
- break;
- case GLSL_TYPE_INT:
- result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
- break;
- case GLSL_TYPE_BOOL:
- result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
- break;
- case GLSL_TYPE_DOUBLE:
- result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
- break;
- }
- break;
- case GLSL_TYPE_BOOL:
- switch (b) {
- case GLSL_TYPE_UINT:
- result = new(ctx) ir_expression(ir_unop_i2b,
- new(ctx) ir_expression(ir_unop_u2i, src));
- break;
- case GLSL_TYPE_INT:
- result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
- break;
- case GLSL_TYPE_FLOAT:
- result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
- break;
- case GLSL_TYPE_DOUBLE:
- result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
- break;
- }
- break;
- case GLSL_TYPE_DOUBLE:
- switch (b) {
- case GLSL_TYPE_INT:
- result = new(ctx) ir_expression(ir_unop_i2d, src);
- break;
- case GLSL_TYPE_UINT:
- result = new(ctx) ir_expression(ir_unop_u2d, src);
- break;
- case GLSL_TYPE_BOOL:
- result = new(ctx) ir_expression(ir_unop_f2d,
- new(ctx) ir_expression(ir_unop_b2f, src));
- break;
- case GLSL_TYPE_FLOAT:
- result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
- break;
- }
- }
-
- assert(result != NULL);
- assert(result->type == desired_type);
-
- /* Try constant folding; it may fold in the conversion we just added. */
- ir_constant *const constant = result->constant_expression_value();
- return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
-}
-
-/**
- * Dereference a specific component from a scalar, vector, or matrix
- */
-static ir_rvalue *
-dereference_component(ir_rvalue *src, unsigned component)
-{
- void *ctx = ralloc_parent(src);
- assert(component < src->type->components());
-
- /* If the source is a constant, just create a new constant instead of a
- * dereference of the existing constant.
- */
- ir_constant *constant = src->as_constant();
- if (constant)
- return new(ctx) ir_constant(constant, component);
-
- if (src->type->is_scalar()) {
- return src;
- } else if (src->type->is_vector()) {
- return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
- } else {
- assert(src->type->is_matrix());
-
- /* Dereference a row of the matrix, then call this function again to get
- * a specific element from that row.
- */
- const int c = component / src->type->column_type()->vector_elements;
- const int r = component % src->type->column_type()->vector_elements;
- ir_constant *const col_index = new(ctx) ir_constant(c);
- ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
-
- col->type = src->type->column_type();
-
- return dereference_component(col, r);
- }
-
- assert(!"Should not get here.");
- return NULL;
-}
-
-
-static ir_rvalue *
-process_vec_mat_constructor(exec_list *instructions,
- const glsl_type *constructor_type,
- YYLTYPE *loc, exec_list *parameters,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
-
- /* The ARB_shading_language_420pack spec says:
- *
- * "If an initializer is a list of initializers enclosed in curly braces,
- * the variable being declared must be a vector, a matrix, an array, or a
- * structure.
- *
- * int i = { 1 }; // illegal, i is not an aggregate"
- */
- if (constructor_type->vector_elements <= 1) {
- _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
- "matrices, arrays, and structs");
- return ir_rvalue::error_value(ctx);
- }
-
- exec_list actual_parameters;
- const unsigned parameter_count =
- process_parameters(instructions, &actual_parameters, parameters, state);
-
- if (parameter_count == 0
- || (constructor_type->is_vector() &&
- constructor_type->vector_elements != parameter_count)
- || (constructor_type->is_matrix() &&
- constructor_type->matrix_columns != parameter_count)) {
- _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
- constructor_type->is_vector() ? "vector" : "matrix",
- constructor_type->vector_elements);
- return ir_rvalue::error_value(ctx);
- }
-
- bool all_parameters_are_constant = true;
-
- /* Type cast each parameter and, if possible, fold constants. */
- foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
- ir_rvalue *result = ir;
-
- /* Apply implicit conversions (not the scalar constructor rules!). See
- * the spec quote above. */
- if (constructor_type->base_type != result->type->base_type) {
- const glsl_type *desired_type =
- glsl_type::get_instance(constructor_type->base_type,
- ir->type->vector_elements,
- ir->type->matrix_columns);
- if (result->type->can_implicitly_convert_to(desired_type, state)) {
- /* Even though convert_component() implements the constructor
- * conversion rules (not the implicit conversion rules), its safe
- * to use it here because we already checked that the implicit
- * conversion is legal.
- */
- result = convert_component(ir, desired_type);
- }
- }
-
- if (constructor_type->is_matrix()) {
- if (result->type != constructor_type->column_type()) {
- _mesa_glsl_error(loc, state, "type error in matrix constructor: "
- "expected: %s, found %s",
- constructor_type->column_type()->name,
- result->type->name);
- return ir_rvalue::error_value(ctx);
- }
- } else if (result->type != constructor_type->get_scalar_type()) {
- _mesa_glsl_error(loc, state, "type error in vector constructor: "
- "expected: %s, found %s",
- constructor_type->get_scalar_type()->name,
- result->type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- /* Attempt to convert the parameter to a constant valued expression.
- * After doing so, track whether or not all the parameters to the
- * constructor are trivially constant valued expressions.
- */
- ir_rvalue *const constant = result->constant_expression_value();
-
- if (constant != NULL)
- result = constant;
- else
- all_parameters_are_constant = false;
-
- ir->replace_with(result);
- }
-
- if (all_parameters_are_constant)
- return new(ctx) ir_constant(constructor_type, &actual_parameters);
-
- ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
- ir_var_temporary);
- instructions->push_tail(var);
-
- int i = 0;
-
- foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
- ir_instruction *assignment = NULL;
-
- if (var->type->is_matrix()) {
- ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
- new(ctx) ir_constant(i));
- assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
- } else {
- /* use writemask rather than index for vector */
- assert(var->type->is_vector());
- assert(i < 4);
- ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
- assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
- }
-
- instructions->push_tail(assignment);
-
- i++;
- }
-
- return new(ctx) ir_dereference_variable(var);
-}
-
-
-static ir_rvalue *
-process_array_constructor(exec_list *instructions,
- const glsl_type *constructor_type,
- YYLTYPE *loc, exec_list *parameters,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- /* Array constructors come in two forms: sized and unsized. Sized array
- * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
- * variables. In this case the number of parameters must exactly match the
- * specified size of the array.
- *
- * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
- * are vec4 variables. In this case the size of the array being constructed
- * is determined by the number of parameters.
- *
- * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
- *
- * "There must be exactly the same number of arguments as the size of
- * the array being constructed. If no size is present in the
- * constructor, then the array is explicitly sized to the number of
- * arguments provided. The arguments are assigned in order, starting at
- * element 0, to the elements of the constructed array. Each argument
- * must be the same type as the element type of the array, or be a type
- * that can be converted to the element type of the array according to
- * Section 4.1.10 "Implicit Conversions.""
- */
- exec_list actual_parameters;
- const unsigned parameter_count =
- process_parameters(instructions, &actual_parameters, parameters, state);
- bool is_unsized_array = constructor_type->is_unsized_array();
-
- if ((parameter_count == 0) ||
- (!is_unsized_array && (constructor_type->length != parameter_count))) {
- const unsigned min_param = is_unsized_array
- ? 1 : constructor_type->length;
-
- _mesa_glsl_error(loc, state, "array constructor must have %s %u "
- "parameter%s",
- is_unsized_array ? "at least" : "exactly",
- min_param, (min_param <= 1) ? "" : "s");
- return ir_rvalue::error_value(ctx);
- }
-
- if (is_unsized_array) {
- constructor_type =
- glsl_type::get_array_instance(constructor_type->fields.array,
- parameter_count);
- assert(constructor_type != NULL);
- assert(constructor_type->length == parameter_count);
- }
-
- bool all_parameters_are_constant = true;
- const glsl_type *element_type = constructor_type->fields.array;
-
- /* Type cast each parameter and, if possible, fold constants. */
- foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
- ir_rvalue *result = ir;
-
- const glsl_base_type element_base_type =
- constructor_type->fields.array->base_type;
-
- /* Apply implicit conversions (not the scalar constructor rules!). See
- * the spec quote above. */
- if (element_base_type != result->type->base_type) {
- const glsl_type *desired_type =
- glsl_type::get_instance(element_base_type,
- ir->type->vector_elements,
- ir->type->matrix_columns);
-
- if (result->type->can_implicitly_convert_to(desired_type, state)) {
- /* Even though convert_component() implements the constructor
- * conversion rules (not the implicit conversion rules), its safe
- * to use it here because we already checked that the implicit
- * conversion is legal.
- */
- result = convert_component(ir, desired_type);
- }
- }
-
- if (constructor_type->fields.array->is_unsized_array()) {
- /* As the inner parameters of the constructor are created without
- * knowledge of each other we need to check to make sure unsized
- * parameters of unsized constructors all end up with the same size.
- *
- * e.g we make sure to fail for a constructor like this:
- * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
- * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
- * vec4[](vec4(0.0), vec4(1.0)));
- */
- if (element_type->is_unsized_array()) {
- /* This is the first parameter so just get the type */
- element_type = result->type;
- } else if (element_type != result->type) {
- _mesa_glsl_error(loc, state, "type error in array constructor: "
- "expected: %s, found %s",
- element_type->name,
- result->type->name);
- return ir_rvalue::error_value(ctx);
- }
- } else if (result->type != constructor_type->fields.array) {
- _mesa_glsl_error(loc, state, "type error in array constructor: "
- "expected: %s, found %s",
- constructor_type->fields.array->name,
- result->type->name);
- return ir_rvalue::error_value(ctx);
- } else {
- element_type = result->type;
- }
-
- /* Attempt to convert the parameter to a constant valued expression.
- * After doing so, track whether or not all the parameters to the
- * constructor are trivially constant valued expressions.
- */
- ir_rvalue *const constant = result->constant_expression_value();
-
- if (constant != NULL)
- result = constant;
- else
- all_parameters_are_constant = false;
-
- ir->replace_with(result);
- }
-
- if (constructor_type->fields.array->is_unsized_array()) {
- constructor_type =
- glsl_type::get_array_instance(element_type,
- parameter_count);
- assert(constructor_type != NULL);
- assert(constructor_type->length == parameter_count);
- }
-
- if (all_parameters_are_constant)
- return new(ctx) ir_constant(constructor_type, &actual_parameters);
-
- ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
- ir_var_temporary);
- instructions->push_tail(var);
-
- int i = 0;
- foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
- ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
- new(ctx) ir_constant(i));
-
- ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
- instructions->push_tail(assignment);
-
- i++;
- }
-
- return new(ctx) ir_dereference_variable(var);
-}
-
-
-/**
- * Try to convert a record constructor to a constant expression
- */
-static ir_constant *
-constant_record_constructor(const glsl_type *constructor_type,
- exec_list *parameters, void *mem_ctx)
-{
- foreach_in_list(ir_instruction, node, parameters) {
- ir_constant *constant = node->as_constant();
- if (constant == NULL)
- return NULL;
- node->replace_with(constant);
- }
-
- return new(mem_ctx) ir_constant(constructor_type, parameters);
-}
-
-
-/**
- * Determine if a list consists of a single scalar r-value
- */
-bool
-single_scalar_parameter(exec_list *parameters)
-{
- const ir_rvalue *const p = (ir_rvalue *) parameters->head;
- assert(((ir_rvalue *)p)->as_rvalue() != NULL);
-
- return (p->type->is_scalar() && p->next->is_tail_sentinel());
-}
-
-
-/**
- * Generate inline code for a vector constructor
- *
- * The generated constructor code will consist of a temporary variable
- * declaration of the same type as the constructor. A sequence of assignments
- * from constructor parameters to the temporary will follow.
- *
- * \return
- * An \c ir_dereference_variable of the temprorary generated in the constructor
- * body.
- */
-ir_rvalue *
-emit_inline_vector_constructor(const glsl_type *type,
- exec_list *instructions,
- exec_list *parameters,
- void *ctx)
-{
- assert(!parameters->is_empty());
-
- ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
- instructions->push_tail(var);
-
- /* There are three kinds of vector constructors.
- *
- * - Construct a vector from a single scalar by replicating that scalar to
- * all components of the vector.
- *
- * - Construct a vector from at least a matrix. This case should already
- * have been taken care of in ast_function_expression::hir by breaking
- * down the matrix into a series of column vectors.
- *
- * - Construct a vector from an arbirary combination of vectors and
- * scalars. The components of the constructor parameters are assigned
- * to the vector in order until the vector is full.
- */
- const unsigned lhs_components = type->components();
- if (single_scalar_parameter(parameters)) {
- ir_rvalue *first_param = (ir_rvalue *)parameters->head;
- ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
- lhs_components);
- ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
- const unsigned mask = (1U << lhs_components) - 1;
-
- assert(rhs->type == lhs->type);
-
- ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
- instructions->push_tail(inst);
- } else {
- unsigned base_component = 0;
- unsigned base_lhs_component = 0;
- ir_constant_data data;
- unsigned constant_mask = 0, constant_components = 0;
-
- memset(&data, 0, sizeof(data));
-
- foreach_in_list(ir_rvalue, param, parameters) {
- unsigned rhs_components = param->type->components();
-
- /* Do not try to assign more components to the vector than it has!
- */
- if ((rhs_components + base_lhs_component) > lhs_components) {
- rhs_components = lhs_components - base_lhs_component;
- }
-
- const ir_constant *const c = param->as_constant();
- if (c != NULL) {
- for (unsigned i = 0; i < rhs_components; i++) {
- switch (c->type->base_type) {
- case GLSL_TYPE_UINT:
- data.u[i + base_component] = c->get_uint_component(i);
- break;
- case GLSL_TYPE_INT:
- data.i[i + base_component] = c->get_int_component(i);
- break;
- case GLSL_TYPE_FLOAT:
- data.f[i + base_component] = c->get_float_component(i);
- break;
- case GLSL_TYPE_DOUBLE:
- data.d[i + base_component] = c->get_double_component(i);
- break;
- case GLSL_TYPE_BOOL:
- data.b[i + base_component] = c->get_bool_component(i);
- break;
- default:
- assert(!"Should not get here.");
- break;
- }
- }
-
- /* Mask of fields to be written in the assignment.
- */
- constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
- constant_components += rhs_components;
-
- base_component += rhs_components;
- }
- /* Advance the component index by the number of components
- * that were just assigned.
- */
- base_lhs_component += rhs_components;
- }
-
- if (constant_mask != 0) {
- ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
- const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
- constant_components,
- 1);
- ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
-
- ir_instruction *inst =
- new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
- instructions->push_tail(inst);
- }
-
- base_component = 0;
- foreach_in_list(ir_rvalue, param, parameters) {
- unsigned rhs_components = param->type->components();
-
- /* Do not try to assign more components to the vector than it has!
- */
- if ((rhs_components + base_component) > lhs_components) {
- rhs_components = lhs_components - base_component;
- }
-
- /* If we do not have any components left to copy, break out of the
- * loop. This can happen when initializing a vec4 with a mat3 as the
- * mat3 would have been broken into a series of column vectors.
- */
- if (rhs_components == 0) {
- break;
- }
-
- const ir_constant *const c = param->as_constant();
- if (c == NULL) {
- /* Mask of fields to be written in the assignment.
- */
- const unsigned write_mask = ((1U << rhs_components) - 1)
- << base_component;
-
- ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
-
- /* Generate a swizzle so that LHS and RHS sizes match.
- */
- ir_rvalue *rhs =
- new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
-
- ir_instruction *inst =
- new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
- instructions->push_tail(inst);
- }
-
- /* Advance the component index by the number of components that were
- * just assigned.
- */
- base_component += rhs_components;
- }
- }
- return new(ctx) ir_dereference_variable(var);
-}
-
-
-/**
- * Generate assignment of a portion of a vector to a portion of a matrix column
- *
- * \param src_base First component of the source to be used in assignment
- * \param column Column of destination to be assiged
- * \param row_base First component of the destination column to be assigned
- * \param count Number of components to be assigned
- *
- * \note
- * \c src_base + \c count must be less than or equal to the number of components
- * in the source vector.
- */
-ir_instruction *
-assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
- ir_rvalue *src, unsigned src_base, unsigned count,
- void *mem_ctx)
-{
- ir_constant *col_idx = new(mem_ctx) ir_constant(column);
- ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
-
- assert(column_ref->type->components() >= (row_base + count));
- assert(src->type->components() >= (src_base + count));
-
- /* Generate a swizzle that extracts the number of components from the source
- * that are to be assigned to the column of the matrix.
- */
- if (count < src->type->vector_elements) {
- src = new(mem_ctx) ir_swizzle(src,
- src_base + 0, src_base + 1,
- src_base + 2, src_base + 3,
- count);
- }
-
- /* Mask of fields to be written in the assignment.
- */
- const unsigned write_mask = ((1U << count) - 1) << row_base;
-
- return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
-}
-
-
-/**
- * Generate inline code for a matrix constructor
- *
- * The generated constructor code will consist of a temporary variable
- * declaration of the same type as the constructor. A sequence of assignments
- * from constructor parameters to the temporary will follow.
- *
- * \return
- * An \c ir_dereference_variable of the temprorary generated in the constructor
- * body.
- */
-ir_rvalue *
-emit_inline_matrix_constructor(const glsl_type *type,
- exec_list *instructions,
- exec_list *parameters,
- void *ctx)
-{
- assert(!parameters->is_empty());
-
- ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
- instructions->push_tail(var);
-
- /* There are three kinds of matrix constructors.
- *
- * - Construct a matrix from a single scalar by replicating that scalar to
- * along the diagonal of the matrix and setting all other components to
- * zero.
- *
- * - Construct a matrix from an arbirary combination of vectors and
- * scalars. The components of the constructor parameters are assigned
- * to the matrix in column-major order until the matrix is full.
- *
- * - Construct a matrix from a single matrix. The source matrix is copied
- * to the upper left portion of the constructed matrix, and the remaining
- * elements take values from the identity matrix.
- */
- ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
- if (single_scalar_parameter(parameters)) {
- /* Assign the scalar to the X component of a vec4, and fill the remaining
- * components with zero.
- */
- glsl_base_type param_base_type = first_param->type->base_type;
- assert(param_base_type == GLSL_TYPE_FLOAT ||
- param_base_type == GLSL_TYPE_DOUBLE);
- ir_variable *rhs_var =
- new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
- "mat_ctor_vec",
- ir_var_temporary);
- instructions->push_tail(rhs_var);
-
- ir_constant_data zero;
- for (unsigned i = 0; i < 4; i++)
- if (param_base_type == GLSL_TYPE_FLOAT)
- zero.f[i] = 0.0;
- else
- zero.d[i] = 0.0;
-
- ir_instruction *inst =
- new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
- new(ctx) ir_constant(rhs_var->type, &zero),
- NULL);
- instructions->push_tail(inst);
-
- ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
-
- inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
- instructions->push_tail(inst);
-
- /* Assign the temporary vector to each column of the destination matrix
- * with a swizzle that puts the X component on the diagonal of the
- * matrix. In some cases this may mean that the X component does not
- * get assigned into the column at all (i.e., when the matrix has more
- * columns than rows).
- */
- static const unsigned rhs_swiz[4][4] = {
- { 0, 1, 1, 1 },
- { 1, 0, 1, 1 },
- { 1, 1, 0, 1 },
- { 1, 1, 1, 0 }
- };
-
- const unsigned cols_to_init = MIN2(type->matrix_columns,
- type->vector_elements);
- for (unsigned i = 0; i < cols_to_init; i++) {
- ir_constant *const col_idx = new(ctx) ir_constant(i);
- ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
-
- ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
- ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
- type->vector_elements);
-
- inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
- instructions->push_tail(inst);
- }
-
- for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
- ir_constant *const col_idx = new(ctx) ir_constant(i);
- ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
-
- ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
- ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
- type->vector_elements);
-
- inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
- instructions->push_tail(inst);
- }
- } else if (first_param->type->is_matrix()) {
- /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
- *
- * "If a matrix is constructed from a matrix, then each component
- * (column i, row j) in the result that has a corresponding
- * component (column i, row j) in the argument will be initialized
- * from there. All other components will be initialized to the
- * identity matrix. If a matrix argument is given to a matrix
- * constructor, it is an error to have any other arguments."
- */
- assert(first_param->next->is_tail_sentinel());
- ir_rvalue *const src_matrix = first_param;
-
- /* If the source matrix is smaller, pre-initialize the relavent parts of
- * the destination matrix to the identity matrix.
- */
- if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
- || (src_matrix->type->vector_elements < var->type->vector_elements)) {
-
- /* If the source matrix has fewer rows, every column of the destination
- * must be initialized. Otherwise only the columns in the destination
- * that do not exist in the source must be initialized.
- */
- unsigned col =
- (src_matrix->type->vector_elements < var->type->vector_elements)
- ? 0 : src_matrix->type->matrix_columns;
-
- const glsl_type *const col_type = var->type->column_type();
- for (/* empty */; col < var->type->matrix_columns; col++) {
- ir_constant_data ident;
-
- ident.f[0] = 0.0;
- ident.f[1] = 0.0;
- ident.f[2] = 0.0;
- ident.f[3] = 0.0;
-
- ident.f[col] = 1.0;
-
- ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
-
- ir_rvalue *const lhs =
- new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
-
- ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
- instructions->push_tail(inst);
- }
- }
-
- /* Assign columns from the source matrix to the destination matrix.
- *
- * Since the parameter will be used in the RHS of multiple assignments,
- * generate a temporary and copy the paramter there.
- */
- ir_variable *const rhs_var =
- new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
- ir_var_temporary);
- instructions->push_tail(rhs_var);
-
- ir_dereference *const rhs_var_ref =
- new(ctx) ir_dereference_variable(rhs_var);
- ir_instruction *const inst =
- new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
- instructions->push_tail(inst);
-
- const unsigned last_row = MIN2(src_matrix->type->vector_elements,
- var->type->vector_elements);
- const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
- var->type->matrix_columns);
-
- unsigned swiz[4] = { 0, 0, 0, 0 };
- for (unsigned i = 1; i < last_row; i++)
- swiz[i] = i;
-
- const unsigned write_mask = (1U << last_row) - 1;
-
- for (unsigned i = 0; i < last_col; i++) {
- ir_dereference *const lhs =
- new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
- ir_rvalue *const rhs_col =
- new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
-
- /* If one matrix has columns that are smaller than the columns of the
- * other matrix, wrap the column access of the larger with a swizzle
- * so that the LHS and RHS of the assignment have the same size (and
- * therefore have the same type).
- *
- * It would be perfectly valid to unconditionally generate the
- * swizzles, this this will typically result in a more compact IR tree.
- */
- ir_rvalue *rhs;
- if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
- rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
- } else {
- rhs = rhs_col;
- }
-
- ir_instruction *inst =
- new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
- instructions->push_tail(inst);
- }
- } else {
- const unsigned cols = type->matrix_columns;
- const unsigned rows = type->vector_elements;
- unsigned remaining_slots = rows * cols;
- unsigned col_idx = 0;
- unsigned row_idx = 0;
-
- foreach_in_list(ir_rvalue, rhs, parameters) {
- unsigned rhs_components = rhs->type->components();
- unsigned rhs_base = 0;
-
- if (remaining_slots == 0)
- break;
-
- /* Since the parameter might be used in the RHS of two assignments,
- * generate a temporary and copy the paramter there.
- */
- ir_variable *rhs_var =
- new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
- instructions->push_tail(rhs_var);
-
- ir_dereference *rhs_var_ref =
- new(ctx) ir_dereference_variable(rhs_var);
- ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
- instructions->push_tail(inst);
-
- do {
- /* Assign the current parameter to as many components of the matrix
- * as it will fill.
- *
- * NOTE: A single vector parameter can span two matrix columns. A
- * single vec4, for example, can completely fill a mat2.
- */
- unsigned count = MIN2(rows - row_idx,
- rhs_components - rhs_base);
-
- rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
- ir_instruction *inst = assign_to_matrix_column(var, col_idx,
- row_idx,
- rhs_var_ref,
- rhs_base,
- count, ctx);
- instructions->push_tail(inst);
- rhs_base += count;
- row_idx += count;
- remaining_slots -= count;
-
- /* Sometimes, there is still data left in the parameters and
- * components left to be set in the destination but in other
- * column.
- */
- if (row_idx >= rows) {
- row_idx = 0;
- col_idx++;
- }
- } while(remaining_slots > 0 && rhs_base < rhs_components);
- }
- }
-
- return new(ctx) ir_dereference_variable(var);
-}
-
-
-ir_rvalue *
-emit_inline_record_constructor(const glsl_type *type,
- exec_list *instructions,
- exec_list *parameters,
- void *mem_ctx)
-{
- ir_variable *const var =
- new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
- ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
-
- instructions->push_tail(var);
-
- exec_node *node = parameters->head;
- for (unsigned i = 0; i < type->length; i++) {
- assert(!node->is_tail_sentinel());
-
- ir_dereference *const lhs =
- new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
- type->fields.structure[i].name);
-
- ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
- assert(rhs != NULL);
-
- ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
-
- instructions->push_tail(assign);
- node = node->next;
- }
-
- return d;
-}
-
-
-static ir_rvalue *
-process_record_constructor(exec_list *instructions,
- const glsl_type *constructor_type,
- YYLTYPE *loc, exec_list *parameters,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- exec_list actual_parameters;
-
- process_parameters(instructions, &actual_parameters,
- parameters, state);
-
- exec_node *node = actual_parameters.head;
- for (unsigned i = 0; i < constructor_type->length; i++) {
- ir_rvalue *ir = (ir_rvalue *) node;
-
- if (node->is_tail_sentinel()) {
- _mesa_glsl_error(loc, state,
- "insufficient parameters to constructor for `%s'",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
- ir, state)) {
- node->replace_with(ir);
- } else {
- _mesa_glsl_error(loc, state,
- "parameter type mismatch in constructor for `%s.%s' "
- "(%s vs %s)",
- constructor_type->name,
- constructor_type->fields.structure[i].name,
- ir->type->name,
- constructor_type->fields.structure[i].type->name);
- return ir_rvalue::error_value(ctx);;
- }
-
- node = node->next;
- }
-
- if (!node->is_tail_sentinel()) {
- _mesa_glsl_error(loc, state, "too many parameters in constructor "
- "for `%s'", constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- ir_rvalue *const constant =
- constant_record_constructor(constructor_type, &actual_parameters,
- state);
-
- return (constant != NULL)
- ? constant
- : emit_inline_record_constructor(constructor_type, instructions,
- &actual_parameters, state);
-}
-
-ir_rvalue *
-ast_function_expression::handle_method(exec_list *instructions,
- struct _mesa_glsl_parse_state *state)
-{
- const ast_expression *field = subexpressions[0];
- ir_rvalue *op;
- ir_rvalue *result;
- void *ctx = state;
- /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
- YYLTYPE loc = get_location();
- state->check_version(120, 300, &loc, "methods not supported");
-
- const char *method;
- method = field->primary_expression.identifier;
-
- op = field->subexpressions[0]->hir(instructions, state);
- if (strcmp(method, "length") == 0) {
- if (!this->expressions.is_empty()) {
- _mesa_glsl_error(&loc, state, "length method takes no arguments");
- goto fail;
- }
-
- if (op->type->is_array()) {
- if (op->type->is_unsized_array()) {
- if (!state->has_shader_storage_buffer_objects()) {
- _mesa_glsl_error(&loc, state, "length called on unsized array"
- " only available with "
- "ARB_shader_storage_buffer_object");
- }
- /* Calculate length of an unsized array in run-time */
- result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op);
- } else {
- result = new(ctx) ir_constant(op->type->array_size());
- }
- } else if (op->type->is_vector()) {
- if (state->has_420pack()) {
- /* .length() returns int. */
- result = new(ctx) ir_constant((int) op->type->vector_elements);
- } else {
- _mesa_glsl_error(&loc, state, "length method on matrix only available"
- "with ARB_shading_language_420pack");
- goto fail;
- }
- } else if (op->type->is_matrix()) {
- if (state->has_420pack()) {
- /* .length() returns int. */
- result = new(ctx) ir_constant((int) op->type->matrix_columns);
- } else {
- _mesa_glsl_error(&loc, state, "length method on matrix only available"
- "with ARB_shading_language_420pack");
- goto fail;
- }
- } else {
- _mesa_glsl_error(&loc, state, "length called on scalar.");
- goto fail;
- }
- } else {
- _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
- goto fail;
- }
- return result;
-fail:
- return ir_rvalue::error_value(ctx);
-}
-
-ir_rvalue *
-ast_function_expression::hir(exec_list *instructions,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- /* There are three sorts of function calls.
- *
- * 1. constructors - The first subexpression is an ast_type_specifier.
- * 2. methods - Only the .length() method of array types.
- * 3. functions - Calls to regular old functions.
- *
- */
- if (is_constructor()) {
- const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
- YYLTYPE loc = type->get_location();
- const char *name;
-
- const glsl_type *const constructor_type = type->glsl_type(& name, state);
-
- /* constructor_type can be NULL if a variable with the same name as the
- * structure has come into scope.
- */
- if (constructor_type == NULL) {
- _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
- "may be shadowed by a variable with the same name)",
- type->type_name);
- return ir_rvalue::error_value(ctx);
- }
-
-
- /* Constructors for opaque types are illegal.
- */
- if (constructor_type->contains_opaque()) {
- _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- if (constructor_type->is_array()) {
- if (!state->check_version(120, 300, &loc,
- "array constructors forbidden")) {
- return ir_rvalue::error_value(ctx);
- }
-
- return process_array_constructor(instructions, constructor_type,
- & loc, &this->expressions, state);
- }
-
-
- /* There are two kinds of constructor calls. Constructors for arrays and
- * structures must have the exact number of arguments with matching types
- * in the correct order. These constructors follow essentially the same
- * type matching rules as functions.
- *
- * Constructors for built-in language types, such as mat4 and vec2, are
- * free form. The only requirements are that the parameters must provide
- * enough values of the correct scalar type and that no arguments are
- * given past the last used argument.
- *
- * When using the C-style initializer syntax from GLSL 4.20, constructors
- * must have the exact number of arguments with matching types in the
- * correct order.
- */
- if (constructor_type->is_record()) {
- return process_record_constructor(instructions, constructor_type,
- &loc, &this->expressions,
- state);
- }
-
- if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
- return ir_rvalue::error_value(ctx);
-
- /* Total number of components of the type being constructed. */
- const unsigned type_components = constructor_type->components();
-
- /* Number of components from parameters that have actually been
- * consumed. This is used to perform several kinds of error checking.
- */
- unsigned components_used = 0;
-
- unsigned matrix_parameters = 0;
- unsigned nonmatrix_parameters = 0;
- exec_list actual_parameters;
-
- foreach_list_typed(ast_node, ast, link, &this->expressions) {
- ir_rvalue *result = ast->hir(instructions, state);
-
- /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
- *
- * "It is an error to provide extra arguments beyond this
- * last used argument."
- */
- if (components_used >= type_components) {
- _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
- "constructor",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- if (!result->type->is_numeric() && !result->type->is_boolean()) {
- _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
- "non-numeric data type",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- /* Count the number of matrix and nonmatrix parameters. This
- * is used below to enforce some of the constructor rules.
- */
- if (result->type->is_matrix())
- matrix_parameters++;
- else
- nonmatrix_parameters++;
-
- actual_parameters.push_tail(result);
- components_used += result->type->components();
- }
-
- /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
- *
- * "It is an error to construct matrices from other matrices. This
- * is reserved for future use."
- */
- if (matrix_parameters > 0
- && constructor_type->is_matrix()
- && !state->check_version(120, 100, &loc,
- "cannot construct `%s' from a matrix",
- constructor_type->name)) {
- return ir_rvalue::error_value(ctx);
- }
-
- /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
- *
- * "If a matrix argument is given to a matrix constructor, it is
- * an error to have any other arguments."
- */
- if ((matrix_parameters > 0)
- && ((matrix_parameters + nonmatrix_parameters) > 1)
- && constructor_type->is_matrix()) {
- _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
- "matrix must be only parameter",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
- *
- * "In these cases, there must be enough components provided in the
- * arguments to provide an initializer for every component in the
- * constructed value."
- */
- if (components_used < type_components && components_used != 1
- && matrix_parameters == 0) {
- _mesa_glsl_error(& loc, state, "too few components to construct "
- "`%s'",
- constructor_type->name);
- return ir_rvalue::error_value(ctx);
- }
-
- /* Matrices can never be consumed as is by any constructor but matrix
- * constructors. If the constructor type is not matrix, always break the
- * matrix up into a series of column vectors.
- */
- if (!constructor_type->is_matrix()) {
- foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
- if (!matrix->type->is_matrix())
- continue;
-
- /* Create a temporary containing the matrix. */
- ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
- ir_var_temporary);
- instructions->push_tail(var);
- instructions->push_tail(new(ctx) ir_assignment(new(ctx)
- ir_dereference_variable(var), matrix, NULL));
- var->constant_value = matrix->constant_expression_value();
-
- /* Replace the matrix with dereferences of its columns. */
- for (int i = 0; i < matrix->type->matrix_columns; i++) {
- matrix->insert_before(new (ctx) ir_dereference_array(var,
- new(ctx) ir_constant(i)));
- }
- matrix->remove();
- }
- }
-
- bool all_parameters_are_constant = true;
-
- /* Type cast each parameter and, if possible, fold constants.*/
- foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
- const glsl_type *desired_type =
- glsl_type::get_instance(constructor_type->base_type,
- ir->type->vector_elements,
- ir->type->matrix_columns);
- ir_rvalue *result = convert_component(ir, desired_type);
-
- /* Attempt to convert the parameter to a constant valued expression.
- * After doing so, track whether or not all the parameters to the
- * constructor are trivially constant valued expressions.
- */
- ir_rvalue *const constant = result->constant_expression_value();
-
- if (constant != NULL)
- result = constant;
- else
- all_parameters_are_constant = false;
-
- if (result != ir) {
- ir->replace_with(result);
- }
- }
-
- /* If all of the parameters are trivially constant, create a
- * constant representing the complete collection of parameters.
- */
- if (all_parameters_are_constant) {
- return new(ctx) ir_constant(constructor_type, &actual_parameters);
- } else if (constructor_type->is_scalar()) {
- return dereference_component((ir_rvalue *) actual_parameters.head,
- 0);
- } else if (constructor_type->is_vector()) {
- return emit_inline_vector_constructor(constructor_type,
- instructions,
- &actual_parameters,
- ctx);
- } else {
- assert(constructor_type->is_matrix());
- return emit_inline_matrix_constructor(constructor_type,
- instructions,
- &actual_parameters,
- ctx);
- }
- } else if (subexpressions[0]->oper == ast_field_selection) {
- return handle_method(instructions, state);
- } else {
- const ast_expression *id = subexpressions[0];
- const char *func_name;
- YYLTYPE loc = get_location();
- exec_list actual_parameters;
- ir_variable *sub_var = NULL;
- ir_rvalue *array_idx = NULL;
-
- process_parameters(instructions, &actual_parameters, &this->expressions,
- state);
-
- if (id->oper == ast_array_index) {
- array_idx = generate_array_index(ctx, instructions, state, loc,
- id->subexpressions[0],
- id->subexpressions[1], &func_name,
- &actual_parameters);
- } else {
- func_name = id->primary_expression.identifier;
- }
-
- ir_function_signature *sig =
- match_function_by_name(func_name, &actual_parameters, state);
-
- ir_rvalue *value = NULL;
- if (sig == NULL) {
- sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var);
- }
-
- if (sig == NULL) {
- no_matching_function_error(func_name, &loc, &actual_parameters, state);
- value = ir_rvalue::error_value(ctx);
- } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
- /* an error has already been emitted */
- value = ir_rvalue::error_value(ctx);
- } else {
- value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state);
- if (!value) {
- ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
- "void_var",
- ir_var_temporary);
- instructions->push_tail(tmp);
- value = new(ctx) ir_dereference_variable(tmp);
- }
- }
-
- return value;
- }
-
- unreachable("not reached");
-}
-
-bool
-ast_function_expression::has_sequence_subexpression() const
-{
- foreach_list_typed(const ast_node, ast, link, &this->expressions) {
- if (ast->has_sequence_subexpression())
- return true;
- }
-
- return false;
-}
-
-ir_rvalue *
-ast_aggregate_initializer::hir(exec_list *instructions,
- struct _mesa_glsl_parse_state *state)
-{
- void *ctx = state;
- YYLTYPE loc = this->get_location();
-
- if (!this->constructor_type) {
- _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
- return ir_rvalue::error_value(ctx);
- }
- const glsl_type *const constructor_type = this->constructor_type;
-
- if (!state->has_420pack()) {
- _mesa_glsl_error(&loc, state, "C-style initialization requires the "
- "GL_ARB_shading_language_420pack extension");
- return ir_rvalue::error_value(ctx);
- }
-
- if (constructor_type->is_array()) {
- return process_array_constructor(instructions, constructor_type, &loc,
- &this->expressions, state);
- }
-
- if (constructor_type->is_record()) {
- return process_record_constructor(instructions, constructor_type, &loc,
- &this->expressions, state);
- }
-
- return process_vec_mat_constructor(instructions, constructor_type, &loc,
- &this->expressions, state);
-}