diff options
author | Tom Stellard <[email protected]> | 2012-01-06 17:38:37 -0500 |
---|---|---|
committer | Tom Stellard <[email protected]> | 2012-04-13 10:32:06 -0400 |
commit | a75c6163e605f35b14f26930dd9227e4f337ec9e (patch) | |
tree | 0263219cbab9282896f874060bb03d445c4de891 /src/gallium/drivers/radeon/AMDILKernelManager.cpp | |
parent | e55cf4854d594eae9ac3f6abd24f4e616eea894f (diff) |
radeonsi: initial WIP SI code
This commit adds initial support for acceleration
on SI chips. egltri is starting to work.
The SI/R600 llvm backend is currently included in mesa
but that may change in the future.
The plan is to write a single gallium driver and
use gallium to support X acceleration.
This commit contains patches from:
Tom Stellard <[email protected]>
Michel Dänzer <[email protected]>
Alex Deucher <[email protected]>
Vadim Girlin <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
The following commits were squashed in:
======================================================================
radeonsi: Remove unused winsys pointer
This was removed from r600g in commit:
commit 96d882939d612fcc8332f107befec470ed4359de
Author: Marek Olšák <[email protected]>
Date: Fri Feb 17 01:49:49 2012 +0100
gallium: remove unused winsys pointers in pipe_screen and pipe_context
A winsys is already a private object of a driver.
======================================================================
radeonsi: Copy color clamping CAPs from r600
Not sure if the values of these CAPS are correct for radeonsi, but the
same changed were made to r600g in commit:
commit bc1c8369384b5e16547c5bf9728aa78f8dfd66cc
Author: Marek Olšák <[email protected]>
Date: Mon Jan 23 03:11:17 2012 +0100
st/mesa: do vertex and fragment color clamping in shaders
For ARB_color_buffer_float. Most hardware can't do it and st/mesa is
the perfect place for a fallback.
The exceptions are:
- r500 (vertex clamp only)
- nv50 (both)
- nvc0 (both)
- softpipe (both)
We also have to take into account that r300 can do CLAMPED vertex colors only,
while r600 can do UNCLAMPED vertex colors only. The difference can be expressed
with the two new CAPs.
======================================================================
radeonsi: Remove PIPE_CAP_OUTPUT_READ
This CAP was dropped in commit:
commit 04e324008759282728a95a1394bac2c4c2a1a3f9
Author: Marek Olšák <[email protected]>
Date: Thu Feb 23 23:44:36 2012 +0100
gallium: remove PIPE_SHADER_CAP_OUTPUT_READ
r600g is the only driver which has made use of it. The reason the CAP was
added was to fix some piglit tests when the GLSL pass lower_output_reads
didn't exist.
However, not removing output reads breaks the fallback for glClampColorARB,
which assumes outputs are not readable. The fix would be non-trivial
and my personal preference is to remove the CAP, considering that reading
outputs is uncommon and that we can now use lower_output_reads to fix
the issue that the CAP was supposed to workaround in the first place.
======================================================================
radeonsi: Add missing parameters to rws->buffer_get_tiling() call
This was changed in commit:
commit c0c979eebc076b95cc8d18a013ce2968fe6311ad
Author: Jerome Glisse <[email protected]>
Date: Mon Jan 30 17:22:13 2012 -0500
r600g: add support for common surface allocator for tiling v13
Tiled surface have all kind of alignment constraint that needs to
be met. Instead of having all this code duplicated btw ddx and
mesa use common code in libdrm_radeon this also ensure that both
ddx and mesa compute those alignment in the same way.
v2 fix evergreen
v3 fix compressed texture and workaround cube texture issue by
disabling 2D array mode for cubemap (need to check if r7xx and
newer are also affected by the issue)
v4 fix texture array
v5 fix evergreen and newer, split surface values computation from
mipmap tree generation so that we can get them directly from the
ddx
v6 final fix to evergreen tile split value
v7 fix mipmap offset to avoid to use random value, use color view
depth view to address different layer as hardware is doing some
magic rotation depending on the layer
v8 fix COLOR_VIEW on r6xx for linear array mode, use COLOR_VIEW on
evergreen, align bytes per pixel to a multiple of a dword
v9 fix handling of stencil on evergreen, half fix for compressed
texture
v10 fix evergreen compressed texture proper support for stencil
tile split. Fix stencil issue when array mode was clear by
the kernel, always program stencil bo. On evergreen depth
buffer bo need to be big enough to hold depth buffer + stencil
buffer as even with stencil disabled things get written there.
v11 rebase on top of mesa, fix pitch issue with 1d surface on evergreen,
old ddx overestimate those. Fix linear case when pitch*height < 64.
Fix r300g.
v12 Fix linear case when pitch*height < 64 for old path, adapt to
libdrm API change
v13 add libdrm check
Signed-off-by: Jerome Glisse <[email protected]>
======================================================================
radeonsi: Remove PIPE_TRANSFER_MAP_PERMANENTLY
This was removed in commit:
commit 62f44f670bb0162e89fd4786af877f8da9ff607c
Author: Marek Olšák <[email protected]>
Date: Mon Mar 5 13:45:00 2012 +0100
Revert "gallium: add flag PIPE_TRANSFER_MAP_PERMANENTLY"
This reverts commit 0950086376b1c8b7fb89eda81ed7f2f06dee58bc.
It was decided to refactor the transfer API instead of adding workarounds
to address the performance issues.
======================================================================
radeonsi: Handle PIPE_VIDEO_CAP_PREFERED_FORMAT.
Reintroduced in commit 9d9afcb5bac2931d4b8e6d1aa571e941c5110c90.
======================================================================
radeonsi: nuke the fallback for vertex and fragment color clamping
Ported from r600g commit c2b800cf38b299c1ab1c53dc0e4ea00c7acef853.
======================================================================
radeonsi: don't expose transform_feedback2 without kernel support
Ported from r600g commit 15146fd1bcbb08e44a1cbb984440ee1a5de63d48.
======================================================================
radeonsi: Handle PIPE_CAP_GLSL_FEATURE_LEVEL.
Ported from r600g part of commit 171be755223d99f8cc5cc1bdaf8bd7b4caa04b4f.
======================================================================
radeonsi: set minimum point size to 1.0 for non-sprite non-aa points.
Ported from r600g commit f183cc9ce3ad1d043bdf8b38fd519e8f437714fc.
======================================================================
radeonsi: rework and consolidate stencilref state setting.
Ported from r600g commit a2361946e782b57f0c63587841ca41c0ea707070.
======================================================================
radeonsi: cleanup setting DB_SHADER_CONTROL.
Ported from r600g commit 3d061caaed13b646ff40754f8ebe73f3d4983c5b.
======================================================================
radeonsi: Get rid of register masks.
Ported from r600g commits
3d061caaed13b646ff40754f8ebe73f3d4983c5b..9344ab382a1765c1a7c2560e771485edf4954fe2.
======================================================================
radeonsi: get rid of r600_context_reg.
Ported from r600g commits
9344ab382a1765c1a7c2560e771485edf4954fe2..bed20f02a771f43e1c5092254705701c228cfa7f.
======================================================================
radeonsi: Fix regression from 'Get rid of register masks'.
======================================================================
radeonsi: optimize r600_resource_va.
Ported from r600g commit 669d8766ff3403938794eb80d7769347b6e52174.
======================================================================
radeonsi: remove u8,u16,u32,u64 types.
Ported from r600g commit 78293b99b23268e6698f1267aaf40647c17d95a5.
======================================================================
radeonsi: merge r600_context with r600_pipe_context.
Ported from r600g commit e4340c1908a6a3b09e1a15d5195f6da7d00494d0.
======================================================================
radeonsi: Miscellaneous context cleanups.
Ported from r600g commits
e4340c1908a6a3b09e1a15d5195f6da7d00494d0..621e0db71c5ddcb379171064a4f720c9cf01e888.
======================================================================
radeonsi: add a new simple API for state emission.
Ported from r600g commits
621e0db71c5ddcb379171064a4f720c9cf01e888..f661405637bba32c2cfbeecf6e2e56e414e9521e.
======================================================================
radeonsi: Also remove sbu_flags member of struct r600_reg.
Requires using sid.h instead of r600d.h for the new CP_COHER_CNTL definitions,
so some code needs to be disabled for now.
======================================================================
radeonsi: Miscellaneous simplifications.
Ported from r600g commits 38bf2763482b4f1b6d95cd51aecec75601d8b90f and
b0337b679ad4c2feae59215104cfa60b58a619d5.
======================================================================
radeonsi: Handle PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION.
Ported from commit 8b4f7b0672d663273310fffa9490ad996f5b914a.
======================================================================
radeonsi: Use a fake reloc to sleep for fences.
Ported from r600g commit 8cd03b933cf868ff867e2db4a0937005a02fd0e4.
======================================================================
radeonsi: adapt to get_query_result interface change.
Ported from r600g commit 4445e170bee23a3607ece0e010adef7058ac6a11.
Diffstat (limited to 'src/gallium/drivers/radeon/AMDILKernelManager.cpp')
-rw-r--r-- | src/gallium/drivers/radeon/AMDILKernelManager.cpp | 1356 |
1 files changed, 1356 insertions, 0 deletions
diff --git a/src/gallium/drivers/radeon/AMDILKernelManager.cpp b/src/gallium/drivers/radeon/AMDILKernelManager.cpp new file mode 100644 index 00000000000..4df81ff5078 --- /dev/null +++ b/src/gallium/drivers/radeon/AMDILKernelManager.cpp @@ -0,0 +1,1356 @@ +//===-- AMDILKernelManager.cpp - TODO: Add brief description -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//==-----------------------------------------------------------------------===// +#include "AMDILKernelManager.h" + +#include "AMDILAlgorithms.tpp" +#include "AMDILKernelManager.h" +#ifdef UPSTREAM_LLVM +#include "AMDILAsmPrinter.h" +#endif +#include "AMDILCompilerErrors.h" +#include "AMDILDeviceInfo.h" +#include "AMDILDevices.h" +#include "AMDILGlobalManager.h" +#include "AMDILMachineFunctionInfo.h" +#include "AMDILModuleInfo.h" +#include "AMDILSubtarget.h" +#include "AMDILTargetMachine.h" +#include "AMDILUtilityFunctions.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/MathExtras.h" + +#include <stdio.h> + +using namespace llvm; +#define NUM_EXTRA_SLOTS_PER_IMAGE 1 + +static bool errorPrint(const char *ptr, llvm::raw_ostream &O) { + if (ptr[0] == 'E') { + O << ";error:" << ptr << "\n"; + } else { + O << ";warning:" << ptr << "\n"; + } + return false; +} + +#if 0 +static bool +samplerPrint(StringMap<SamplerInfo>::iterator &data, llvm::raw_ostream &O) { + O << ";sampler:" << (*data).second.name << ":" << (*data).second.idx + << ":" << ((*data).second.val == (uint32_t)-1 ? 0 : 1) + << ":" << ((*data).second.val != (uint32_t)-1 ? (*data).second.val : 0) + << "\n"; + return false; +} +#endif + +static bool arenaPrint(uint32_t val, llvm::raw_ostream &O) { + if (val >= ARENA_SEGMENT_RESERVED_UAVS) { + O << "dcl_arena_uav_id(" << val << ")\n"; + } + return false; +} + +static bool uavPrint(uint32_t val, llvm::raw_ostream &O) { + if (val < 8 || val == 11){ + O << "dcl_raw_uav_id(" << val << ")\n"; + } + return false; +} + +static bool uavPrintSI(uint32_t val, llvm::raw_ostream &O) { + O << "dcl_typeless_uav_id(" << val << ")_stride(4)_length(4)_access(read_write)\n"; + return false; +} + +static bool +printfPrint(std::pair<const std::string, PrintfInfo *> &data, llvm::raw_ostream &O) { + O << ";printf_fmt:" << data.second->getPrintfID(); + // Number of operands + O << ":" << data.second->getNumOperands(); + // Size of each operand + for (size_t i = 0, e = data.second->getNumOperands(); i < e; ++i) { + O << ":" << (data.second->getOperandID(i) >> 3); + } + const char *ptr = data.first.c_str(); + uint32_t size = data.first.size() - 1; + // The format string size + O << ":" << size << ":"; + for (size_t i = 0; i < size; ++i) { + if (ptr[i] == '\r') { + O << "\\r"; + } else if (ptr[i] == '\n') { + O << "\\n"; + } else { + O << ptr[i]; + } + } + O << ";\n"; // c_str() is cheap way to trim + return false; +} + + +void AMDILKernelManager::updatePtrArg(Function::const_arg_iterator Ip, + int numWriteImages, int raw_uav_buffer, + int counter, bool isKernel, + const Function *F) { + assert(F && "Cannot pass a NULL Pointer to F!"); + assert(Ip->getType()->isPointerTy() && + "Argument must be a pointer to be passed into this function!\n"); + std::string ptrArg(";pointer:"); + const char *symTab = "NoSymTab"; + uint32_t ptrID = getUAVID(Ip); + const PointerType *PT = cast<PointerType>(Ip->getType()); + uint32_t Align = 4; + const char *MemType = "uav"; + if (PT->getElementType()->isSized()) { + Align = NextPowerOf2((uint32_t)mTM->getTargetData()-> + getTypeAllocSize(PT->getElementType())); + } + ptrArg += Ip->getName().str() + ":" + getTypeName(PT, symTab) + ":1:1:" + + itostr(counter * 16) + ":"; + switch (PT->getAddressSpace()) { + case AMDILAS::ADDRESS_NONE: + //O << "No Address space qualifier!"; + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + assert(1); + break; + case AMDILAS::GLOBAL_ADDRESS: + if (mSTM->device()->isSupported(AMDILDeviceInfo::ArenaSegment)) { + if (ptrID >= ARENA_SEGMENT_RESERVED_UAVS) { + ptrID = 8; + } + } + mMFI->uav_insert(ptrID); + break; + case AMDILAS::CONSTANT_ADDRESS: { + if (isKernel && mSTM->device()->usesHardware(AMDILDeviceInfo::ConstantMem)){ + const kernel t = mGM->getKernel(F->getName()); + if (mGM->usesHWConstant(t, Ip->getName())) { + MemType = "hc\0"; + ptrID = mGM->getConstPtrCB(t, Ip->getName()); + } else { + MemType = "c\0"; + mMFI->uav_insert(ptrID); + } + } else { + MemType = "c\0"; + mMFI->uav_insert(ptrID); + } + break; + } + default: + case AMDILAS::PRIVATE_ADDRESS: + if (mSTM->device()->usesHardware(AMDILDeviceInfo::PrivateMem)) { + MemType = (mSTM->device()->isSupported(AMDILDeviceInfo::PrivateUAV)) + ? "up\0" : "hp\0"; + } else { + MemType = "p\0"; + mMFI->uav_insert(ptrID); + } + break; + case AMDILAS::REGION_ADDRESS: + mMFI->setUsesRegion(); + if (mSTM->device()->usesHardware(AMDILDeviceInfo::RegionMem)) { + MemType = "hr\0"; + ptrID = 0; + } else { + MemType = "r\0"; + mMFI->uav_insert(ptrID); + } + break; + case AMDILAS::LOCAL_ADDRESS: + mMFI->setUsesLocal(); + if (mSTM->device()->usesHardware(AMDILDeviceInfo::LocalMem)) { + MemType = "hl\0"; + ptrID = 1; + } else { + MemType = "l\0"; + mMFI->uav_insert(ptrID); + } + break; + }; + ptrArg += std::string(MemType) + ":"; + ptrArg += itostr(ptrID) + ":"; + ptrArg += itostr(Align); + mMFI->addMetadata(ptrArg, true); +} + +AMDILKernelManager::AMDILKernelManager(AMDILTargetMachine *TM, + AMDILGlobalManager *GM) +{ + mTM = TM; + mSTM = mTM->getSubtargetImpl(); + mGM = GM; + clear(); +} + +AMDILKernelManager::~AMDILKernelManager() { + clear(); +} + +void +AMDILKernelManager::setMF(MachineFunction *MF) +{ + mMF = MF; + mMFI = MF->getInfo<AMDILMachineFunctionInfo>(); +} + +void AMDILKernelManager::clear() { + mUniqueID = 0; + mIsKernel = false; + mWasKernel = false; + mHasImageWrite = false; + mHasOutputInst = false; +} + +bool AMDILKernelManager::useCompilerWrite(const MachineInstr *MI) { + return (MI->getOpcode() == AMDIL::RETURN && wasKernel() && !mHasImageWrite + && !mHasOutputInst); +} + +void AMDILKernelManager::processArgMetadata(llvm::raw_ostream &O, + uint32_t buf, + bool isKernel) +{ + const Function *F = mMF->getFunction(); + const char * symTab = "NoSymTab"; + Function::const_arg_iterator Ip = F->arg_begin(); + Function::const_arg_iterator Ep = F->arg_end(); + + if (F->hasStructRetAttr()) { + assert(Ip != Ep && "Invalid struct return fucntion!"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + ++Ip; + } + uint32_t mCBSize = 0; + int raw_uav_buffer = mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID); + bool MultiUAV = mSTM->device()->isSupported(AMDILDeviceInfo::MultiUAV); + bool ArenaSegment = + mSTM->device()->isSupported(AMDILDeviceInfo::ArenaSegment); + int numWriteImages = + mSTM->getGlobalManager()->getNumWriteImages(F->getName()); + if (numWriteImages == OPENCL_MAX_WRITE_IMAGES || MultiUAV || ArenaSegment) { + if (mSTM->device()->getGeneration() <= AMDILDeviceInfo::HD6XXX) { + raw_uav_buffer = mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID); + } + } + uint32_t CounterNum = 0; + uint32_t ROArg = 0; + uint32_t WOArg = 0; + uint32_t NumArg = 0; + while (Ip != Ep) { + Type *cType = Ip->getType(); + if (cType->isIntOrIntVectorTy() || cType->isFPOrFPVectorTy()) { + std::string argMeta(";value:"); + argMeta += Ip->getName().str() + ":" + getTypeName(cType, symTab) + ":"; + int bitsize = cType->getPrimitiveSizeInBits(); + int numEle = 1; + if (cType->getTypeID() == Type::VectorTyID) { + numEle = cast<VectorType>(cType)->getNumElements(); + } + argMeta += itostr(numEle) + ":1:" + itostr(mCBSize << 4); + mMFI->addMetadata(argMeta, true); + + // FIXME: simplify + if ((bitsize / numEle) < 32) { + bitsize = numEle >> 2; + } else { + bitsize >>= 7; + } + if (!bitsize) { + bitsize = 1; + } + + mCBSize += bitsize; + ++NumArg; + } else if (const PointerType *PT = dyn_cast<PointerType>(cType)) { + Type *CT = PT->getElementType(); + const StructType *ST = dyn_cast<StructType>(CT); + if (ST && ST->isOpaque()) { + StringRef name = ST->getName(); + bool i1d = name.equals( "struct._image1d_t" ); + bool i1da = name.equals( "struct._image1d_array_t" ); + bool i1db = name.equals( "struct._image1d_buffer_t" ); + bool i2d = name.equals( "struct._image2d_t" ); + bool i2da = name.equals( "struct._image2d_array_t" ); + bool i3d = name.equals( "struct._image3d_t" ); + bool c32 = name.equals( "struct._counter32_t" ); + bool c64 = name.equals( "struct._counter64_t" ); + if (i1d || i1da || i1db || i2d | i2da || i3d) { + if (mSTM->device()->isSupported(AMDILDeviceInfo::Images)) { + std::string imageArg(";image:"); + imageArg += Ip->getName().str() + ":"; + if (i1d) imageArg += "1D:"; + else if (i1da) imageArg += "1DA:"; + else if (i1db) imageArg += "1DB:"; + else if (i2d) imageArg += "2D:"; + else if (i2da) imageArg += "2DA:"; + else if (i3d) imageArg += "3D:"; + + if (isKernel) { + if (mGM->isReadOnlyImage (mMF->getFunction()->getName(), + (ROArg + WOArg))) { + imageArg += "RO:" + itostr(ROArg); + O << "dcl_resource_id(" << ROArg << ")_type("; + if (i1d) O << "1d"; + else if (i1da) O << "1darray"; + else if (i1db) O << "buffer"; + else if (i2d) O << "2d"; + else if (i2da) O << "2darray"; + else if (i3d) O << "3d"; + O << ")_fmtx(unknown)_fmty(unknown)" + << "_fmtz(unknown)_fmtw(unknown)\n"; + ++ROArg; + } else if (mGM->isWriteOnlyImage(mMF->getFunction()->getName(), + (ROArg + WOArg))) { + uint32_t offset = 0; + offset += WOArg; + imageArg += "WO:" + itostr(offset & 0x7); + O << "dcl_uav_id(" << ((offset) & 0x7) << ")_type("; + if (i1d) O << "1d"; + else if (i1da) O << "1darray"; + else if (i1db) O << "buffer"; + else if (i2d) O << "2d"; + else if (i2da) O << "2darray"; + else if (i3d) O << "3d"; + O << ")_fmtx(uint)\n"; + ++WOArg; + } else { + imageArg += "RW:" + itostr(ROArg + WOArg); + } + } + imageArg += ":1:" + itostr(mCBSize * 16); + mMFI->addMetadata(imageArg, true); + mMFI->addi32Literal(mCBSize); + mCBSize += NUM_EXTRA_SLOTS_PER_IMAGE + 1; + ++NumArg; + } else { + mMFI->addErrorMsg(amd::CompilerErrorMessage[NO_IMAGE_SUPPORT]); + ++NumArg; + } + } else if (c32 || c64) { + std::string counterArg(";counter:"); + counterArg += Ip->getName().str() + ":" + + itostr(c32 ? 32 : 64) + ":" + + itostr(CounterNum++) + ":1:" + itostr(mCBSize * 16); + mMFI->addMetadata(counterArg, true); + ++NumArg; + ++mCBSize; + } else { + updatePtrArg(Ip, numWriteImages, raw_uav_buffer, mCBSize, isKernel, + F); + ++NumArg; + ++mCBSize; + } + } + else if (CT->getTypeID() == Type::StructTyID + && PT->getAddressSpace() == AMDILAS::PRIVATE_ADDRESS) { + const TargetData *td = mTM->getTargetData(); + const StructLayout *sl = td->getStructLayout(dyn_cast<StructType>(CT)); + int bytesize = sl->getSizeInBytes(); + int reservedsize = (bytesize + 15) & ~15; + int numSlots = reservedsize >> 4; + if (!numSlots) { + numSlots = 1; + } + std::string structArg(";value:"); + structArg += Ip->getName().str() + ":struct:" + + itostr(bytesize) + ":1:" + itostr(mCBSize * 16); + mMFI->addMetadata(structArg, true); + mCBSize += numSlots; + ++NumArg; + } else if (CT->isIntOrIntVectorTy() + || CT->isFPOrFPVectorTy() + || CT->getTypeID() == Type::ArrayTyID + || CT->getTypeID() == Type::PointerTyID + || PT->getAddressSpace() != AMDILAS::PRIVATE_ADDRESS) { + updatePtrArg(Ip, numWriteImages, raw_uav_buffer, mCBSize, isKernel, F); + ++NumArg; + ++mCBSize; + } else { + assert(0 && "Cannot process current pointer argument"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + ++NumArg; + } + } else { + assert(0 && "Cannot process current kernel argument"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + ++NumArg; + } + ++Ip; + } +} + +void AMDILKernelManager::printHeader(AMDILAsmPrinter *AsmPrinter, + llvm::raw_ostream &O, + const std::string &name) { +#ifdef UPSTREAM_LLVM + mName = name; + std::string kernelName; + kernelName = name; + int kernelId = mGM->getOrCreateFunctionID(kernelName); + O << "func " << kernelId << " ; " << kernelName << "\n"; + if (mSTM->is64bit()) { + O << "mov " << AsmPrinter->getRegisterName(AMDIL::SDP) << ", cb0[8].xy\n"; + } else { + O << "mov " << AsmPrinter->getRegisterName(AMDIL::SDP) << ", cb0[8].x\n"; + } + O << "mov " << AsmPrinter->getRegisterName(AMDIL::SP) << ", l1.0\n"; +#endif +} + +void AMDILKernelManager::printGroupSize(llvm::raw_ostream& O) { + // The HD4XXX generation of hardware does not support a 3D launch, so we need + // to use dcl_num_thread_per_group to specify the launch size. If the launch + // size is specified via a kernel attribute, we print it here. Otherwise we + // use the the default size. + if (mSTM->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + if (mGM->hasRWG(mName) + || !mMFI->usesLocal()) { + // if the user has specified what the required workgroup size is then we + // need to compile for that size and that size only. Otherwise we compile + // for the max workgroup size that is passed in as an option to the + // backend. + O << "dcl_num_thread_per_group "; + O << mGM->getLocal(mName, 0) << ", "; + O << mGM->getLocal(mName, 1) << ", "; + O << mGM->getLocal(mName, 2) << " \n"; + } else { + // If the kernel uses local memory, then the kernel is being + // compiled in single wavefront mode. So we have to generate code slightly + // different. + O << "dcl_num_thread_per_group " + << mSTM->device()->getWavefrontSize() + << ", 1, 1 \n"; + } + } else { + // Otherwise we generate for devices that support 3D launch natively. If + // the reqd_workgroup_size attribute was specified, then we can specify the + // exact launch dimensions. + if (mGM->hasRWG(mName)) { + O << "dcl_num_thread_per_group "; + O << mGM->getLocal(mName, 0) << ", "; + O << mGM->getLocal(mName, 1) << ", "; + O << mGM->getLocal(mName, 2) << " \n"; + } else { + // Otherwise we specify the largest workgroup size that can be launched. + O << "dcl_max_thread_per_group " << mGM->getLocal(mName, 3) << " \n"; + } + } + // Now that we have specified the workgroup size, lets declare the local + // memory size. If we are using hardware and we know the value at compile + // time, then we need to declare the correct value. Otherwise we should just + // declare the maximum size. + if (mSTM->device()->usesHardware(AMDILDeviceInfo::LocalMem)) { + size_t kernelLocalSize = (mGM->getHWLocalSize(mName) + 3) & ~3; + if (kernelLocalSize > mSTM->device()->getMaxLDSSize()) { + mMFI->addErrorMsg(amd::CompilerErrorMessage[INSUFFICIENT_LOCAL_RESOURCES]); + } + // If there is a local pointer as a kernel argument, we don't know the size + // at compile time, so we reserve all of the space. + if (mMFI->usesLocal() && (mMFI->hasLocalArg() || !kernelLocalSize)) { + O << "dcl_lds_id(" << DEFAULT_LDS_ID << ") " + << mSTM->device()->getMaxLDSSize() << "\n"; + mMFI->setUsesMem(AMDILDevice::LDS_ID); + } else if (kernelLocalSize) { + // We know the size, so lets declare it correctly. + O << "dcl_lds_id(" << DEFAULT_LDS_ID << ") " + << kernelLocalSize << "\n"; + mMFI->setUsesMem(AMDILDevice::LDS_ID); + } + } + // If the device supports the region memory extension, which maps to our + // hardware GDS memory, then lets declare it so we can use it later on. + if (mSTM->device()->usesHardware(AMDILDeviceInfo::RegionMem)) { + size_t kernelGDSSize = (mGM->getHWRegionSize(mName) + 3) & ~3; + if (kernelGDSSize > mSTM->device()->getMaxGDSSize()) { + mMFI->addErrorMsg(amd::CompilerErrorMessage[INSUFFICIENT_REGION_RESOURCES]); + } + // If there is a region pointer as a kernel argument, we don't know the size + // at compile time, so we reserved all of the space. + if (mMFI->usesRegion() && (mMFI->hasRegionArg() || !kernelGDSSize)) { + O << "dcl_gds_id(" << DEFAULT_GDS_ID << + ") " << mSTM->device()->getMaxGDSSize() << "\n"; + mMFI->setUsesMem(AMDILDevice::GDS_ID); + } else if (kernelGDSSize) { + // We know the size, so lets declare it. + O << "dcl_gds_id(" << DEFAULT_GDS_ID << + ") " << kernelGDSSize << "\n"; + mMFI->setUsesMem(AMDILDevice::GDS_ID); + } + } +} + +void +AMDILKernelManager::printDecls(AMDILAsmPrinter *AsmPrinter, llvm::raw_ostream &O) { + // If we are a HD4XXX generation device, then we only support a single uav + // surface, so we declare it and leave + if (mSTM->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + O << "dcl_raw_uav_id(" + << mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID) + << ")\n"; + mMFI->setUsesMem(AMDILDevice::RAW_UAV_ID); + getIntrinsicSetup(AsmPrinter, O); + return; + } + // If we are supporting multiple uav's view the MultiUAV capability, then we + // need to print out the declarations here. MultiUAV conflicts with write + // images, so they only use 8 - NumWriteImages uav's. Therefor only pointers + // with ID's < 8 will get printed. + if (mSTM->device()->isSupported(AMDILDeviceInfo::MultiUAV)) { + binaryForEach(mMFI->uav_begin(), mMFI->uav_end(), uavPrint, O); + mMFI->setUsesMem(AMDILDevice::RAW_UAV_ID); + } + // If arena segments are supported, then we should emit them now. Arena + // segments are similiar to MultiUAV, except ArenaSegments are virtual and up + // to 1024 of them can coexist. These are more compiler hints for CAL and thus + // cannot overlap in any form. Each ID maps to a seperate piece of memory and + // CAL determines whether the load/stores should go to the fast path/slow path + // based on the usage and instruction. + if (mSTM->device()->isSupported(AMDILDeviceInfo::ArenaSegment)) { + binaryForEach(mMFI->uav_begin(), mMFI->uav_end(), arenaPrint, O); + } + // Now that we have printed out all of the arena and multi uav declaration, + // now we must print out the default raw uav id. This always exists on HD5XXX + // and HD6XXX hardware. The reason is that the hardware supports 12 UAV's and + // 11 are taken up by MultiUAV/Write Images and Arena. However, if we do not + // have UAV 11 as the raw UAV and there are 8 write images, we must revert + // everything to the arena and not print out the default raw uav id. + if (mSTM->device()->getGeneration() == AMDILDeviceInfo::HD5XXX + || mSTM->device()->getGeneration() == AMDILDeviceInfo::HD6XXX) { + if ((mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID) < 11 && + mSTM->getGlobalManager()->getNumWriteImages(mName) + != OPENCL_MAX_WRITE_IMAGES + && !mSTM->device()->isSupported(AMDILDeviceInfo::MultiUAV)) + || mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID) == 11) { + if (!mMFI->usesMem(AMDILDevice::RAW_UAV_ID) + && mMFI->uav_count(mSTM->device()-> + getResourceID(AMDILDevice::RAW_UAV_ID))) { + O << "dcl_raw_uav_id(" + << mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID); + O << ")\n"; + mMFI->setUsesMem(AMDILDevice::RAW_UAV_ID); + } + } + // If we have not printed out the arena ID yet, then do so here. + if (!mMFI->usesMem(AMDILDevice::ARENA_UAV_ID) + && mSTM->device()->usesHardware(AMDILDeviceInfo::ArenaUAV)) { + O << "dcl_arena_uav_id(" + << mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID) << ")\n"; + mMFI->setUsesMem(AMDILDevice::ARENA_UAV_ID); + } + } else if (mSTM->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + binaryForEach(mMFI->uav_begin(), mMFI->uav_end(), uavPrintSI, O); + mMFI->setUsesMem(AMDILDevice::RAW_UAV_ID); + } + getIntrinsicSetup(AsmPrinter, O); +} + +void AMDILKernelManager::getIntrinsicSetup(AMDILAsmPrinter *AsmPrinter, + llvm::raw_ostream &O) +{ + O << "mov r0.z, vThreadGrpIdFlat.x\n" + << "mov r1022.xyz0, vTidInGrp.xyz\n"; + if (mSTM->device()->getGeneration() > AMDILDeviceInfo::HD4XXX) { + O << "mov r1023.xyz0, vThreadGrpId.xyz\n"; + } else { + O << "imul r0.w, cb0[2].x, cb0[2].y\n" + // Calculates the local id. + // Calculates the group id. + << "umod r1023.x, r0.z, cb0[2].x\n" + << "udiv r1023.y, r0.z, cb0[2].x\n" + << "umod r1023.y, r1023.y, cb0[2].y\n" + << "udiv r1023.z, r0.z, r0.w\n"; + } + // Calculates the global id. + if (mGM->hasRWG(mName) && 0) { + // Anytime we declare a literal, we need to reserve it, if it is not emitted + // in emitLiterals. + mMFI->addReservedLiterals(1); + O << "dcl_literal l" << mMFI->getNumLiterals() + 1 << ", "; + O << mGM->getLocal(mName, 0) << ", "; + O << mGM->getLocal(mName, 1) << ", "; + O << mGM->getLocal(mName, 2) << ", "; + O << "0\n"; + O << "imad r1021.xyz0, r1023.xyz, l" << mMFI->getNumLiterals() + 1 << ".xyz, r1022.xyz\n"; + mMFI->addReservedLiterals(1); + } else { + O << "imad r1021.xyz0, r1023.xyz, cb0[1].xyz, r1022.xyz\n"; + } + + // Add the global/group offset for multi-launch support. + O << "iadd r1021.xyz0, r1021.xyz0, cb0[6].xyz0\n" + << "iadd r1023.xyz0, r1023.xyz0, cb0[7].xyz0\n" + // moves the flat group id. + << "mov r1023.w, r0.z\n"; +#ifdef UPSTREAM_LLVM + if (mSTM->device()->usesSoftware(AMDILDeviceInfo::LocalMem)) { + if (mSTM->is64bit()) { + O << "umul " << AsmPrinter->getRegisterName(AMDIL::T2) + << ".x0, r1023.w, cb0[4].z\n" + << "i64add " << AsmPrinter->getRegisterName(AMDIL::T2) + << ".xy, " << AsmPrinter->getRegisterName(AMDIL::T2) + << ".xy, cb0[4].xy\n"; + + } else { + O << "imad " << AsmPrinter->getRegisterName(AMDIL::T2) + << ".x, r1023.w, cb0[4].y, cb0[4].x\n"; + } + } + // Shift the flat group id to be in bytes instead of dwords. + O << "ishl r1023.w, r1023.w, l0.z\n"; + if (mSTM->device()->usesSoftware(AMDILDeviceInfo::PrivateMem)) { + if (mSTM->is64bit()) { + O << "umul " << AsmPrinter->getRegisterName(AMDIL::T1) + << ".x0, vAbsTidFlat.x, cb0[3].z\n" + << "i64add " << AsmPrinter->getRegisterName(AMDIL::T1) + << ".xy, " << AsmPrinter->getRegisterName(AMDIL::T1) + << ".xy, cb0[3].xy\n"; + + } else { + O << "imad " << AsmPrinter->getRegisterName(AMDIL::T1) + << ".x, vAbsTidFlat.x, cb0[3].y, cb0[3].x\n"; + } + } else { + O << "mov " << AsmPrinter->getRegisterName(AMDIL::T1) << ".x, l0.0\n"; + } +#endif + if (mSTM->device()->isSupported(AMDILDeviceInfo::RegionMem)) { + O << "udiv r1024.xyz, r1021.xyz, cb0[10].xyz\n"; + if (mGM->hasRWR(mName) && 0) { + // Anytime we declare a literal, we need to reserve it, if it is not emitted + // in emitLiterals. + mMFI->addReservedLiterals(1); + O << "dcl_literal l" << mMFI->getNumLiterals() + 1 << ", "; + O << mGM->getLocal(mName, 0) << ", "; + O << mGM->getLocal(mName, 1) << ", "; + O << mGM->getLocal(mName, 2) << ", "; + O << "0\n"; + O << "imad r1025.xyz0, r1023.xyz, l" << mMFI->getNumLiterals() + 1 << ".xyz, r1022.xyz\n"; + mMFI->addReservedLiterals(1); + } else { + O << "imad r1025.xyz0, r1023.xyz, cb0[1].xyz, r1022.xyz\n"; + } + } +} + +void AMDILKernelManager::printFooter(llvm::raw_ostream &O) { + O << "ret\n"; + O << "endfunc ; " << mName << "\n"; +} + +void +AMDILKernelManager::printMetaData(llvm::raw_ostream &O, uint32_t id, bool kernel) { + if (kernel) { + int kernelId = mGM->getOrCreateFunctionID(mName); + mMFI->addCalledFunc(id); + mUniqueID = kernelId; + mIsKernel = true; + } + printKernelArgs(O); + if (kernel) { + mIsKernel = false; + mMFI->eraseCalledFunc(id); + mUniqueID = id; + } +} + +void AMDILKernelManager::setKernel(bool kernel) { + mIsKernel = kernel; + if (kernel) { + mWasKernel = mIsKernel; + } +} + +void AMDILKernelManager::setID(uint32_t id) +{ + mUniqueID = id; +} + +void AMDILKernelManager::setName(const std::string &name) { + mName = name; +} + +bool AMDILKernelManager::isKernel() { + return mIsKernel; +} + +bool AMDILKernelManager::wasKernel() { + return mWasKernel; +} + +void AMDILKernelManager::setImageWrite() { + mHasImageWrite = true; +} + +void AMDILKernelManager::setOutputInst() { + mHasOutputInst = true; +} + +void AMDILKernelManager::printConstantToRegMapping( + AMDILAsmPrinter *RegNames, + uint32_t &LII, + llvm::raw_ostream &O, + uint32_t &Counter, + uint32_t Buffer, + uint32_t n, + const char *lit, + uint32_t fcall, + bool isImage, + bool isHWCB) +{ +#ifdef UPSTREAM_LLVM + // TODO: This needs to be enabled or SC will never statically index into the + // CB when a pointer is used. + if (mSTM->device()->usesHardware(AMDILDeviceInfo::ConstantMem) && isHWCB) { + const char *name = RegNames->getRegisterName(LII); + O << "mov " << name << ", l5.x\n"; + ++LII; + Counter++; + return; + } + for (uint32_t x = 0; x < n; ++x) { + const char *name = RegNames->getRegisterName(LII); + if (isImage) { + O << "mov " << name << ", l" << mMFI->getIntLits(Counter++) << "\n"; + } else { + O << "mov " << name << ", cb" <<Buffer<< "[" <<Counter++<< "]\n"; + } + switch(fcall) { + case 1093: + O << "ishr " << name << ", " << name << ".xxyy, l3.0y0y\n" + "ishl " << name << ", " << name << ", l3.y\n" + "ishr " << name << ", " << name << ", l3.y\n"; + break; + case 1092: + O << "ishr " << name << ", " << name << ".xx, l3.0y\n" + "ishl " << name << ", " << name << ", l3.y\n" + "ishr " << name << ", " << name << ", l3.y\n"; + break; + case 1091: + O << "ishr " << name << ", " << name << ".xxxx, l3.0zyx\n" + "ishl " << name << ", " << name << ", l3.x\n" + "ishr " << name << ", " << name << ", l3.x\n"; + break; + case 1090: + O << "ishr " << name << ", " << name << ".xx, l3.0z\n" + "ishl " << name << ".xy__, " << name << ".xy, l3.x\n" + "ishr " << name << ".xy__, " << name << ".xy, l3.x\n"; + break; + default: + break; + }; + if (lit) { + O << "ishl " << name << ", " << name + << ", " << lit << "\n"; + O << "ishr " << name << ", " << name + << ", " << lit << "\n"; + } + if (isImage) { + Counter += NUM_EXTRA_SLOTS_PER_IMAGE; + } + ++LII; + } +#endif +} + +void +AMDILKernelManager::printCopyStructPrivate(const StructType *ST, + llvm::raw_ostream &O, + size_t stackSize, + uint32_t Buffer, + uint32_t mLitIdx, + uint32_t &Counter) +{ + size_t n = ((stackSize + 15) & ~15) >> 4; + for (size_t x = 0; x < n; ++x) { + O << "mov r2, cb" << Buffer << "[" << Counter++ << "]\n"; + O << "mov r1.x, r0.x\n"; + if (mSTM->device()->getGeneration() <= AMDILDeviceInfo::HD6XXX) { + if (mSTM->device()->usesHardware(AMDILDeviceInfo::PrivateMem)) { + O << "ishr r1.x, r1.x, l0.x\n"; + O << "mov x" << mSTM->device()->getResourceID(AMDILDevice::SCRATCH_ID) + <<"[r1.x], r2\n"; + } else { + O << "uav_raw_store_id(" << + mSTM->device()->getResourceID(AMDILDevice::GLOBAL_ID) + << ") mem0, r1.x, r2\n"; + } + } else { + O << "uav_raw_store_id(" << + mSTM->device()->getResourceID(AMDILDevice::SCRATCH_ID) + << ") mem0, r1.x, r2\n"; + } + O << "iadd r0.x, r0.x, l" << mLitIdx << ".z\n"; + } +} + +void AMDILKernelManager::printKernelArgs(llvm::raw_ostream &O) { + std::string version(";version:"); + version += itostr(AMDIL_MAJOR_VERSION) + ":" + + itostr(AMDIL_MINOR_VERSION) + ":" + itostr(AMDIL_REVISION_NUMBER); + O << ";ARGSTART:" <<mName<< "\n"; + if (mIsKernel) { + O << version << "\n"; + O << ";device:" <<mSTM->getDeviceName() << "\n"; + } + O << ";uniqueid:" <<mUniqueID<< "\n"; + + size_t local = mGM->getLocalSize(mName); + size_t hwlocal = ((mGM->getHWLocalSize(mName) + 3) & (~0x3)); + size_t region = mGM->getRegionSize(mName); + size_t hwregion = ((mGM->getHWRegionSize(mName) + 3) & (~0x3)); + bool usehwlocal = mSTM->device()->usesHardware(AMDILDeviceInfo::LocalMem); + bool usehwprivate = mSTM->device()->usesHardware(AMDILDeviceInfo::PrivateMem); + bool usehwregion = mSTM->device()->usesHardware(AMDILDeviceInfo::RegionMem); + bool useuavprivate = mSTM->device()->isSupported(AMDILDeviceInfo::PrivateUAV); + if (mIsKernel) { + O << ";memory:" << ((usehwprivate) ? + (useuavprivate) ? "uav" : "hw" : "" ) << "private:" + <<(((mMFI->getStackSize() + 15) & (~0xF)))<< "\n"; + } + if (mSTM->device()->isSupported(AMDILDeviceInfo::RegionMem)) { + O << ";memory:" << ((usehwregion) ? "hw" : "") << "region:" + << ((usehwregion) ? hwregion : hwregion + region) << "\n"; + } + O << ";memory:" << ((usehwlocal) ? "hw" : "") << "local:" + << ((usehwlocal) ? hwlocal : hwlocal + local) << "\n"; + + if (mIsKernel) { + if (mGM->hasRWG(mName)) { + O << ";cws:" << mGM->getLocal(mName, 0) << ":"; + O << mGM->getLocal(mName, 1) << ":"; + O << mGM->getLocal(mName, 2) << "\n"; + } + if (mGM->hasRWR(mName)) { + O << ";crs:" << mGM->getRegion(mName, 0) << ":"; + O << mGM->getRegion(mName, 1) << ":"; + O << mGM->getRegion(mName, 2) << "\n"; + } + } + if (mIsKernel) { + for (std::vector<std::string>::iterator ib = mMFI->kernel_md_begin(), + ie = mMFI->kernel_md_end(); ib != ie; ++ib) { + O << (*ib) << "\n"; + } + } + for (std::set<std::string>::iterator ib = mMFI->func_md_begin(), + ie = mMFI->func_md_end(); ib != ie; ++ib) { + O << (*ib) << "\n"; + } + if (!mMFI->func_empty()) { + O << ";function:" << mMFI->func_size(); + binaryForEach(mMFI->func_begin(), mMFI->func_end(), commaPrint, O); + O << "\n"; + } + + if (!mSTM->device()->isSupported(AMDILDeviceInfo::MacroDB) + && !mMFI->intr_empty()) { + O << ";intrinsic:" << mMFI->intr_size(); + binaryForEach(mMFI->intr_begin(), mMFI->intr_end(), commaPrint, O); + O << "\n"; + } + + if (!mIsKernel) { + binaryForEach(mMFI->printf_begin(), mMFI->printf_end(), printfPrint, O); + mMF->getMMI().getObjFileInfo<AMDILModuleInfo>().add_printf_offset( + mMFI->printf_size()); + } else { + for (StringMap<SamplerInfo>::iterator + smb = mMFI->sampler_begin(), + sme = mMFI->sampler_end(); smb != sme; ++ smb) { + O << ";sampler:" << (*smb).second.name << ":" << (*smb).second.idx + << ":" << ((*smb).second.val == (uint32_t)-1 ? 0 : 1) + << ":" << ((*smb).second.val != (uint32_t)-1 ? (*smb).second.val : 0) + << "\n"; + } + } + if (mSTM->is64bit()) { + O << ";memory:64bitABI\n"; + } + + if (mMFI->errors_empty()) { + binaryForEach(mMFI->errors_begin(), mMFI->errors_end(), errorPrint, O); + } + // This has to come last + if (mIsKernel + && mSTM->device()->getGeneration() <= AMDILDeviceInfo::HD6XXX) { + if (mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID) > + mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID)) { + if (mMFI->uav_size() == 1) { + if (mSTM->device()->isSupported(AMDILDeviceInfo::ArenaSegment) + && *(mMFI->uav_begin()) >= ARENA_SEGMENT_RESERVED_UAVS) { + O << ";uavid:" + << mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID); + O << "\n"; + } else { + O << ";uavid:" << *(mMFI->uav_begin()) << "\n"; + } + } else if (mMFI->uav_count(mSTM->device()-> + getResourceID(AMDILDevice::RAW_UAV_ID))) { + O << ";uavid:" + << mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID); + O << "\n"; + } else { + O << ";uavid:" + << mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID); + O << "\n"; + } + } else if (mSTM->getGlobalManager()->getNumWriteImages(mName) != + OPENCL_MAX_WRITE_IMAGES + && !mSTM->device()->isSupported(AMDILDeviceInfo::ArenaSegment) + && mMFI->uav_count(mSTM->device()-> + getResourceID(AMDILDevice::RAW_UAV_ID))) { + O << ";uavid:" + << mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID) << "\n"; + } else if (mMFI->uav_size() == 1) { + O << ";uavid:" << *(mMFI->uav_begin()) << "\n"; + } else { + O << ";uavid:" + << mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID); + O << "\n"; + } + } + O << ";ARGEND:" << mName << "\n"; +} + +void AMDILKernelManager::printArgCopies(llvm::raw_ostream &O, + AMDILAsmPrinter *RegNames) +{ + Function::const_arg_iterator I = mMF->getFunction()->arg_begin(); + Function::const_arg_iterator Ie = mMF->getFunction()->arg_end(); + uint32_t Counter = 0; + + if (mMFI->getArgSize()) { + O << "dcl_cb cb1"; + O << "[" << (mMFI->getArgSize() >> 4) << "]\n"; + mMFI->setUsesMem(AMDILDevice::CONSTANT_ID); + } + const Function *F = mMF->getFunction(); + // Get the stack size + uint32_t stackSize = mMFI->getStackSize(); + uint32_t privateSize = mMFI->getScratchSize(); + uint32_t stackOffset = (privateSize + 15) & (~0xF); + if (stackSize + && mSTM->device()->usesHardware(AMDILDeviceInfo::PrivateMem)) { + // TODO: If the size is too large, we need to fall back to software emulated + // instead of using the hardware capability. + int size = (((stackSize + 15) & (~0xF)) >> 4); + if (size > 4096) { + mMFI->addErrorMsg(amd::CompilerErrorMessage[INSUFFICIENT_PRIVATE_RESOURCES]); + } + if (size) { + // For any stack variables, we need to declare the literals for them so that + // we can use them when we copy our data to the stack. + mMFI->addReservedLiterals(1); + // Anytime we declare a literal, we need to reserve it, if it is not emitted + // in emitLiterals. +#ifdef UPSTREAM_LLVM + O << "dcl_literal l" << mMFI->getNumLiterals() << ", " << stackSize << ", " + << privateSize << ", 16, " << ((stackSize == privateSize) ? 0 : stackOffset) << "\n" + << "iadd r0.x, " << RegNames->getRegisterName(AMDIL::T1) << ".x, l" + << mMFI->getNumLiterals() << ".w\n"; + if (mSTM->device()->getGeneration() <= AMDILDeviceInfo::HD6XXX) { + O << "dcl_indexed_temp_array x" + << mSTM->device()->getResourceID(AMDILDevice::SCRATCH_ID) << "[" + << size << "]\n"; + } else { + O << "dcl_typeless_uav_id(" + << mSTM->device()->getResourceID(AMDILDevice::SCRATCH_ID) + << ")_stride(4)_length(" << (size << 4 )<< ")_access(private)\n"; + + } + O << "mov " << RegNames->getRegisterName(AMDIL::FP) + << ".x, l" << mMFI->getNumLiterals() << ".0\n"; +#endif + mMFI->setUsesMem(AMDILDevice::SCRATCH_ID); + } + } + I = mMF->getFunction()->arg_begin(); + int32_t count = 0; + // uint32_t Image = 0; + bool displaced1 = false; + bool displaced2 = false; + uint32_t curReg = AMDIL::R1; + // TODO: We don't handle arguments that were pushed onto the stack! + for (; I != Ie; ++I) { + Type *curType = I->getType(); + unsigned int Buffer = 1; + O << "; Kernel arg setup: " << I->getName() << "\n"; + if (curType->isIntegerTy() || curType->isFloatingPointTy()) { + switch (curType->getPrimitiveSizeInBits()) { + default: + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1); + break; + case 16: + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1, + "l3.y" ); + break; + case 8: + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1, "l3.x" ); + break; + } +#ifdef UPSTREAM_LLVM + } else if (const VectorType *VT = dyn_cast<VectorType>(curType)) { + Type *ET = VT->getElementType(); + int numEle = VT->getNumElements(); + switch (ET->getPrimitiveSizeInBits()) { + default: + if (numEle == 3) { + O << "mov " << RegNames->getRegisterName(curReg); + O << ".x, cb" << Buffer << "[" << Counter << "].x\n"; + curReg++; + O << "mov " << RegNames->getRegisterName(curReg); + O << ".x, cb" << Buffer << "[" << Counter << "].y\n"; + curReg++; + O << "mov " << RegNames->getRegisterName(curReg); + O << ".x, cb" << Buffer << "[" << Counter << "].z\n"; + curReg++; + Counter++; + } else { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, + (numEle+2) >> 2); + } + break; + case 64: + if (numEle == 3) { + O << "mov " << RegNames->getRegisterName(curReg); + O << ".xy, cb" << Buffer << "[" << Counter << "].xy\n"; + curReg++; + O << "mov " << RegNames->getRegisterName(curReg); + O << ".xy, cb" << Buffer << "[" << Counter++ << "].zw\n"; + curReg++; + O << "mov " << RegNames->getRegisterName(curReg); + O << ".xy, cb" << Buffer << "[" << Counter << "].xy\n"; + curReg++; + Counter++; + } else { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, + (numEle) >> 1); + } + break; + case 16: + { + switch (numEle) { + default: + printConstantToRegMapping(RegNames, curReg, O, Counter, + Buffer, (numEle+2) >> 2, "l3.y", 1093); + if (numEle == 3) { + O << "mov " << RegNames->getRegisterName(curReg) << ".x, "; + O << RegNames->getRegisterName(curReg) << ".y\n"; + ++curReg; + O << "mov " << RegNames->getRegisterName(curReg) << ".x, "; + O << RegNames->getRegisterName(curReg) << ".z\n"; + ++curReg; + } + break; + case 2: + printConstantToRegMapping(RegNames, curReg, O, Counter, + Buffer, 1, "l3.y", 1092); + break; + } + break; + } + case 8: + { + switch (numEle) { + default: + printConstantToRegMapping(RegNames, curReg, O, Counter, + Buffer, (numEle+2) >> 2, "l3.x", 1091); + if (numEle == 3) { + O << "mov " << RegNames->getRegisterName(curReg) << ".x, "; + O << RegNames->getRegisterName(curReg) << ".y\n"; + ++curReg; + O << "mov " << RegNames->getRegisterName(curReg) << ".x, "; + O << RegNames->getRegisterName(curReg) << ".z\n"; + ++curReg; + } + break; + case 2: + printConstantToRegMapping(RegNames, curReg, O, Counter, + Buffer, 1, "l3.x", 1090); + break; + } + break; + } + } +#endif + } else if (const PointerType *PT = dyn_cast<PointerType>(curType)) { + Type *CT = PT->getElementType(); + const StructType *ST = dyn_cast<StructType>(CT); + if (ST && ST->isOpaque()) { + bool i1d = ST->getName() == "struct._image1d_t"; + bool i1da = ST->getName() == "struct._image1d_array_t"; + bool i1db = ST->getName() == "struct._image1d_buffer_t"; + bool i2d = ST->getName() == "struct._image2d_t"; + bool i2da = ST->getName() == "struct._image2d_array_t"; + bool i3d = ST->getName() == "struct._image3d_t"; + bool is_image = i1d || i1da || i1db || i2d || i2da || i3d; + if (is_image) { + if (mSTM->device()->isSupported(AMDILDeviceInfo::Images)) { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, + 1, NULL, 0, is_image); + } else { + mMFI->addErrorMsg( + amd::CompilerErrorMessage[NO_IMAGE_SUPPORT]); + ++curReg; + } + } else { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1); + } + } else if (CT->isStructTy() + && PT->getAddressSpace() == AMDILAS::PRIVATE_ADDRESS) { + StructType *ST = dyn_cast<StructType>(CT); + bool i1d = ST->getName() == "struct._image1d_t"; + bool i1da = ST->getName() == "struct._image1d_array_t"; + bool i1db = ST->getName() == "struct._image1d_buffer_t"; + bool i2d = ST->getName() == "struct._image2d_t"; + bool i2da = ST->getName() == "struct._image2d_array_t"; + bool i3d = ST->getName() == "struct._image3d_t"; + bool is_image = i1d || i1da || i1db || i2d || i2da || i3d; + if (is_image) { + if (mSTM->device()->isSupported(AMDILDeviceInfo::Images)) { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, + 1, NULL, 0, is_image); + } else { + mMFI->addErrorMsg(amd::CompilerErrorMessage[NO_IMAGE_SUPPORT]); + ++curReg; + } + } else { + if (count) { + // Anytime we declare a literal, we need to reserve it, if it + // is not emitted in emitLiterals. + mMFI->addReservedLiterals(1); + O << "dcl_literal l" << mMFI->getNumLiterals() << ", " + << -stackSize << ", " << stackSize << ", 16, " + << stackOffset << "\n"; + } + ++count; + size_t structSize; + structSize = (getTypeSize(ST) + 15) & ~15; + stackOffset += structSize; +#ifdef UPSTREAM_LLVM + O << "mov " << RegNames->getRegisterName((curReg)) << ", l" + << mMFI->getNumLiterals()<< ".w\n"; + if (!displaced1) { + O << "mov r1011, r1\n"; + displaced1 = true; + } + if (!displaced2 && strcmp(RegNames->getRegisterName(curReg), "r1")) { + O << "mov r1010, r2\n"; + displaced2 = true; + } +#endif + printCopyStructPrivate(ST, O, structSize, Buffer, mMFI->getNumLiterals(), + Counter); + ++curReg; + } + } else if (CT->isIntOrIntVectorTy() + || CT->isFPOrFPVectorTy() + || CT->isArrayTy() + || CT->isPointerTy() + || PT->getAddressSpace() != AMDILAS::PRIVATE_ADDRESS) { + if (PT->getAddressSpace() == AMDILAS::CONSTANT_ADDRESS) { + const kernel& krnl = mGM->getKernel(F->getName()); + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, + 1, NULL, 0, false, + mGM->usesHWConstant(krnl, I->getName())); + } else if (PT->getAddressSpace() == AMDILAS::REGION_ADDRESS) { + // TODO: If we are region address space, the first region pointer, no + // array pointers exist, and hardware RegionMem is enabled then we can + // zero out register as the initial offset is zero. + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1); + } else if (PT->getAddressSpace() == AMDILAS::LOCAL_ADDRESS) { + // TODO: If we are local address space, the first local pointer, no + // array pointers exist, and hardware LocalMem is enabled then we can + // zero out register as the initial offset is zero. + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1); + } else { + printConstantToRegMapping(RegNames, curReg, O, Counter, Buffer, 1); + } + } else { + assert(0 && "Current type is not supported!"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + ++curReg; + } + } else { + assert(0 && "Current type is not supported!"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INTERNAL_ERROR]); + ++curReg; + } + } + if (displaced1) { + O << "mov r1, r1011\n"; + } + if (displaced2) { + O << "mov r2, r1010\n"; + } + if (mSTM->device()->usesHardware(AMDILDeviceInfo::ConstantMem)) { + const kernel& krnl = mGM->getKernel(F->getName()); + uint32_t constNum = 0; + for (uint32_t x = 0; x < mSTM->device()->getMaxNumCBs(); ++x) { + if (krnl.constSizes[x]) { + O << "dcl_cb cb" << x + CB_BASE_OFFSET; + O << "[" << (((krnl.constSizes[x] + 15) & ~15) >> 4) << "]\n"; + ++constNum; + mMFI->setUsesMem(AMDILDevice::CONSTANT_ID); + } + } + // TODO: If we run out of constant resources, we need to push some of the + // constant pointers to the software emulated section. + if (constNum > mSTM->device()->getMaxNumCBs()) { + assert(0 && "Max constant buffer limit passed!"); + mMFI->addErrorMsg(amd::CompilerErrorMessage[INSUFFICIENT_CONSTANT_RESOURCES]); + } + } +} + + const char * +AMDILKernelManager::getTypeName(const Type *ptr, const char *symTab) +{ + // symTab argument is ignored... + LLVMContext& ctx = ptr->getContext(); + switch (ptr->getTypeID()) { + case Type::StructTyID: + { + const StructType *ST = cast<StructType>(ptr); + if (!ST->isOpaque()) + return "struct"; + // ptr is a pre-LLVM 3.0 "opaque" type. + StringRef name = ST->getName(); + if (name.equals( "struct._event_t" )) return "event"; + if (name.equals( "struct._image1d_t" )) return "image1d"; + if (name.equals( "struct._image1d_array_t" )) return "image1d_array"; + if (name.equals( "struct._image2d_t" )) return "image2d"; + if (name.equals( "struct._image2d_array_t" )) return "image2d_array"; + if (name.equals( "struct._image3d_t" )) return "image3d"; + if (name.equals( "struct._counter32_t" )) return "counter32"; + if (name.equals( "struct._counter64_t" )) return "counter64"; + return "opaque"; + break; + } + case Type::FloatTyID: + return "float"; + case Type::DoubleTyID: + { + const AMDILSubtarget *mSTM= mTM->getSubtargetImpl(); + if (!mSTM->device()->usesHardware(AMDILDeviceInfo::DoubleOps)) { + mMFI->addErrorMsg(amd::CompilerErrorMessage[DOUBLE_NOT_SUPPORTED]); + } + return "double"; + } + case Type::IntegerTyID: + { + if (ptr == Type::getInt8Ty(ctx)) { + return "i8"; + } else if (ptr == Type::getInt16Ty(ctx)) { + return "i16"; + } else if (ptr == Type::getInt32Ty(ctx)) { + return "i32"; + } else if(ptr == Type::getInt64Ty(ctx)) { + return "i64"; + } + break; + } + default: + break; + case Type::ArrayTyID: + { + const ArrayType *AT = cast<ArrayType>(ptr); + const Type *name = AT->getElementType(); + return getTypeName(name, symTab); + break; + } + case Type::VectorTyID: + { + const VectorType *VT = cast<VectorType>(ptr); + const Type *name = VT->getElementType(); + return getTypeName(name, symTab); + break; + } + case Type::PointerTyID: + { + const PointerType *PT = cast<PointerType>(ptr); + const Type *name = PT->getElementType(); + return getTypeName(name, symTab); + break; + } + case Type::FunctionTyID: + { + const FunctionType *FT = cast<FunctionType>(ptr); + const Type *name = FT->getReturnType(); + return getTypeName(name, symTab); + break; + } + } + ptr->dump(); + mMFI->addErrorMsg(amd::CompilerErrorMessage[UNKNOWN_TYPE_NAME]); + return "unknown"; +} + +void AMDILKernelManager::emitLiterals(llvm::raw_ostream &O) { + char buffer[256]; + std::map<uint32_t, uint32_t>::iterator ilb, ile; + for (ilb = mMFI->begin_32(), ile = mMFI->end_32(); ilb != ile; ++ilb) { + uint32_t a = ilb->first; + O << "dcl_literal l" <<ilb->second<< ", "; + sprintf(buffer, "0x%08x, 0x%08x, 0x%08x, 0x%08x", a, a, a, a); + O << buffer << "; f32:i32 " << ilb->first << "\n"; + } + std::map<uint64_t, uint32_t>::iterator llb, lle; + for (llb = mMFI->begin_64(), lle = mMFI->end_64(); llb != lle; ++llb) { + uint32_t v[2]; + uint64_t a = llb->first; + memcpy(v, &a, sizeof(uint64_t)); + O << "dcl_literal l" <<llb->second<< ", "; + sprintf(buffer, "0x%08x, 0x%08x, 0x%08x, 0x%08x; f64:i64 ", + v[0], v[1], v[0], v[1]); + O << buffer << llb->first << "\n"; + } + std::map<std::pair<uint64_t, uint64_t>, uint32_t>::iterator vlb, vle; + for (vlb = mMFI->begin_128(), vle = mMFI->end_128(); vlb != vle; ++vlb) { + uint32_t v[2][2]; + uint64_t a = vlb->first.first; + uint64_t b = vlb->first.second; + memcpy(v[0], &a, sizeof(uint64_t)); + memcpy(v[1], &b, sizeof(uint64_t)); + O << "dcl_literal l" << vlb->second << ", "; + sprintf(buffer, "0x%08x, 0x%08x, 0x%08x, 0x%08x; f128:i128 ", + v[0][0], v[0][1], v[1][0], v[1][1]); + O << buffer << vlb->first.first << vlb->first.second << "\n"; + } +} + +// If the value is not known, then the uav is set, otherwise the mValueIDMap +// is used. +void AMDILKernelManager::setUAVID(const Value *value, uint32_t ID) { + if (value) { + mValueIDMap[value] = ID; + } +} + +uint32_t AMDILKernelManager::getUAVID(const Value *value) { + if (mValueIDMap.find(value) != mValueIDMap.end()) { + return mValueIDMap[value]; + } + + if (mSTM->device()->getGeneration() <= AMDILDeviceInfo::HD6XXX) { + return mSTM->device()->getResourceID(AMDILDevice::ARENA_UAV_ID); + } else { + return mSTM->device()->getResourceID(AMDILDevice::RAW_UAV_ID); + } +} + |