diff options
author | Keith Whitwell <[email protected]> | 2008-02-15 11:15:47 +0000 |
---|---|---|
committer | Keith Whitwell <[email protected]> | 2008-02-15 11:15:47 +0000 |
commit | 6ac2c1cc0cd1253ba2014d459010032127f185ec (patch) | |
tree | 6348de9de19e7394800a983c8c614566d22b870b /src/gallium/drivers/cell/spu/spu_exec.c | |
parent | c04a7f8929d674971a472ffa4d3a31200c22aa5a (diff) | |
parent | 6d3831b11d9f5aaba61cc2fb8ade61437ad7c335 (diff) |
Merge commit 'origin/gallium-0.1' into gallium-0.1
Conflicts:
src/gallium/drivers/softpipe/sp_quad_fs.c
src/gallium/drivers/softpipe/sp_state.h
src/gallium/drivers/softpipe/sp_state_fs.c
Diffstat (limited to 'src/gallium/drivers/cell/spu/spu_exec.c')
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_exec.c | 1948 |
1 files changed, 1948 insertions, 0 deletions
diff --git a/src/gallium/drivers/cell/spu/spu_exec.c b/src/gallium/drivers/cell/spu/spu_exec.c new file mode 100644 index 00000000000..109540b1f7b --- /dev/null +++ b/src/gallium/drivers/cell/spu/spu_exec.c @@ -0,0 +1,1948 @@ +/************************************************************************** + * + * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +/** + * TGSI interpretor/executor. + * + * Flow control information: + * + * Since we operate on 'quads' (4 pixels or 4 vertices in parallel) + * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special + * care since a condition may be true for some quad components but false + * for other components. + * + * We basically execute all statements (even if they're in the part of + * an IF/ELSE clause that's "not taken") and use a special mask to + * control writing to destination registers. This is the ExecMask. + * See store_dest(). + * + * The ExecMask is computed from three other masks (CondMask, LoopMask and + * ContMask) which are controlled by the flow control instructions (namely: + * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT). + * + * + * Authors: + * Michal Krol + * Brian Paul + */ + +#include <libmisc.h> +#include <spu_mfcio.h> +#include <transpose_matrix4x4.h> +#include <simdmath/ceilf4.h> +#include <simdmath/cosf4.h> +#include <simdmath/divf4.h> +#include <simdmath/floorf4.h> +#include <simdmath/log2f4.h> +#include <simdmath/powf4.h> +#include <simdmath/sinf4.h> +#include <simdmath/sqrtf4.h> +#include <simdmath/truncf4.h> + +#include "pipe/p_compiler.h" +#include "pipe/p_state.h" +#include "pipe/p_util.h" +#include "pipe/p_shader_tokens.h" +#include "tgsi/util/tgsi_parse.h" +#include "tgsi/util/tgsi_util.h" +#include "spu_exec.h" +#include "spu_main.h" +#include "spu_vertex_shader.h" + +#define TILE_TOP_LEFT 0 +#define TILE_TOP_RIGHT 1 +#define TILE_BOTTOM_LEFT 2 +#define TILE_BOTTOM_RIGHT 3 + +/* + * Shorthand locations of various utility registers (_I = Index, _C = Channel) + */ +#define TEMP_0_I TGSI_EXEC_TEMP_00000000_I +#define TEMP_0_C TGSI_EXEC_TEMP_00000000_C +#define TEMP_7F_I TGSI_EXEC_TEMP_7FFFFFFF_I +#define TEMP_7F_C TGSI_EXEC_TEMP_7FFFFFFF_C +#define TEMP_80_I TGSI_EXEC_TEMP_80000000_I +#define TEMP_80_C TGSI_EXEC_TEMP_80000000_C +#define TEMP_FF_I TGSI_EXEC_TEMP_FFFFFFFF_I +#define TEMP_FF_C TGSI_EXEC_TEMP_FFFFFFFF_C +#define TEMP_1_I TGSI_EXEC_TEMP_ONE_I +#define TEMP_1_C TGSI_EXEC_TEMP_ONE_C +#define TEMP_2_I TGSI_EXEC_TEMP_TWO_I +#define TEMP_2_C TGSI_EXEC_TEMP_TWO_C +#define TEMP_128_I TGSI_EXEC_TEMP_128_I +#define TEMP_128_C TGSI_EXEC_TEMP_128_C +#define TEMP_M128_I TGSI_EXEC_TEMP_MINUS_128_I +#define TEMP_M128_C TGSI_EXEC_TEMP_MINUS_128_C +#define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I +#define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C +#define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I +#define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C +#define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I +#define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C +#define TEMP_R0 TGSI_EXEC_TEMP_R0 + +#define FOR_EACH_CHANNEL(CHAN)\ + for (CHAN = 0; CHAN < 4; CHAN++) + +#define IS_CHANNEL_ENABLED(INST, CHAN)\ + ((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN))) + +#define IS_CHANNEL_ENABLED2(INST, CHAN)\ + ((INST).FullDstRegisters[1].DstRegister.WriteMask & (1 << (CHAN))) + +#define FOR_EACH_ENABLED_CHANNEL(INST, CHAN)\ + FOR_EACH_CHANNEL( CHAN )\ + if (IS_CHANNEL_ENABLED( INST, CHAN )) + +#define FOR_EACH_ENABLED_CHANNEL2(INST, CHAN)\ + FOR_EACH_CHANNEL( CHAN )\ + if (IS_CHANNEL_ENABLED2( INST, CHAN )) + + +/** The execution mask depends on the conditional mask and the loop mask */ +#define UPDATE_EXEC_MASK(MACH) \ + MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->FuncMask + + +#define CHAN_X 0 +#define CHAN_Y 1 +#define CHAN_Z 2 +#define CHAN_W 3 + + + +/** + * Initialize machine state by expanding tokens to full instructions, + * allocating temporary storage, setting up constants, etc. + * After this, we can call spu_exec_machine_run() many times. + */ +void +spu_exec_machine_init(struct spu_exec_machine *mach, + uint numSamplers, + struct spu_sampler *samplers, + unsigned processor) +{ + qword zero; + qword not_zero; + uint i; + + mach->Samplers = samplers; + mach->Processor = processor; + mach->Addrs = &mach->Temps[TGSI_EXEC_NUM_TEMPS]; + + zero = si_xor(zero, zero); + not_zero = si_xori(zero, 0xff); + + /* Setup constants. */ + mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q = zero; + mach->Temps[TEMP_FF_I].xyzw[TEMP_FF_C].q = not_zero; + mach->Temps[TEMP_7F_I].xyzw[TEMP_7F_C].q = si_shli(not_zero, -1); + mach->Temps[TEMP_80_I].xyzw[TEMP_80_C].q = si_shli(not_zero, 31); + + mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q = (qword) spu_splats(1.0f); + mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].q = (qword) spu_splats(2.0f); + mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].q = (qword) spu_splats(128.0f); + mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].q = (qword) spu_splats(-128.0f); +} + + +static INLINE qword +micro_abs(qword src) +{ + return si_rotmi(si_shli(src, 1), -1); +} + +static INLINE qword +micro_ceil(qword src) +{ + return (qword) _ceilf4((vec_float4) src); +} + +static INLINE qword +micro_cos(qword src) +{ + return (qword) _cosf4((vec_float4) src); +} + +static const qword br_shuf = { + TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1, + TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3, + TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1, + TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3, + TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1, + TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3, + TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1, + TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3, +}; + +static const qword bl_shuf = { + TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1, + TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3, + TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1, + TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3, + TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1, + TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3, + TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1, + TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3, +}; + +static const qword tl_shuf = { + TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1, + TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3, + TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1, + TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3, + TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1, + TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3, + TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1, + TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3, +}; + +static qword +micro_ddx(qword src) +{ + qword bottom_right = si_shufb(src, src, br_shuf); + qword bottom_left = si_shufb(src, src, bl_shuf); + + return si_fs(bottom_right, bottom_left); +} + +static qword +micro_ddy(qword src) +{ + qword top_left = si_shufb(src, src, tl_shuf); + qword bottom_left = si_shufb(src, src, bl_shuf); + + return si_fs(top_left, bottom_left); +} + +static INLINE qword +micro_div(qword src0, qword src1) +{ + return (qword) _divf4((vec_float4) src0, (vec_float4) src1); +} + +static qword +micro_flr(qword src) +{ + return (qword) _floorf4((vec_float4) src); +} + +static qword +micro_frc(qword src) +{ + return si_fs(src, (qword) _floorf4((vec_float4) src)); +} + +static INLINE qword +micro_ge(qword src0, qword src1) +{ + return si_or(si_fceq(src0, src1), si_fcgt(src0, src1)); +} + +static qword +micro_lg2(qword src) +{ + return (qword) _log2f4((vec_float4) src); +} + +static INLINE qword +micro_lt(qword src0, qword src1) +{ + const qword tmp = si_or(si_fceq(src0, src1), si_fcgt(src0, src1)); + + return si_xori(tmp, 0xff); +} + +static INLINE qword +micro_max(qword src0, qword src1) +{ + return si_selb(src1, src0, si_fcgt(src0, src1)); +} + +static INLINE qword +micro_min(qword src0, qword src1) +{ + return si_selb(src0, src1, si_fcgt(src0, src1)); +} + +static qword +micro_neg(qword src) +{ + return si_xor(src, (qword) spu_splats(0x80000000)); +} + +static qword +micro_set_sign(qword src) +{ + return si_or(src, (qword) spu_splats(0x80000000)); +} + +static qword +micro_pow(qword src0, qword src1) +{ + return (qword) _powf4((vec_float4) src0, (vec_float4) src1); +} + +static qword +micro_rnd(qword src) +{ + const qword half = (qword) spu_splats(0.5f); + + /* May be able to use _roundf4. There may be some difference, though. + */ + return (qword) _floorf4((vec_float4) si_fa(src, half)); +} + +static INLINE qword +micro_ishr(qword src0, qword src1) +{ + return si_rotma(src0, si_sfi(src1, 0)); +} + +static qword +micro_trunc(qword src) +{ + return (qword) _truncf4((vec_float4) src); +} + +static qword +micro_sin(qword src) +{ + return (qword) _sinf4((vec_float4) src); +} + +static INLINE qword +micro_sqrt(qword src) +{ + return (qword) _sqrtf4((vec_float4) src); +} + +static void +fetch_src_file_channel( + const struct spu_exec_machine *mach, + const uint file, + const uint swizzle, + const union spu_exec_channel *index, + union spu_exec_channel *chan ) +{ + switch( swizzle ) { + case TGSI_EXTSWIZZLE_X: + case TGSI_EXTSWIZZLE_Y: + case TGSI_EXTSWIZZLE_Z: + case TGSI_EXTSWIZZLE_W: + switch( file ) { + case TGSI_FILE_CONSTANT: { + unsigned char buffer[32] ALIGN16_ATTRIB; + unsigned i; + + for (i = 0; i < 4; i++) { + const float *ptr = mach->Consts[index->i[i]]; + const uint64_t addr = (uint64_t)(uintptr_t) ptr; + const unsigned size = ((addr & 0x0f) == 0) ? 16 : 32; + + mfc_get(buffer, addr & ~0x0f, size, TAG_VERTEX_BUFFER, 0, 0); + wait_on_mask(1 << TAG_VERTEX_BUFFER); + + (void) memcpy(& chan->f[i], &buffer[(addr & 0x0f) + + (sizeof(float) * swizzle)], sizeof(float)); + } + break; + } + + case TGSI_FILE_INPUT: + chan->u[0] = mach->Inputs[index->i[0]].xyzw[swizzle].u[0]; + chan->u[1] = mach->Inputs[index->i[1]].xyzw[swizzle].u[1]; + chan->u[2] = mach->Inputs[index->i[2]].xyzw[swizzle].u[2]; + chan->u[3] = mach->Inputs[index->i[3]].xyzw[swizzle].u[3]; + break; + + case TGSI_FILE_TEMPORARY: + chan->u[0] = mach->Temps[index->i[0]].xyzw[swizzle].u[0]; + chan->u[1] = mach->Temps[index->i[1]].xyzw[swizzle].u[1]; + chan->u[2] = mach->Temps[index->i[2]].xyzw[swizzle].u[2]; + chan->u[3] = mach->Temps[index->i[3]].xyzw[swizzle].u[3]; + break; + + case TGSI_FILE_IMMEDIATE: + assert( index->i[0] < (int) mach->ImmLimit ); + assert( index->i[1] < (int) mach->ImmLimit ); + assert( index->i[2] < (int) mach->ImmLimit ); + assert( index->i[3] < (int) mach->ImmLimit ); + + chan->f[0] = mach->Imms[index->i[0]][swizzle]; + chan->f[1] = mach->Imms[index->i[1]][swizzle]; + chan->f[2] = mach->Imms[index->i[2]][swizzle]; + chan->f[3] = mach->Imms[index->i[3]][swizzle]; + break; + + case TGSI_FILE_ADDRESS: + chan->u[0] = mach->Addrs[index->i[0]].xyzw[swizzle].u[0]; + chan->u[1] = mach->Addrs[index->i[1]].xyzw[swizzle].u[1]; + chan->u[2] = mach->Addrs[index->i[2]].xyzw[swizzle].u[2]; + chan->u[3] = mach->Addrs[index->i[3]].xyzw[swizzle].u[3]; + break; + + case TGSI_FILE_OUTPUT: + /* vertex/fragment output vars can be read too */ + chan->u[0] = mach->Outputs[index->i[0]].xyzw[swizzle].u[0]; + chan->u[1] = mach->Outputs[index->i[1]].xyzw[swizzle].u[1]; + chan->u[2] = mach->Outputs[index->i[2]].xyzw[swizzle].u[2]; + chan->u[3] = mach->Outputs[index->i[3]].xyzw[swizzle].u[3]; + break; + + default: + assert( 0 ); + } + break; + + case TGSI_EXTSWIZZLE_ZERO: + *chan = mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]; + break; + + case TGSI_EXTSWIZZLE_ONE: + *chan = mach->Temps[TEMP_1_I].xyzw[TEMP_1_C]; + break; + + default: + assert( 0 ); + } +} + +static void +fetch_source( + const struct spu_exec_machine *mach, + union spu_exec_channel *chan, + const struct tgsi_full_src_register *reg, + const uint chan_index ) +{ + union spu_exec_channel index; + uint swizzle; + + index.i[0] = + index.i[1] = + index.i[2] = + index.i[3] = reg->SrcRegister.Index; + + if (reg->SrcRegister.Indirect) { + union spu_exec_channel index2; + union spu_exec_channel indir_index; + + index2.i[0] = + index2.i[1] = + index2.i[2] = + index2.i[3] = reg->SrcRegisterInd.Index; + + swizzle = tgsi_util_get_src_register_swizzle(®->SrcRegisterInd, + CHAN_X); + fetch_src_file_channel( + mach, + reg->SrcRegisterInd.File, + swizzle, + &index2, + &indir_index ); + + index.q = si_a(index.q, indir_index.q); + } + + if( reg->SrcRegister.Dimension ) { + switch( reg->SrcRegister.File ) { + case TGSI_FILE_INPUT: + index.q = si_mpyi(index.q, 17); + break; + case TGSI_FILE_CONSTANT: + index.q = si_shli(index.q, 12); + break; + default: + assert( 0 ); + } + + index.i[0] += reg->SrcRegisterDim.Index; + index.i[1] += reg->SrcRegisterDim.Index; + index.i[2] += reg->SrcRegisterDim.Index; + index.i[3] += reg->SrcRegisterDim.Index; + + if (reg->SrcRegisterDim.Indirect) { + union spu_exec_channel index2; + union spu_exec_channel indir_index; + + index2.i[0] = + index2.i[1] = + index2.i[2] = + index2.i[3] = reg->SrcRegisterDimInd.Index; + + swizzle = tgsi_util_get_src_register_swizzle( ®->SrcRegisterDimInd, CHAN_X ); + fetch_src_file_channel( + mach, + reg->SrcRegisterDimInd.File, + swizzle, + &index2, + &indir_index ); + + index.q = si_a(index.q, indir_index.q); + } + } + + swizzle = tgsi_util_get_full_src_register_extswizzle( reg, chan_index ); + fetch_src_file_channel( + mach, + reg->SrcRegister.File, + swizzle, + &index, + chan ); + + switch (tgsi_util_get_full_src_register_sign_mode( reg, chan_index )) { + case TGSI_UTIL_SIGN_CLEAR: + chan->q = micro_abs(chan->q); + break; + + case TGSI_UTIL_SIGN_SET: + chan->q = micro_set_sign(chan->q); + break; + + case TGSI_UTIL_SIGN_TOGGLE: + chan->q = micro_neg(chan->q); + break; + + case TGSI_UTIL_SIGN_KEEP: + break; + } + + if (reg->SrcRegisterExtMod.Complement) { + chan->q = si_fs(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, chan->q); + } +} + +static void +store_dest( + struct spu_exec_machine *mach, + const union spu_exec_channel *chan, + const struct tgsi_full_dst_register *reg, + const struct tgsi_full_instruction *inst, + uint chan_index ) +{ + union spu_exec_channel *dst; + + switch( reg->DstRegister.File ) { + case TGSI_FILE_NULL: + return; + + case TGSI_FILE_OUTPUT: + dst = &mach->Outputs[mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] + + reg->DstRegister.Index].xyzw[chan_index]; + break; + + case TGSI_FILE_TEMPORARY: + dst = &mach->Temps[reg->DstRegister.Index].xyzw[chan_index]; + break; + + case TGSI_FILE_ADDRESS: + dst = &mach->Addrs[reg->DstRegister.Index].xyzw[chan_index]; + break; + + default: + assert( 0 ); + return; + } + + switch (inst->Instruction.Saturate) + { + case TGSI_SAT_NONE: + if (mach->ExecMask & 0x1) + dst->i[0] = chan->i[0]; + if (mach->ExecMask & 0x2) + dst->i[1] = chan->i[1]; + if (mach->ExecMask & 0x4) + dst->i[2] = chan->i[2]; + if (mach->ExecMask & 0x8) + dst->i[3] = chan->i[3]; + break; + + case TGSI_SAT_ZERO_ONE: + /* XXX need to obey ExecMask here */ + dst->q = micro_max(chan->q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q); + dst->q = micro_min(dst->q, mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q); + break; + + case TGSI_SAT_MINUS_PLUS_ONE: + assert( 0 ); + break; + + default: + assert( 0 ); + } +} + +#define FETCH(VAL,INDEX,CHAN)\ + fetch_source (mach, VAL, &inst->FullSrcRegisters[INDEX], CHAN) + +#define STORE(VAL,INDEX,CHAN)\ + store_dest (mach, VAL, &inst->FullDstRegisters[INDEX], inst, CHAN ) + + +/** + * Execute ARB-style KIL which is predicated by a src register. + * Kill fragment if any of the four values is less than zero. + */ +static void +exec_kilp(struct spu_exec_machine *mach, + const struct tgsi_full_instruction *inst) +{ + uint uniquemask; + uint chan_index; + uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */ + union spu_exec_channel r[1]; + + /* This mask stores component bits that were already tested. Note that + * we test if the value is less than zero, so 1.0 and 0.0 need not to be + * tested. */ + uniquemask = (1 << TGSI_EXTSWIZZLE_ZERO) | (1 << TGSI_EXTSWIZZLE_ONE); + + for (chan_index = 0; chan_index < 4; chan_index++) + { + uint swizzle; + uint i; + + /* unswizzle channel */ + swizzle = tgsi_util_get_full_src_register_extswizzle ( + &inst->FullSrcRegisters[0], + chan_index); + + /* check if the component has not been already tested */ + if (uniquemask & (1 << swizzle)) + continue; + uniquemask |= 1 << swizzle; + + FETCH(&r[0], 0, chan_index); + for (i = 0; i < 4; i++) + if (r[0].f[i] < 0.0f) + kilmask |= 1 << i; + } + + mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask; +} + + +/* + * Fetch a texel using STR texture coordinates. + */ +static void +fetch_texel( struct spu_sampler *sampler, + const union spu_exec_channel *s, + const union spu_exec_channel *t, + const union spu_exec_channel *p, + float lodbias, /* XXX should be float[4] */ + union spu_exec_channel *r, + union spu_exec_channel *g, + union spu_exec_channel *b, + union spu_exec_channel *a ) +{ + qword rgba[4]; + qword out[4]; + + sampler->get_samples(sampler, s->f, t->f, p->f, lodbias, (float *) rgba); + + _transpose_matrix4x4(out, rgba); + r->q = out[0]; + g->q = out[1]; + b->q = out[2]; + a->q = out[3]; +} + + +static void +exec_tex(struct spu_exec_machine *mach, + const struct tgsi_full_instruction *inst, + boolean biasLod) +{ + const uint unit = inst->FullSrcRegisters[1].SrcRegister.Index; + union spu_exec_channel r[8]; + uint chan_index; + float lodBias; + + /* printf("Sampler %u unit %u\n", sampler, unit); */ + + switch (inst->InstructionExtTexture.Texture) { + case TGSI_TEXTURE_1D: + + FETCH(&r[0], 0, CHAN_X); + + switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) { + case TGSI_EXTSWIZZLE_W: + FETCH(&r[1], 0, CHAN_W); + r[0].q = micro_div(r[0].q, r[1].q); + break; + + case TGSI_EXTSWIZZLE_ONE: + break; + + default: + assert (0); + } + + if (biasLod) { + FETCH(&r[1], 0, CHAN_W); + lodBias = r[2].f[0]; + } + else + lodBias = 0.0; + + fetch_texel(&mach->Samplers[unit], + &r[0], NULL, NULL, lodBias, /* S, T, P, BIAS */ + &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */ + break; + + case TGSI_TEXTURE_2D: + case TGSI_TEXTURE_RECT: + + FETCH(&r[0], 0, CHAN_X); + FETCH(&r[1], 0, CHAN_Y); + FETCH(&r[2], 0, CHAN_Z); + + switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) { + case TGSI_EXTSWIZZLE_W: + FETCH(&r[3], 0, CHAN_W); + r[0].q = micro_div(r[0].q, r[3].q); + r[1].q = micro_div(r[1].q, r[3].q); + r[2].q = micro_div(r[2].q, r[3].q); + break; + + case TGSI_EXTSWIZZLE_ONE: + break; + + default: + assert (0); + } + + if (biasLod) { + FETCH(&r[3], 0, CHAN_W); + lodBias = r[3].f[0]; + } + else + lodBias = 0.0; + + fetch_texel(&mach->Samplers[unit], + &r[0], &r[1], &r[2], lodBias, /* inputs */ + &r[0], &r[1], &r[2], &r[3]); /* outputs */ + break; + + case TGSI_TEXTURE_3D: + case TGSI_TEXTURE_CUBE: + + FETCH(&r[0], 0, CHAN_X); + FETCH(&r[1], 0, CHAN_Y); + FETCH(&r[2], 0, CHAN_Z); + + switch (inst->FullSrcRegisters[0].SrcRegisterExtSwz.ExtDivide) { + case TGSI_EXTSWIZZLE_W: + FETCH(&r[3], 0, CHAN_W); + r[0].q = micro_div(r[0].q, r[3].q); + r[1].q = micro_div(r[1].q, r[3].q); + r[2].q = micro_div(r[2].q, r[3].q); + break; + + case TGSI_EXTSWIZZLE_ONE: + break; + + default: + assert (0); + } + + if (biasLod) { + FETCH(&r[3], 0, CHAN_W); + lodBias = r[3].f[0]; + } + else + lodBias = 0.0; + + fetch_texel(&mach->Samplers[unit], + &r[0], &r[1], &r[2], lodBias, + &r[0], &r[1], &r[2], &r[3]); + break; + + default: + assert (0); + } + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[chan_index], 0, chan_index ); + } +} + + + +static void +constant_interpolation( + struct spu_exec_machine *mach, + unsigned attrib, + unsigned chan ) +{ + unsigned i; + + for( i = 0; i < QUAD_SIZE; i++ ) { + mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan]; + } +} + +static void +linear_interpolation( + struct spu_exec_machine *mach, + unsigned attrib, + unsigned chan ) +{ + const float x = mach->QuadPos.xyzw[0].f[0]; + const float y = mach->QuadPos.xyzw[1].f[0]; + const float dadx = mach->InterpCoefs[attrib].dadx[chan]; + const float dady = mach->InterpCoefs[attrib].dady[chan]; + const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y; + mach->Inputs[attrib].xyzw[chan].f[0] = a0; + mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx; + mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady; + mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady; +} + +static void +perspective_interpolation( + struct spu_exec_machine *mach, + unsigned attrib, + unsigned chan ) +{ + const float x = mach->QuadPos.xyzw[0].f[0]; + const float y = mach->QuadPos.xyzw[1].f[0]; + const float dadx = mach->InterpCoefs[attrib].dadx[chan]; + const float dady = mach->InterpCoefs[attrib].dady[chan]; + const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y; + const float *w = mach->QuadPos.xyzw[3].f; + /* divide by W here */ + mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0]; + mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1]; + mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2]; + mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3]; +} + + +typedef void (* interpolation_func)( + struct spu_exec_machine *mach, + unsigned attrib, + unsigned chan ); + +static void +exec_declaration(struct spu_exec_machine *mach, + const struct tgsi_full_declaration *decl) +{ + if( mach->Processor == TGSI_PROCESSOR_FRAGMENT ) { + if( decl->Declaration.File == TGSI_FILE_INPUT ) { + unsigned first, last, mask; + interpolation_func interp; + + assert( decl->Declaration.Declare == TGSI_DECLARE_RANGE ); + + first = decl->u.DeclarationRange.First; + last = decl->u.DeclarationRange.Last; + mask = decl->Declaration.UsageMask; + + switch( decl->Interpolation.Interpolate ) { + case TGSI_INTERPOLATE_CONSTANT: + interp = constant_interpolation; + break; + + case TGSI_INTERPOLATE_LINEAR: + interp = linear_interpolation; + break; + + case TGSI_INTERPOLATE_PERSPECTIVE: + interp = perspective_interpolation; + break; + + default: + assert( 0 ); + } + + if( mask == TGSI_WRITEMASK_XYZW ) { + unsigned i, j; + + for( i = first; i <= last; i++ ) { + for( j = 0; j < NUM_CHANNELS; j++ ) { + interp( mach, i, j ); + } + } + } + else { + unsigned i, j; + + for( j = 0; j < NUM_CHANNELS; j++ ) { + if( mask & (1 << j) ) { + for( i = first; i <= last; i++ ) { + interp( mach, i, j ); + } + } + } + } + } + } +} + +static void +exec_instruction( + struct spu_exec_machine *mach, + const struct tgsi_full_instruction *inst, + int *pc ) +{ + uint chan_index; + union spu_exec_channel r[8]; + + (*pc)++; + + switch (inst->Instruction.Opcode) { + case TGSI_OPCODE_ARL: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = si_cflts(r[0].q, 0); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_MOV: + /* TGSI_OPCODE_SWZ */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_LIT: + if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) { + STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Y ) || IS_CHANNEL_ENABLED( *inst, CHAN_Z )) { + FETCH( &r[0], 0, CHAN_X ); + if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) { + r[0].q = micro_max(r[0].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q); + STORE( &r[0], 0, CHAN_Y ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) { + FETCH( &r[1], 0, CHAN_Y ); + r[1].q = micro_max(r[1].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q); + + FETCH( &r[2], 0, CHAN_W ); + r[2].q = micro_min(r[2].q, mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].q); + r[2].q = micro_max(r[2].q, mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].q); + r[1].q = micro_pow(r[1].q, r[2].q); + + /* r0 = (r0 > 0.0) ? r1 : 0.0 + */ + r[0].q = si_fcgt(r[0].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q); + r[0].q = si_selb(mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q, r[1].q, + r[0].q); + STORE( &r[0], 0, CHAN_Z ); + } + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) { + STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W ); + } + break; + + case TGSI_OPCODE_RCP: + /* TGSI_OPCODE_RECIP */ + FETCH( &r[0], 0, CHAN_X ); + r[0].q = micro_div(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, r[0].q); + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_RSQ: + /* TGSI_OPCODE_RECIPSQRT */ + FETCH( &r[0], 0, CHAN_X ); + r[0].q = micro_sqrt(r[0].q); + r[0].q = micro_div(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, r[0].q); + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_EXP: + assert (0); + break; + + case TGSI_OPCODE_LOG: + assert (0); + break; + + case TGSI_OPCODE_MUL: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) + { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + + r[0].q = si_fm(r[0].q, r[1].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_ADD: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = si_fa(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_DP3: + /* TGSI_OPCODE_DOT3 */ + FETCH( &r[0], 0, CHAN_X ); + FETCH( &r[1], 1, CHAN_X ); + r[0].q = si_fm(r[0].q, r[1].q); + + FETCH( &r[1], 0, CHAN_Y ); + FETCH( &r[2], 1, CHAN_Y ); + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + + FETCH( &r[1], 0, CHAN_Z ); + FETCH( &r[2], 1, CHAN_Z ); + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_DP4: + /* TGSI_OPCODE_DOT4 */ + FETCH(&r[0], 0, CHAN_X); + FETCH(&r[1], 1, CHAN_X); + + r[0].q = si_fm(r[0].q, r[1].q); + + FETCH(&r[1], 0, CHAN_Y); + FETCH(&r[2], 1, CHAN_Y); + + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FETCH(&r[1], 0, CHAN_Z); + FETCH(&r[2], 1, CHAN_Z); + + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FETCH(&r[1], 0, CHAN_W); + FETCH(&r[2], 1, CHAN_W); + + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_DST: + if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) { + STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) { + FETCH( &r[0], 0, CHAN_Y ); + FETCH( &r[1], 1, CHAN_Y); + r[0].q = si_fm(r[0].q, r[1].q); + STORE( &r[0], 0, CHAN_Y ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) { + FETCH( &r[0], 0, CHAN_Z ); + STORE( &r[0], 0, CHAN_Z ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) { + FETCH( &r[0], 1, CHAN_W ); + STORE( &r[0], 0, CHAN_W ); + } + break; + + case TGSI_OPCODE_MIN: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + + r[0].q = micro_min(r[0].q, r[1].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_MAX: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + + r[0].q = micro_max(r[0].q, r[1].q); + + STORE(&r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SLT: + /* TGSI_OPCODE_SETLT */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + + r[0].q = micro_ge(r[0].q, r[1].q); + r[0].q = si_xori(r[0].q, 0xff); + + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SGE: + /* TGSI_OPCODE_SETGE */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = micro_ge(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_MAD: + /* TGSI_OPCODE_MADD */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + FETCH( &r[2], 2, chan_index ); + r[0].q = si_fma(r[0].q, r[1].q, r[2].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SUB: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + + r[0].q = si_fs(r[0].q, r[1].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_LERP: + /* TGSI_OPCODE_LRP */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + FETCH(&r[2], 2, chan_index); + + r[1].q = si_fs(r[1].q, r[2].q); + r[0].q = si_fma(r[0].q, r[1].q, r[2].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_CND: + assert (0); + break; + + case TGSI_OPCODE_CND0: + assert (0); + break; + + case TGSI_OPCODE_DOT2ADD: + /* TGSI_OPCODE_DP2A */ + assert (0); + break; + + case TGSI_OPCODE_INDEX: + assert (0); + break; + + case TGSI_OPCODE_NEGATE: + assert (0); + break; + + case TGSI_OPCODE_FRAC: + /* TGSI_OPCODE_FRC */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_frc(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_CLAMP: + assert (0); + break; + + case TGSI_OPCODE_FLOOR: + /* TGSI_OPCODE_FLR */ + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_flr(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_ROUND: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_rnd(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_EXPBASE2: + /* TGSI_OPCODE_EX2 */ + FETCH(&r[0], 0, CHAN_X); + + r[0].q = micro_pow(mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].q, r[0].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_LOGBASE2: + /* TGSI_OPCODE_LG2 */ + FETCH( &r[0], 0, CHAN_X ); + r[0].q = micro_lg2(r[0].q); + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_POWER: + /* TGSI_OPCODE_POW */ + FETCH(&r[0], 0, CHAN_X); + FETCH(&r[1], 1, CHAN_X); + + r[0].q = micro_pow(r[0].q, r[1].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_CROSSPRODUCT: + /* TGSI_OPCODE_XPD */ + FETCH(&r[0], 0, CHAN_Y); + FETCH(&r[1], 1, CHAN_Z); + FETCH(&r[3], 0, CHAN_Z); + FETCH(&r[4], 1, CHAN_Y); + + /* r2 = (r0 * r1) - (r3 * r5) + */ + r[2].q = si_fm(r[3].q, r[5].q); + r[2].q = si_fms(r[0].q, r[1].q, r[2].q); + + if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) { + STORE( &r[2], 0, CHAN_X ); + } + + FETCH(&r[2], 1, CHAN_X); + FETCH(&r[5], 0, CHAN_X); + + /* r3 = (r3 * r2) - (r1 * r5) + */ + r[1].q = si_fm(r[1].q, r[5].q); + r[3].q = si_fms(r[3].q, r[2].q, r[1].q); + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) { + STORE( &r[3], 0, CHAN_Y ); + } + + /* r5 = (r5 * r4) - (r0 * r2) + */ + r[0].q = si_fm(r[0].q, r[2].q); + r[5].q = si_fms(r[5].q, r[4].q, r[0].q); + + if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) { + STORE( &r[5], 0, CHAN_Z ); + } + + if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) { + STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W ); + } + break; + + case TGSI_OPCODE_MULTIPLYMATRIX: + assert (0); + break; + + case TGSI_OPCODE_ABS: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + + r[0].q = micro_abs(r[0].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_RCC: + assert (0); + break; + + case TGSI_OPCODE_DPH: + FETCH(&r[0], 0, CHAN_X); + FETCH(&r[1], 1, CHAN_X); + + r[0].q = si_fm(r[0].q, r[1].q); + + FETCH(&r[1], 0, CHAN_Y); + FETCH(&r[2], 1, CHAN_Y); + + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FETCH(&r[1], 0, CHAN_Z); + FETCH(&r[2], 1, CHAN_Z); + + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FETCH(&r[1], 1, CHAN_W); + + r[0].q = si_fa(r[0].q, r[1].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_COS: + FETCH(&r[0], 0, CHAN_X); + + r[0].q = micro_cos(r[0].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_DDX: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_ddx(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_DDY: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_ddy(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_KILP: + exec_kilp (mach, inst); + break; + + case TGSI_OPCODE_KIL: + /* for enabled ExecMask bits, set the killed bit */ + mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= mach->ExecMask; + break; + + case TGSI_OPCODE_PK2H: + assert (0); + break; + + case TGSI_OPCODE_PK2US: + assert (0); + break; + + case TGSI_OPCODE_PK4B: + assert (0); + break; + + case TGSI_OPCODE_PK4UB: + assert (0); + break; + + case TGSI_OPCODE_RFL: + assert (0); + break; + + case TGSI_OPCODE_SEQ: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + + r[0].q = si_fceq(r[0].q, r[1].q); + + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SFL: + assert (0); + break; + + case TGSI_OPCODE_SGT: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = si_fcgt(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SIN: + FETCH( &r[0], 0, CHAN_X ); + r[0].q = micro_sin(r[0].q); + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SLE: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + + r[0].q = si_fcgt(r[0].q, r[1].q); + r[0].q = si_xori(r[0].q, 0xff); + + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SNE: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + + r[0].q = si_fceq(r[0].q, r[1].q); + r[0].q = si_xori(r[0].q, 0xff); + + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_STR: + assert (0); + break; + + case TGSI_OPCODE_TEX: + /* simple texture lookup */ + /* src[0] = texcoord */ + /* src[1] = sampler unit */ + exec_tex(mach, inst, FALSE); + break; + + case TGSI_OPCODE_TXB: + /* Texture lookup with lod bias */ + /* src[0] = texcoord (src[0].w = load bias) */ + /* src[1] = sampler unit */ + exec_tex(mach, inst, TRUE); + break; + + case TGSI_OPCODE_TXD: + /* Texture lookup with explict partial derivatives */ + /* src[0] = texcoord */ + /* src[1] = d[strq]/dx */ + /* src[2] = d[strq]/dy */ + /* src[3] = sampler unit */ + assert (0); + break; + + case TGSI_OPCODE_TXL: + /* Texture lookup with explit LOD */ + /* src[0] = texcoord (src[0].w = load bias) */ + /* src[1] = sampler unit */ + exec_tex(mach, inst, TRUE); + break; + + case TGSI_OPCODE_UP2H: + assert (0); + break; + + case TGSI_OPCODE_UP2US: + assert (0); + break; + + case TGSI_OPCODE_UP4B: + assert (0); + break; + + case TGSI_OPCODE_UP4UB: + assert (0); + break; + + case TGSI_OPCODE_X2D: + assert (0); + break; + + case TGSI_OPCODE_ARA: + assert (0); + break; + + case TGSI_OPCODE_ARR: + assert (0); + break; + + case TGSI_OPCODE_BRA: + assert (0); + break; + + case TGSI_OPCODE_CAL: + /* skip the call if no execution channels are enabled */ + if (mach->ExecMask) { + /* do the call */ + + /* push the Cond, Loop, Cont stacks */ + assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING); + mach->CondStack[mach->CondStackTop++] = mach->CondMask; + assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING); + mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask; + assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING); + mach->ContStack[mach->ContStackTop++] = mach->ContMask; + + assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING); + mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask; + + /* note that PC was already incremented above */ + mach->CallStack[mach->CallStackTop++] = *pc; + *pc = inst->InstructionExtLabel.Label; + } + break; + + case TGSI_OPCODE_RET: + mach->FuncMask &= ~mach->ExecMask; + UPDATE_EXEC_MASK(mach); + + if (mach->ExecMask == 0x0) { + /* really return now (otherwise, keep executing */ + + if (mach->CallStackTop == 0) { + /* returning from main() */ + *pc = -1; + return; + } + *pc = mach->CallStack[--mach->CallStackTop]; + + /* pop the Cond, Loop, Cont stacks */ + assert(mach->CondStackTop > 0); + mach->CondMask = mach->CondStack[--mach->CondStackTop]; + assert(mach->LoopStackTop > 0); + mach->LoopMask = mach->LoopStack[--mach->LoopStackTop]; + assert(mach->ContStackTop > 0); + mach->ContMask = mach->ContStack[--mach->ContStackTop]; + assert(mach->FuncStackTop > 0); + mach->FuncMask = mach->FuncStack[--mach->FuncStackTop]; + + UPDATE_EXEC_MASK(mach); + } + break; + + case TGSI_OPCODE_SSG: + assert (0); + break; + + case TGSI_OPCODE_CMP: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH(&r[0], 0, chan_index); + FETCH(&r[1], 1, chan_index); + FETCH(&r[2], 2, chan_index); + + /* r0 = (r0 < 0.0) ? r1 : r2 + */ + r[3].q = si_xor(r[3].q, r[3].q); + r[0].q = micro_lt(r[0].q, r[3].q); + r[0].q = si_selb(r[1].q, r[2].q, r[0].q); + + STORE(&r[0], 0, chan_index); + } + break; + + case TGSI_OPCODE_SCS: + if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) || IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) { + FETCH( &r[0], 0, CHAN_X ); + } + if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) ) { + r[1].q = micro_cos(r[0].q); + STORE( &r[1], 0, CHAN_X ); + } + if( IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) { + r[1].q = micro_sin(r[0].q); + STORE( &r[1], 0, CHAN_Y ); + } + if( IS_CHANNEL_ENABLED( *inst, CHAN_Z ) ) { + STORE( &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, CHAN_Z ); + } + if( IS_CHANNEL_ENABLED( *inst, CHAN_W ) ) { + STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W ); + } + break; + + case TGSI_OPCODE_NRM: + assert (0); + break; + + case TGSI_OPCODE_DIV: + assert( 0 ); + break; + + case TGSI_OPCODE_DP2: + FETCH( &r[0], 0, CHAN_X ); + FETCH( &r[1], 1, CHAN_X ); + r[0].q = si_fm(r[0].q, r[1].q); + + FETCH( &r[1], 0, CHAN_Y ); + FETCH( &r[2], 1, CHAN_Y ); + r[0].q = si_fma(r[1].q, r[2].q, r[0].q); + + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_IF: + /* push CondMask */ + assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING); + mach->CondStack[mach->CondStackTop++] = mach->CondMask; + FETCH( &r[0], 0, CHAN_X ); + /* update CondMask */ + if( ! r[0].u[0] ) { + mach->CondMask &= ~0x1; + } + if( ! r[0].u[1] ) { + mach->CondMask &= ~0x2; + } + if( ! r[0].u[2] ) { + mach->CondMask &= ~0x4; + } + if( ! r[0].u[3] ) { + mach->CondMask &= ~0x8; + } + UPDATE_EXEC_MASK(mach); + /* Todo: If CondMask==0, jump to ELSE */ + break; + + case TGSI_OPCODE_ELSE: + /* invert CondMask wrt previous mask */ + { + uint prevMask; + assert(mach->CondStackTop > 0); + prevMask = mach->CondStack[mach->CondStackTop - 1]; + mach->CondMask = ~mach->CondMask & prevMask; + UPDATE_EXEC_MASK(mach); + /* Todo: If CondMask==0, jump to ENDIF */ + } + break; + + case TGSI_OPCODE_ENDIF: + /* pop CondMask */ + assert(mach->CondStackTop > 0); + mach->CondMask = mach->CondStack[--mach->CondStackTop]; + UPDATE_EXEC_MASK(mach); + break; + + case TGSI_OPCODE_END: + /* halt execution */ + *pc = -1; + break; + + case TGSI_OPCODE_REP: + assert (0); + break; + + case TGSI_OPCODE_ENDREP: + assert (0); + break; + + case TGSI_OPCODE_PUSHA: + assert (0); + break; + + case TGSI_OPCODE_POPA: + assert (0); + break; + + case TGSI_OPCODE_CEIL: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_ceil(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_I2F: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = si_csflt(r[0].q, 0); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_NOT: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = si_xorbi(r[0].q, 0xff); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_TRUNC: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + r[0].q = micro_trunc(r[0].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SHL: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + + r[0].q = si_shl(r[0].q, r[1].q); + + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SHR: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = micro_ishr(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_AND: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = si_and(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_OR: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = si_or(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_MOD: + assert (0); + break; + + case TGSI_OPCODE_XOR: + FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) { + FETCH( &r[0], 0, chan_index ); + FETCH( &r[1], 1, chan_index ); + r[0].q = si_xor(r[0].q, r[1].q); + STORE( &r[0], 0, chan_index ); + } + break; + + case TGSI_OPCODE_SAD: + assert (0); + break; + + case TGSI_OPCODE_TXF: + assert (0); + break; + + case TGSI_OPCODE_TXQ: + assert (0); + break; + + case TGSI_OPCODE_EMIT: + mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += 16; + mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++; + break; + + case TGSI_OPCODE_ENDPRIM: + mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]++; + mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] = 0; + break; + + case TGSI_OPCODE_LOOP: + /* fall-through (for now) */ + case TGSI_OPCODE_BGNLOOP2: + /* push LoopMask and ContMasks */ + assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING); + mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask; + assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING); + mach->ContStack[mach->ContStackTop++] = mach->ContMask; + break; + + case TGSI_OPCODE_ENDLOOP: + /* fall-through (for now at least) */ + case TGSI_OPCODE_ENDLOOP2: + /* Restore ContMask, but don't pop */ + assert(mach->ContStackTop > 0); + mach->ContMask = mach->ContStack[mach->ContStackTop - 1]; + if (mach->LoopMask) { + /* repeat loop: jump to instruction just past BGNLOOP */ + *pc = inst->InstructionExtLabel.Label + 1; + } + else { + /* exit loop: pop LoopMask */ + assert(mach->LoopStackTop > 0); + mach->LoopMask = mach->LoopStack[--mach->LoopStackTop]; + /* pop ContMask */ + assert(mach->ContStackTop > 0); + mach->ContMask = mach->ContStack[--mach->ContStackTop]; + } + UPDATE_EXEC_MASK(mach); + break; + + case TGSI_OPCODE_BRK: + /* turn off loop channels for each enabled exec channel */ + mach->LoopMask &= ~mach->ExecMask; + /* Todo: if mach->LoopMask == 0, jump to end of loop */ + UPDATE_EXEC_MASK(mach); + break; + + case TGSI_OPCODE_CONT: + /* turn off cont channels for each enabled exec channel */ + mach->ContMask &= ~mach->ExecMask; + /* Todo: if mach->LoopMask == 0, jump to end of loop */ + UPDATE_EXEC_MASK(mach); + break; + + case TGSI_OPCODE_BGNSUB: + /* no-op */ + break; + + case TGSI_OPCODE_ENDSUB: + /* no-op */ + break; + + case TGSI_OPCODE_NOISE1: + assert( 0 ); + break; + + case TGSI_OPCODE_NOISE2: + assert( 0 ); + break; + + case TGSI_OPCODE_NOISE3: + assert( 0 ); + break; + + case TGSI_OPCODE_NOISE4: + assert( 0 ); + break; + + case TGSI_OPCODE_NOP: + break; + + default: + assert( 0 ); + } +} + + +/** + * Run TGSI interpreter. + * \return bitmask of "alive" quad components + */ +uint +spu_exec_machine_run( struct spu_exec_machine *mach ) +{ + uint i; + int pc = 0; + + mach->CondMask = 0xf; + mach->LoopMask = 0xf; + mach->ContMask = 0xf; + mach->FuncMask = 0xf; + mach->ExecMask = 0xf; + + mach->CondStackTop = 0; /* temporarily subvert this assertion */ + assert(mach->CondStackTop == 0); + assert(mach->LoopStackTop == 0); + assert(mach->ContStackTop == 0); + assert(mach->CallStackTop == 0); + + mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0; + mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0; + + if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) { + mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0; + mach->Primitives[0] = 0; + } + + + /* execute declarations (interpolants) */ + if( mach->Processor == TGSI_PROCESSOR_FRAGMENT ) { + for (i = 0; i < mach->NumDeclarations; i++) { + uint8_t buffer[sizeof(struct tgsi_full_declaration) + 32] ALIGN16_ATTRIB; + struct tgsi_full_declaration decl; + unsigned long decl_addr = (unsigned long) (mach->Declarations+i); + unsigned size = ((sizeof(decl) + (decl_addr & 0x0f) + 0x0f) & ~0x0f); + + mfc_get(buffer, decl_addr & ~0x0f, size, TAG_INSTRUCTION_FETCH, 0, 0); + wait_on_mask(1 << TAG_INSTRUCTION_FETCH); + + memcpy(& decl, buffer + (decl_addr & 0x0f), sizeof(decl)); + exec_declaration( mach, &decl ); + } + } + + /* execute instructions, until pc is set to -1 */ + while (pc != -1) { + uint8_t buffer[sizeof(struct tgsi_full_instruction) + 32] ALIGN16_ATTRIB; + struct tgsi_full_instruction inst; + unsigned long inst_addr = (unsigned long) (mach->Instructions + pc); + unsigned size = ((sizeof(inst) + (inst_addr & 0x0f) + 0x0f) & ~0x0f); + + assert(pc < mach->NumInstructions); + mfc_get(buffer, inst_addr & ~0x0f, size, TAG_INSTRUCTION_FETCH, 0, 0); + wait_on_mask(1 << TAG_INSTRUCTION_FETCH); + + memcpy(& inst, buffer + (inst_addr & 0x0f), sizeof(inst)); + exec_instruction( mach, & inst, &pc ); + } + +#if 0 + /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */ + if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) { + /* + * Scale back depth component. + */ + for (i = 0; i < 4; i++) + mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF; + } +#endif + + return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0]; +} + + |