summaryrefslogtreecommitdiffstats
path: root/src/freedreno/ir3/ir3_ra.c
diff options
context:
space:
mode:
authorRob Clark <[email protected]>2018-11-10 12:05:59 -0500
committerRob Clark <[email protected]>2018-11-27 15:44:02 -0500
commitaa0fed10d3574aec8c129bace78018ae060484c0 (patch)
tree2fee64028d47f6112f881903848a126da35eb5ea /src/freedreno/ir3/ir3_ra.c
parent556eec249d6d81be88389784ce5f2583712d85d5 (diff)
freedreno: move ir3 to common location
Move (most of) the ir3 compiler to src/freedreno/ir3 so that it can be re-used by some future vulkan driver. The parts that are gallium specific have been refactored out and remain in the gallium driver. Getting the move done now so that it can happen before further refactoring to support a6xx specific instructions. NOTE also removes ir3_cmdline compiler tool from autotools build since that was easier than fixing it and I normally use meson build. Waiting patiently for the day that we can remove *everything* from the autotools build. Signed-off-by: Rob Clark <[email protected]>
Diffstat (limited to 'src/freedreno/ir3/ir3_ra.c')
-rw-r--r--src/freedreno/ir3/ir3_ra.c1124
1 files changed, 1124 insertions, 0 deletions
diff --git a/src/freedreno/ir3/ir3_ra.c b/src/freedreno/ir3/ir3_ra.c
new file mode 100644
index 00000000000..ad09c4018d3
--- /dev/null
+++ b/src/freedreno/ir3/ir3_ra.c
@@ -0,0 +1,1124 @@
+/*
+ * Copyright (C) 2014 Rob Clark <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ * Authors:
+ * Rob Clark <[email protected]>
+ */
+
+#include "util/u_math.h"
+#include "util/register_allocate.h"
+#include "util/ralloc.h"
+#include "util/bitset.h"
+
+#include "ir3.h"
+#include "ir3_compiler.h"
+
+/*
+ * Register Assignment:
+ *
+ * Uses the register_allocate util, which implements graph coloring
+ * algo with interference classes. To handle the cases where we need
+ * consecutive registers (for example, texture sample instructions),
+ * we model these as larger (double/quad/etc) registers which conflict
+ * with the corresponding registers in other classes.
+ *
+ * Additionally we create additional classes for half-regs, which
+ * do not conflict with the full-reg classes. We do need at least
+ * sizes 1-4 (to deal w/ texture sample instructions output to half-
+ * reg). At the moment we don't create the higher order half-reg
+ * classes as half-reg frequently does not have enough precision
+ * for texture coords at higher resolutions.
+ *
+ * There are some additional cases that we need to handle specially,
+ * as the graph coloring algo doesn't understand "partial writes".
+ * For example, a sequence like:
+ *
+ * add r0.z, ...
+ * sam (f32)(xy)r0.x, ...
+ * ...
+ * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
+ *
+ * In this scenario, we treat r0.xyz as class size 3, which is written
+ * (from a use/def perspective) at the 'add' instruction and ignore the
+ * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
+ * defining instruction, as it is the first to partially write r0.xyz.
+ *
+ * Note i965 has a similar scenario, which they solve with a virtual
+ * LOAD_PAYLOAD instruction which gets turned into multiple MOV's after
+ * register assignment. But for us that is horrible from a scheduling
+ * standpoint. Instead what we do is use idea of 'definer' instruction.
+ * Ie. the first instruction (lowest ip) to write to the variable is the
+ * one we consider from use/def perspective when building interference
+ * graph. (Other instructions which write other variable components
+ * just define the variable some more.)
+ *
+ * Arrays of arbitrary size are handled via pre-coloring a consecutive
+ * sequence of registers. Additional scalar (single component) reg
+ * names are allocated starting at ctx->class_base[total_class_count]
+ * (see arr->base), which are pre-colored. In the use/def graph direct
+ * access is treated as a single element use/def, and indirect access
+ * is treated as use or def of all array elements. (Only the first
+ * def is tracked, in case of multiple indirect writes, etc.)
+ *
+ * TODO arrays that fit in one of the pre-defined class sizes should
+ * not need to be pre-colored, but instead could be given a normal
+ * vreg name. (Ignoring this for now since it is a good way to work
+ * out the kinks with arbitrary sized arrays.)
+ *
+ * TODO might be easier for debugging to split this into two passes,
+ * the first assigning vreg names in a way that we could ir3_print()
+ * the result.
+ */
+
+static const unsigned class_sizes[] = {
+ 1, 2, 3, 4,
+ 4 + 4, /* txd + 1d/2d */
+ 4 + 6, /* txd + 3d */
+};
+#define class_count ARRAY_SIZE(class_sizes)
+
+static const unsigned half_class_sizes[] = {
+ 1, 2, 3, 4,
+};
+#define half_class_count ARRAY_SIZE(half_class_sizes)
+
+/* seems to just be used for compute shaders? Seems like vec1 and vec3
+ * are sufficient (for now?)
+ */
+static const unsigned high_class_sizes[] = {
+ 1, 3,
+};
+#define high_class_count ARRAY_SIZE(high_class_sizes)
+
+#define total_class_count (class_count + half_class_count + high_class_count)
+
+/* Below a0.x are normal regs. RA doesn't need to assign a0.x/p0.x. */
+#define NUM_REGS (4 * 48) /* r0 to r47 */
+#define NUM_HIGH_REGS (4 * 8) /* r48 to r55 */
+#define FIRST_HIGH_REG (4 * 48)
+/* Number of virtual regs in a given class: */
+#define CLASS_REGS(i) (NUM_REGS - (class_sizes[i] - 1))
+#define HALF_CLASS_REGS(i) (NUM_REGS - (half_class_sizes[i] - 1))
+#define HIGH_CLASS_REGS(i) (NUM_HIGH_REGS - (high_class_sizes[i] - 1))
+
+#define HALF_OFFSET (class_count)
+#define HIGH_OFFSET (class_count + half_class_count)
+
+/* register-set, created one time, used for all shaders: */
+struct ir3_ra_reg_set {
+ struct ra_regs *regs;
+ unsigned int classes[class_count];
+ unsigned int half_classes[half_class_count];
+ unsigned int high_classes[high_class_count];
+ /* maps flat virtual register space to base gpr: */
+ uint16_t *ra_reg_to_gpr;
+ /* maps cls,gpr to flat virtual register space: */
+ uint16_t **gpr_to_ra_reg;
+};
+
+static void
+build_q_values(unsigned int **q_values, unsigned off,
+ const unsigned *sizes, unsigned count)
+{
+ for (unsigned i = 0; i < count; i++) {
+ q_values[i + off] = rzalloc_array(q_values, unsigned, total_class_count);
+
+ /* From register_allocate.c:
+ *
+ * q(B,C) (indexed by C, B is this register class) in
+ * Runeson/Nyström paper. This is "how many registers of B could
+ * the worst choice register from C conflict with".
+ *
+ * If we just let the register allocation algorithm compute these
+ * values, is extremely expensive. However, since all of our
+ * registers are laid out, we can very easily compute them
+ * ourselves. View the register from C as fixed starting at GRF n
+ * somewhere in the middle, and the register from B as sliding back
+ * and forth. Then the first register to conflict from B is the
+ * one starting at n - class_size[B] + 1 and the last register to
+ * conflict will start at n + class_size[B] - 1. Therefore, the
+ * number of conflicts from B is class_size[B] + class_size[C] - 1.
+ *
+ * +-+-+-+-+-+-+ +-+-+-+-+-+-+
+ * B | | | | | |n| --> | | | | | | |
+ * +-+-+-+-+-+-+ +-+-+-+-+-+-+
+ * +-+-+-+-+-+
+ * C |n| | | | |
+ * +-+-+-+-+-+
+ *
+ * (Idea copied from brw_fs_reg_allocate.cpp)
+ */
+ for (unsigned j = 0; j < count; j++)
+ q_values[i + off][j + off] = sizes[i] + sizes[j] - 1;
+ }
+}
+
+/* One-time setup of RA register-set, which describes all the possible
+ * "virtual" registers and their interferences. Ie. double register
+ * occupies (and conflicts with) two single registers, and so forth.
+ * Since registers do not need to be aligned to their class size, they
+ * can conflict with other registers in the same class too. Ie:
+ *
+ * Single (base) | Double
+ * --------------+---------------
+ * R0 | D0
+ * R1 | D0 D1
+ * R2 | D1 D2
+ * R3 | D2
+ * .. and so on..
+ *
+ * (NOTE the disassembler uses notation like r0.x/y/z/w but those are
+ * really just four scalar registers. Don't let that confuse you.)
+ */
+struct ir3_ra_reg_set *
+ir3_ra_alloc_reg_set(struct ir3_compiler *compiler)
+{
+ struct ir3_ra_reg_set *set = rzalloc(compiler, struct ir3_ra_reg_set);
+ unsigned ra_reg_count, reg, first_half_reg, first_high_reg, base;
+ unsigned int **q_values;
+
+ /* calculate # of regs across all classes: */
+ ra_reg_count = 0;
+ for (unsigned i = 0; i < class_count; i++)
+ ra_reg_count += CLASS_REGS(i);
+ for (unsigned i = 0; i < half_class_count; i++)
+ ra_reg_count += HALF_CLASS_REGS(i);
+ for (unsigned i = 0; i < high_class_count; i++)
+ ra_reg_count += HIGH_CLASS_REGS(i);
+
+ /* allocate and populate q_values: */
+ q_values = ralloc_array(set, unsigned *, total_class_count);
+
+ build_q_values(q_values, 0, class_sizes, class_count);
+ build_q_values(q_values, HALF_OFFSET, half_class_sizes, half_class_count);
+ build_q_values(q_values, HIGH_OFFSET, high_class_sizes, high_class_count);
+
+ /* allocate the reg-set.. */
+ set->regs = ra_alloc_reg_set(set, ra_reg_count, true);
+ set->ra_reg_to_gpr = ralloc_array(set, uint16_t, ra_reg_count);
+ set->gpr_to_ra_reg = ralloc_array(set, uint16_t *, total_class_count);
+
+ /* .. and classes */
+ reg = 0;
+ for (unsigned i = 0; i < class_count; i++) {
+ set->classes[i] = ra_alloc_reg_class(set->regs);
+
+ set->gpr_to_ra_reg[i] = ralloc_array(set, uint16_t, CLASS_REGS(i));
+
+ for (unsigned j = 0; j < CLASS_REGS(i); j++) {
+ ra_class_add_reg(set->regs, set->classes[i], reg);
+
+ set->ra_reg_to_gpr[reg] = j;
+ set->gpr_to_ra_reg[i][j] = reg;
+
+ for (unsigned br = j; br < j + class_sizes[i]; br++)
+ ra_add_transitive_reg_conflict(set->regs, br, reg);
+
+ reg++;
+ }
+ }
+
+ first_half_reg = reg;
+ base = HALF_OFFSET;
+
+ for (unsigned i = 0; i < half_class_count; i++) {
+ set->half_classes[i] = ra_alloc_reg_class(set->regs);
+
+ set->gpr_to_ra_reg[base + i] =
+ ralloc_array(set, uint16_t, HALF_CLASS_REGS(i));
+
+ for (unsigned j = 0; j < HALF_CLASS_REGS(i); j++) {
+ ra_class_add_reg(set->regs, set->half_classes[i], reg);
+
+ set->ra_reg_to_gpr[reg] = j;
+ set->gpr_to_ra_reg[base + i][j] = reg;
+
+ for (unsigned br = j; br < j + half_class_sizes[i]; br++)
+ ra_add_transitive_reg_conflict(set->regs, br + first_half_reg, reg);
+
+ reg++;
+ }
+ }
+
+ first_high_reg = reg;
+ base = HIGH_OFFSET;
+
+ for (unsigned i = 0; i < high_class_count; i++) {
+ set->high_classes[i] = ra_alloc_reg_class(set->regs);
+
+ set->gpr_to_ra_reg[base + i] =
+ ralloc_array(set, uint16_t, HIGH_CLASS_REGS(i));
+
+ for (unsigned j = 0; j < HIGH_CLASS_REGS(i); j++) {
+ ra_class_add_reg(set->regs, set->high_classes[i], reg);
+
+ set->ra_reg_to_gpr[reg] = j;
+ set->gpr_to_ra_reg[base + i][j] = reg;
+
+ for (unsigned br = j; br < j + high_class_sizes[i]; br++)
+ ra_add_transitive_reg_conflict(set->regs, br + first_high_reg, reg);
+
+ reg++;
+ }
+ }
+
+ /* starting a6xx, half precision regs conflict w/ full precision regs: */
+ if (compiler->gpu_id >= 600) {
+ /* because of transitivity, we can get away with just setting up
+ * conflicts between the first class of full and half regs:
+ */
+ for (unsigned j = 0; j < CLASS_REGS(0) / 2; j++) {
+ unsigned freg = set->gpr_to_ra_reg[0][j];
+ unsigned hreg0 = set->gpr_to_ra_reg[HALF_OFFSET][(j * 2) + 0];
+ unsigned hreg1 = set->gpr_to_ra_reg[HALF_OFFSET][(j * 2) + 1];
+
+ ra_add_transitive_reg_conflict(set->regs, freg, hreg0);
+ ra_add_transitive_reg_conflict(set->regs, freg, hreg1);
+ }
+
+ // TODO also need to update q_values, but for now:
+ ra_set_finalize(set->regs, NULL);
+ } else {
+ ra_set_finalize(set->regs, q_values);
+ }
+
+ ralloc_free(q_values);
+
+ return set;
+}
+
+/* additional block-data (per-block) */
+struct ir3_ra_block_data {
+ BITSET_WORD *def; /* variables defined before used in block */
+ BITSET_WORD *use; /* variables used before defined in block */
+ BITSET_WORD *livein; /* which defs reach entry point of block */
+ BITSET_WORD *liveout; /* which defs reach exit point of block */
+};
+
+/* additional instruction-data (per-instruction) */
+struct ir3_ra_instr_data {
+ /* cached instruction 'definer' info: */
+ struct ir3_instruction *defn;
+ int off, sz, cls;
+};
+
+/* register-assign context, per-shader */
+struct ir3_ra_ctx {
+ struct ir3 *ir;
+ gl_shader_stage type;
+ bool frag_face;
+
+ struct ir3_ra_reg_set *set;
+ struct ra_graph *g;
+ unsigned alloc_count;
+ /* one per class, plus one slot for arrays: */
+ unsigned class_alloc_count[total_class_count + 1];
+ unsigned class_base[total_class_count + 1];
+ unsigned instr_cnt;
+ unsigned *def, *use; /* def/use table */
+ struct ir3_ra_instr_data *instrd;
+};
+
+/* does it conflict? */
+static inline bool
+intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
+{
+ return !((a_start >= b_end) || (b_start >= a_end));
+}
+
+static bool
+is_half(struct ir3_instruction *instr)
+{
+ return !!(instr->regs[0]->flags & IR3_REG_HALF);
+}
+
+static bool
+is_high(struct ir3_instruction *instr)
+{
+ return !!(instr->regs[0]->flags & IR3_REG_HIGH);
+}
+
+static int
+size_to_class(unsigned sz, bool half, bool high)
+{
+ if (high) {
+ for (unsigned i = 0; i < high_class_count; i++)
+ if (high_class_sizes[i] >= sz)
+ return i + HIGH_OFFSET;
+ } else if (half) {
+ for (unsigned i = 0; i < half_class_count; i++)
+ if (half_class_sizes[i] >= sz)
+ return i + HALF_OFFSET;
+ } else {
+ for (unsigned i = 0; i < class_count; i++)
+ if (class_sizes[i] >= sz)
+ return i;
+ }
+ debug_assert(0);
+ return -1;
+}
+
+static bool
+writes_gpr(struct ir3_instruction *instr)
+{
+ if (is_store(instr))
+ return false;
+ /* is dest a normal temp register: */
+ struct ir3_register *reg = instr->regs[0];
+ if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED))
+ return false;
+ if ((reg->num == regid(REG_A0, 0)) ||
+ (reg->num == regid(REG_P0, 0)))
+ return false;
+ return true;
+}
+
+static bool
+instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
+{
+ if (a->flags & IR3_INSTR_UNUSED)
+ return false;
+ return (a->ip < b->ip);
+}
+
+static struct ir3_instruction *
+get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
+ int *sz, int *off)
+{
+ struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
+ struct ir3_instruction *d = NULL;
+
+ if (id->defn) {
+ *sz = id->sz;
+ *off = id->off;
+ return id->defn;
+ }
+
+ if (instr->opc == OPC_META_FI) {
+ /* What about the case where collect is subset of array, we
+ * need to find the distance between where actual array starts
+ * and fanin.. that probably doesn't happen currently.
+ */
+ struct ir3_register *src;
+ int dsz, doff;
+
+ /* note: don't use foreach_ssa_src as this gets called once
+ * while assigning regs (which clears SSA flag)
+ */
+ foreach_src_n(src, n, instr) {
+ struct ir3_instruction *dd;
+ if (!src->instr)
+ continue;
+
+ dd = get_definer(ctx, src->instr, &dsz, &doff);
+
+ if ((!d) || instr_before(dd, d)) {
+ d = dd;
+ *sz = dsz;
+ *off = doff - n;
+ }
+ }
+
+ } else if (instr->cp.right || instr->cp.left) {
+ /* covers also the meta:fo case, which ends up w/ single
+ * scalar instructions for each component:
+ */
+ struct ir3_instruction *f = ir3_neighbor_first(instr);
+
+ /* by definition, the entire sequence forms one linked list
+ * of single scalar register nodes (even if some of them may
+ * be fanouts from a texture sample (for example) instr. We
+ * just need to walk the list finding the first element of
+ * the group defined (lowest ip)
+ */
+ int cnt = 0;
+
+ /* need to skip over unused in the group: */
+ while (f && (f->flags & IR3_INSTR_UNUSED)) {
+ f = f->cp.right;
+ cnt++;
+ }
+
+ while (f) {
+ if ((!d) || instr_before(f, d))
+ d = f;
+ if (f == instr)
+ *off = cnt;
+ f = f->cp.right;
+ cnt++;
+ }
+
+ *sz = cnt;
+
+ } else {
+ /* second case is looking directly at the instruction which
+ * produces multiple values (eg, texture sample), rather
+ * than the fanout nodes that point back to that instruction.
+ * This isn't quite right, because it may be part of a larger
+ * group, such as:
+ *
+ * sam (f32)(xyzw)r0.x, ...
+ * add r1.x, ...
+ * add r1.y, ...
+ * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
+ *
+ * need to come up with a better way to handle that case.
+ */
+ if (instr->address) {
+ *sz = instr->regs[0]->size;
+ } else {
+ *sz = util_last_bit(instr->regs[0]->wrmask);
+ }
+ *off = 0;
+ d = instr;
+ }
+
+ if (d->opc == OPC_META_FO) {
+ struct ir3_instruction *dd;
+ int dsz, doff;
+
+ dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
+
+ /* by definition, should come before: */
+ debug_assert(instr_before(dd, d));
+
+ *sz = MAX2(*sz, dsz);
+
+ debug_assert(instr->opc == OPC_META_FO);
+ *off = MAX2(*off, instr->fo.off);
+
+ d = dd;
+ }
+
+ id->defn = d;
+ id->sz = *sz;
+ id->off = *off;
+
+ return d;
+}
+
+static void
+ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
+{
+ list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+ struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
+ if (instr->regs_count == 0)
+ continue;
+ /* couple special cases: */
+ if (writes_addr(instr) || writes_pred(instr)) {
+ id->cls = -1;
+ } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
+ id->cls = total_class_count;
+ } else {
+ id->defn = get_definer(ctx, instr, &id->sz, &id->off);
+ id->cls = size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
+ }
+ }
+}
+
+/* give each instruction a name (and ip), and count up the # of names
+ * of each class
+ */
+static void
+ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
+{
+ list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+ struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
+
+#ifdef DEBUG
+ instr->name = ~0;
+#endif
+
+ ctx->instr_cnt++;
+
+ if (instr->regs_count == 0)
+ continue;
+
+ if (!writes_gpr(instr))
+ continue;
+
+ if (id->defn != instr)
+ continue;
+
+ /* arrays which don't fit in one of the pre-defined class
+ * sizes are pre-colored:
+ */
+ if ((id->cls >= 0) && (id->cls < total_class_count)) {
+ instr->name = ctx->class_alloc_count[id->cls]++;
+ ctx->alloc_count++;
+ }
+ }
+}
+
+static void
+ra_init(struct ir3_ra_ctx *ctx)
+{
+ unsigned n, base;
+
+ ir3_clear_mark(ctx->ir);
+ n = ir3_count_instructions(ctx->ir);
+
+ ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
+
+ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
+ ra_block_find_definers(ctx, block);
+ }
+
+ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
+ ra_block_name_instructions(ctx, block);
+ }
+
+ /* figure out the base register name for each class. The
+ * actual ra name is class_base[cls] + instr->name;
+ */
+ ctx->class_base[0] = 0;
+ for (unsigned i = 1; i <= total_class_count; i++) {
+ ctx->class_base[i] = ctx->class_base[i-1] +
+ ctx->class_alloc_count[i-1];
+ }
+
+ /* and vreg names for array elements: */
+ base = ctx->class_base[total_class_count];
+ list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
+ arr->base = base;
+ ctx->class_alloc_count[total_class_count] += arr->length;
+ base += arr->length;
+ }
+ ctx->alloc_count += ctx->class_alloc_count[total_class_count];
+
+ ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
+ ralloc_steal(ctx->g, ctx->instrd);
+ ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
+ ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
+}
+
+static unsigned
+__ra_name(struct ir3_ra_ctx *ctx, int cls, struct ir3_instruction *defn)
+{
+ unsigned name;
+ debug_assert(cls >= 0);
+ debug_assert(cls < total_class_count); /* we shouldn't get arrays here.. */
+ name = ctx->class_base[cls] + defn->name;
+ debug_assert(name < ctx->alloc_count);
+ return name;
+}
+
+static int
+ra_name(struct ir3_ra_ctx *ctx, struct ir3_ra_instr_data *id)
+{
+ /* TODO handle name mapping for arrays */
+ return __ra_name(ctx, id->cls, id->defn);
+}
+
+static void
+ra_destroy(struct ir3_ra_ctx *ctx)
+{
+ ralloc_free(ctx->g);
+}
+
+static void
+ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
+{
+ struct ir3_ra_block_data *bd;
+ unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
+
+#define def(name, instr) \
+ do { \
+ /* defined on first write: */ \
+ if (!ctx->def[name]) \
+ ctx->def[name] = instr->ip; \
+ ctx->use[name] = instr->ip; \
+ BITSET_SET(bd->def, name); \
+ } while(0);
+
+#define use(name, instr) \
+ do { \
+ ctx->use[name] = MAX2(ctx->use[name], instr->ip); \
+ if (!BITSET_TEST(bd->def, name)) \
+ BITSET_SET(bd->use, name); \
+ } while(0);
+
+ bd = rzalloc(ctx->g, struct ir3_ra_block_data);
+
+ bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
+ bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
+
+ block->data = bd;
+
+ list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+ struct ir3_instruction *src;
+ struct ir3_register *reg;
+
+ if (instr->regs_count == 0)
+ continue;
+
+ /* There are a couple special cases to deal with here:
+ *
+ * fanout: used to split values from a higher class to a lower
+ * class, for example split the results of a texture fetch
+ * into individual scalar values; We skip over these from
+ * a 'def' perspective, and for a 'use' we walk the chain
+ * up to the defining instruction.
+ *
+ * fanin: used to collect values from lower class and assemble
+ * them together into a higher class, for example arguments
+ * to texture sample instructions; We consider these to be
+ * defined at the earliest fanin source.
+ *
+ * Most of this is handled in the get_definer() helper.
+ *
+ * In either case, we trace the instruction back to the original
+ * definer and consider that as the def/use ip.
+ */
+
+ if (writes_gpr(instr)) {
+ struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
+ struct ir3_register *dst = instr->regs[0];
+
+ if (dst->flags & IR3_REG_ARRAY) {
+ struct ir3_array *arr =
+ ir3_lookup_array(ctx->ir, dst->array.id);
+ unsigned i;
+
+ arr->start_ip = MIN2(arr->start_ip, instr->ip);
+ arr->end_ip = MAX2(arr->end_ip, instr->ip);
+
+ /* set the node class now.. in case we don't encounter
+ * this array dst again. From register_alloc algo's
+ * perspective, these are all single/scalar regs:
+ */
+ for (i = 0; i < arr->length; i++) {
+ unsigned name = arr->base + i;
+ ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
+ }
+
+ /* indirect write is treated like a write to all array
+ * elements, since we don't know which one is actually
+ * written:
+ */
+ if (dst->flags & IR3_REG_RELATIV) {
+ for (i = 0; i < arr->length; i++) {
+ unsigned name = arr->base + i;
+ def(name, instr);
+ }
+ } else {
+ unsigned name = arr->base + dst->array.offset;
+ def(name, instr);
+ }
+
+ } else if (id->defn == instr) {
+ unsigned name = ra_name(ctx, id);
+
+ /* since we are in SSA at this point: */
+ debug_assert(!BITSET_TEST(bd->use, name));
+
+ def(name, id->defn);
+
+ if (is_high(id->defn)) {
+ ra_set_node_class(ctx->g, name,
+ ctx->set->high_classes[id->cls - HIGH_OFFSET]);
+ } else if (is_half(id->defn)) {
+ ra_set_node_class(ctx->g, name,
+ ctx->set->half_classes[id->cls - HALF_OFFSET]);
+ } else {
+ ra_set_node_class(ctx->g, name,
+ ctx->set->classes[id->cls]);
+ }
+ }
+ }
+
+ foreach_src(reg, instr) {
+ if (reg->flags & IR3_REG_ARRAY) {
+ struct ir3_array *arr =
+ ir3_lookup_array(ctx->ir, reg->array.id);
+ arr->start_ip = MIN2(arr->start_ip, instr->ip);
+ arr->end_ip = MAX2(arr->end_ip, instr->ip);
+
+ /* indirect read is treated like a read fromall array
+ * elements, since we don't know which one is actually
+ * read:
+ */
+ if (reg->flags & IR3_REG_RELATIV) {
+ unsigned i;
+ for (i = 0; i < arr->length; i++) {
+ unsigned name = arr->base + i;
+ use(name, instr);
+ }
+ } else {
+ unsigned name = arr->base + reg->array.offset;
+ use(name, instr);
+ /* NOTE: arrays are not SSA so unconditionally
+ * set use bit:
+ */
+ BITSET_SET(bd->use, name);
+ debug_assert(reg->array.offset < arr->length);
+ }
+ } else if ((src = ssa(reg)) && writes_gpr(src)) {
+ unsigned name = ra_name(ctx, &ctx->instrd[src->ip]);
+ use(name, instr);
+ }
+ }
+ }
+}
+
+static bool
+ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
+{
+ unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
+ bool progress = false;
+
+ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
+ struct ir3_ra_block_data *bd = block->data;
+
+ /* update livein: */
+ for (unsigned i = 0; i < bitset_words; i++) {
+ BITSET_WORD new_livein =
+ (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
+
+ if (new_livein & ~bd->livein[i]) {
+ bd->livein[i] |= new_livein;
+ progress = true;
+ }
+ }
+
+ /* update liveout: */
+ for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
+ struct ir3_block *succ = block->successors[j];
+ struct ir3_ra_block_data *succ_bd;
+
+ if (!succ)
+ continue;
+
+ succ_bd = succ->data;
+
+ for (unsigned i = 0; i < bitset_words; i++) {
+ BITSET_WORD new_liveout =
+ (succ_bd->livein[i] & ~bd->liveout[i]);
+
+ if (new_liveout) {
+ bd->liveout[i] |= new_liveout;
+ progress = true;
+ }
+ }
+ }
+ }
+
+ return progress;
+}
+
+static void
+print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
+{
+ bool first = true;
+ debug_printf(" %s:", name);
+ for (unsigned i = 0; i < cnt; i++) {
+ if (BITSET_TEST(bs, i)) {
+ if (!first)
+ debug_printf(",");
+ debug_printf(" %04u", i);
+ first = false;
+ }
+ }
+ debug_printf("\n");
+}
+
+static void
+ra_add_interference(struct ir3_ra_ctx *ctx)
+{
+ struct ir3 *ir = ctx->ir;
+
+ /* initialize array live ranges: */
+ list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
+ arr->start_ip = ~0;
+ arr->end_ip = 0;
+ }
+
+ /* compute live ranges (use/def) on a block level, also updating
+ * block's def/use bitmasks (used below to calculate per-block
+ * livein/liveout):
+ */
+ list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
+ ra_block_compute_live_ranges(ctx, block);
+ }
+
+ /* update per-block livein/liveout: */
+ while (ra_compute_livein_liveout(ctx)) {}
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ debug_printf("AFTER LIVEIN/OUT:\n");
+ ir3_print(ir);
+ list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
+ struct ir3_ra_block_data *bd = block->data;
+ debug_printf("block%u:\n", block_id(block));
+ print_bitset(" def", bd->def, ctx->alloc_count);
+ print_bitset(" use", bd->use, ctx->alloc_count);
+ print_bitset(" l/i", bd->livein, ctx->alloc_count);
+ print_bitset(" l/o", bd->liveout, ctx->alloc_count);
+ }
+ list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
+ debug_printf("array%u:\n", arr->id);
+ debug_printf(" length: %u\n", arr->length);
+ debug_printf(" start_ip: %u\n", arr->start_ip);
+ debug_printf(" end_ip: %u\n", arr->end_ip);
+ }
+ }
+
+ /* extend start/end ranges based on livein/liveout info from cfg: */
+ list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
+ struct ir3_ra_block_data *bd = block->data;
+
+ for (unsigned i = 0; i < ctx->alloc_count; i++) {
+ if (BITSET_TEST(bd->livein, i)) {
+ ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
+ ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
+ }
+
+ if (BITSET_TEST(bd->liveout, i)) {
+ ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
+ ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
+ }
+ }
+
+ list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
+ for (unsigned i = 0; i < arr->length; i++) {
+ if (BITSET_TEST(bd->livein, i + arr->base)) {
+ arr->start_ip = MIN2(arr->start_ip, block->start_ip);
+ }
+ if (BITSET_TEST(bd->livein, i + arr->base)) {
+ arr->end_ip = MAX2(arr->end_ip, block->end_ip);
+ }
+ }
+ }
+ }
+
+ /* need to fix things up to keep outputs live: */
+ for (unsigned i = 0; i < ir->noutputs; i++) {
+ struct ir3_instruction *instr = ir->outputs[i];
+ unsigned name = ra_name(ctx, &ctx->instrd[instr->ip]);
+ ctx->use[name] = ctx->instr_cnt;
+ }
+
+ for (unsigned i = 0; i < ctx->alloc_count; i++) {
+ for (unsigned j = 0; j < ctx->alloc_count; j++) {
+ if (intersects(ctx->def[i], ctx->use[i],
+ ctx->def[j], ctx->use[j])) {
+ ra_add_node_interference(ctx->g, i, j);
+ }
+ }
+ }
+}
+
+/* some instructions need fix-up if dst register is half precision: */
+static void fixup_half_instr_dst(struct ir3_instruction *instr)
+{
+ switch (opc_cat(instr->opc)) {
+ case 1: /* move instructions */
+ instr->cat1.dst_type = half_type(instr->cat1.dst_type);
+ break;
+ case 3:
+ switch (instr->opc) {
+ case OPC_MAD_F32:
+ instr->opc = OPC_MAD_F16;
+ break;
+ case OPC_SEL_B32:
+ instr->opc = OPC_SEL_B16;
+ break;
+ case OPC_SEL_S32:
+ instr->opc = OPC_SEL_S16;
+ break;
+ case OPC_SEL_F32:
+ instr->opc = OPC_SEL_F16;
+ break;
+ case OPC_SAD_S32:
+ instr->opc = OPC_SAD_S16;
+ break;
+ /* instructions may already be fixed up: */
+ case OPC_MAD_F16:
+ case OPC_SEL_B16:
+ case OPC_SEL_S16:
+ case OPC_SEL_F16:
+ case OPC_SAD_S16:
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ break;
+ case 5:
+ instr->cat5.type = half_type(instr->cat5.type);
+ break;
+ }
+}
+/* some instructions need fix-up if src register is half precision: */
+static void fixup_half_instr_src(struct ir3_instruction *instr)
+{
+ switch (instr->opc) {
+ case OPC_MOV:
+ instr->cat1.src_type = half_type(instr->cat1.src_type);
+ break;
+ default:
+ break;
+ }
+}
+
+/* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
+ * array access(es) which do not have any previous access to depend
+ * on from scheduling point of view
+ */
+static void
+reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
+ struct ir3_instruction *instr)
+{
+ struct ir3_ra_instr_data *id;
+
+ if (reg->flags & IR3_REG_ARRAY) {
+ struct ir3_array *arr =
+ ir3_lookup_array(ctx->ir, reg->array.id);
+ unsigned name = arr->base + reg->array.offset;
+ unsigned r = ra_get_node_reg(ctx->g, name);
+ unsigned num = ctx->set->ra_reg_to_gpr[r];
+
+ if (reg->flags & IR3_REG_RELATIV) {
+ reg->array.offset = num;
+ } else {
+ reg->num = num;
+ reg->flags &= ~IR3_REG_SSA;
+ }
+
+ reg->flags &= ~IR3_REG_ARRAY;
+ } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
+ unsigned name = ra_name(ctx, id);
+ unsigned r = ra_get_node_reg(ctx->g, name);
+ unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
+
+ debug_assert(!(reg->flags & IR3_REG_RELATIV));
+
+ if (is_high(id->defn))
+ num += FIRST_HIGH_REG;
+
+ reg->num = num;
+ reg->flags &= ~IR3_REG_SSA;
+
+ if (is_half(id->defn))
+ reg->flags |= IR3_REG_HALF;
+ }
+}
+
+static void
+ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
+{
+ list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+ struct ir3_register *reg;
+
+ if (instr->regs_count == 0)
+ continue;
+
+ if (writes_gpr(instr)) {
+ reg_assign(ctx, instr->regs[0], instr);
+ if (instr->regs[0]->flags & IR3_REG_HALF)
+ fixup_half_instr_dst(instr);
+ }
+
+ foreach_src_n(reg, n, instr) {
+ struct ir3_instruction *src = reg->instr;
+ /* Note: reg->instr could be null for IR3_REG_ARRAY */
+ if (!(src || (reg->flags & IR3_REG_ARRAY)))
+ continue;
+ reg_assign(ctx, instr->regs[n+1], src);
+ if (instr->regs[n+1]->flags & IR3_REG_HALF)
+ fixup_half_instr_src(instr);
+ }
+ }
+}
+
+static int
+ra_alloc(struct ir3_ra_ctx *ctx)
+{
+ /* pre-assign array elements:
+ */
+ list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
+ unsigned base = 0;
+
+ if (arr->end_ip == 0)
+ continue;
+
+ /* figure out what else we conflict with which has already
+ * been assigned:
+ */
+retry:
+ list_for_each_entry (struct ir3_array, arr2, &ctx->ir->array_list, node) {
+ if (arr2 == arr)
+ break;
+ if (arr2->end_ip == 0)
+ continue;
+ /* if it intersects with liverange AND register range.. */
+ if (intersects(arr->start_ip, arr->end_ip,
+ arr2->start_ip, arr2->end_ip) &&
+ intersects(base, base + arr->length,
+ arr2->reg, arr2->reg + arr2->length)) {
+ base = MAX2(base, arr2->reg + arr2->length);
+ goto retry;
+ }
+ }
+
+ arr->reg = base;
+
+ for (unsigned i = 0; i < arr->length; i++) {
+ unsigned name, reg;
+
+ name = arr->base + i;
+ reg = ctx->set->gpr_to_ra_reg[0][base++];
+
+ ra_set_node_reg(ctx->g, name, reg);
+ }
+ }
+
+ if (!ra_allocate(ctx->g))
+ return -1;
+
+ list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
+ ra_block_alloc(ctx, block);
+ }
+
+ return 0;
+}
+
+int ir3_ra(struct ir3 *ir, gl_shader_stage type,
+ bool frag_coord, bool frag_face)
+{
+ struct ir3_ra_ctx ctx = {
+ .ir = ir,
+ .type = type,
+ .frag_face = frag_face,
+ .set = ir->compiler->set,
+ };
+ int ret;
+
+ ra_init(&ctx);
+ ra_add_interference(&ctx);
+ ret = ra_alloc(&ctx);
+ ra_destroy(&ctx);
+
+ return ret;
+}