summaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_from_ssa.c
diff options
context:
space:
mode:
authorEmil Velikov <[email protected]>2016-01-18 12:54:03 +0200
committerEmil Velikov <[email protected]>2016-01-26 16:08:30 +0000
commita39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (patch)
tree823e881d54c149cde315bb140e46a8b781cdccb7 /src/compiler/nir/nir_from_ssa.c
parentf694da80c75cb2a51d0af3b24d68aae9c53d61aa (diff)
nir: move to compiler/
Signed-off-by: Emil Velikov <[email protected]> Acked-by: Matt Turner <[email protected]> Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/compiler/nir/nir_from_ssa.c')
-rw-r--r--src/compiler/nir/nir_from_ssa.c805
1 files changed, 805 insertions, 0 deletions
diff --git a/src/compiler/nir/nir_from_ssa.c b/src/compiler/nir/nir_from_ssa.c
new file mode 100644
index 00000000000..8bc9f24e406
--- /dev/null
+++ b/src/compiler/nir/nir_from_ssa.c
@@ -0,0 +1,805 @@
+/*
+ * Copyright © 2014 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Jason Ekstrand ([email protected])
+ *
+ */
+
+#include "nir.h"
+#include "nir_vla.h"
+
+/*
+ * This file implements an out-of-SSA pass as described in "Revisiting
+ * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
+ * Boissinot et. al.
+ */
+
+struct from_ssa_state {
+ void *mem_ctx;
+ void *dead_ctx;
+ bool phi_webs_only;
+ struct hash_table *merge_node_table;
+ nir_instr *instr;
+ nir_function_impl *impl;
+};
+
+/* Returns true if a dominates b */
+static bool
+ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
+{
+ if (a->live_index == 0) {
+ /* SSA undefs always dominate */
+ return true;
+ } else if (b->live_index < a->live_index) {
+ return false;
+ } else if (a->parent_instr->block == b->parent_instr->block) {
+ return a->live_index <= b->live_index;
+ } else {
+ return nir_block_dominates(a->parent_instr->block,
+ b->parent_instr->block);
+ }
+}
+
+
+/* The following data structure, which I have named merge_set is a way of
+ * representing a set registers of non-interfering registers. This is
+ * based on the concept of a "dominence forest" presented in "Fast Copy
+ * Coalescing and Live-Range Identification" by Budimlic et. al. but the
+ * implementation concept is taken from "Revisiting Out-of-SSA Translation
+ * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
+ *
+ * Each SSA definition is associated with a merge_node and the association
+ * is represented by a combination of a hash table and the "def" parameter
+ * in the merge_node structure. The merge_set stores a linked list of
+ * merge_node's in dominence order of the ssa definitions. (Since the
+ * liveness analysis pass indexes the SSA values in dominence order for us,
+ * this is an easy thing to keep up.) It is assumed that no pair of the
+ * nodes in a given set interfere. Merging two sets or checking for
+ * interference can be done in a single linear-time merge-sort walk of the
+ * two lists of nodes.
+ */
+struct merge_set;
+
+typedef struct {
+ struct exec_node node;
+ struct merge_set *set;
+ nir_ssa_def *def;
+} merge_node;
+
+typedef struct merge_set {
+ struct exec_list nodes;
+ unsigned size;
+ nir_register *reg;
+} merge_set;
+
+#if 0
+static void
+merge_set_dump(merge_set *set, FILE *fp)
+{
+ nir_ssa_def *dom[set->size];
+ int dom_idx = -1;
+
+ foreach_list_typed(merge_node, node, node, &set->nodes) {
+ while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
+ dom_idx--;
+
+ for (int i = 0; i <= dom_idx; i++)
+ fprintf(fp, " ");
+
+ if (node->def->name)
+ fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
+ else
+ fprintf(fp, "ssa_%d\n", node->def->index);
+
+ dom[++dom_idx] = node->def;
+ }
+}
+#endif
+
+static merge_node *
+get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
+{
+ struct hash_entry *entry =
+ _mesa_hash_table_search(state->merge_node_table, def);
+ if (entry)
+ return entry->data;
+
+ merge_set *set = ralloc(state->dead_ctx, merge_set);
+ exec_list_make_empty(&set->nodes);
+ set->size = 1;
+ set->reg = NULL;
+
+ merge_node *node = ralloc(state->dead_ctx, merge_node);
+ node->set = set;
+ node->def = def;
+ exec_list_push_head(&set->nodes, &node->node);
+
+ _mesa_hash_table_insert(state->merge_node_table, def, node);
+
+ return node;
+}
+
+static bool
+merge_nodes_interfere(merge_node *a, merge_node *b)
+{
+ return nir_ssa_defs_interfere(a->def, b->def);
+}
+
+/* Merges b into a */
+static merge_set *
+merge_merge_sets(merge_set *a, merge_set *b)
+{
+ struct exec_node *an = exec_list_get_head(&a->nodes);
+ struct exec_node *bn = exec_list_get_head(&b->nodes);
+ while (!exec_node_is_tail_sentinel(bn)) {
+ merge_node *a_node = exec_node_data(merge_node, an, node);
+ merge_node *b_node = exec_node_data(merge_node, bn, node);
+
+ if (exec_node_is_tail_sentinel(an) ||
+ a_node->def->live_index > b_node->def->live_index) {
+ struct exec_node *next = bn->next;
+ exec_node_remove(bn);
+ exec_node_insert_node_before(an, bn);
+ exec_node_data(merge_node, bn, node)->set = a;
+ bn = next;
+ } else {
+ an = an->next;
+ }
+ }
+
+ a->size += b->size;
+ b->size = 0;
+
+ return a;
+}
+
+/* Checks for any interference between two merge sets
+ *
+ * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
+ * Translation for Correctness, Code Quality, and Efficiency" by
+ * Boissinot et. al.
+ */
+static bool
+merge_sets_interfere(merge_set *a, merge_set *b)
+{
+ NIR_VLA(merge_node *, dom, a->size + b->size);
+ int dom_idx = -1;
+
+ struct exec_node *an = exec_list_get_head(&a->nodes);
+ struct exec_node *bn = exec_list_get_head(&b->nodes);
+ while (!exec_node_is_tail_sentinel(an) ||
+ !exec_node_is_tail_sentinel(bn)) {
+
+ merge_node *current;
+ if (exec_node_is_tail_sentinel(an)) {
+ current = exec_node_data(merge_node, bn, node);
+ bn = bn->next;
+ } else if (exec_node_is_tail_sentinel(bn)) {
+ current = exec_node_data(merge_node, an, node);
+ an = an->next;
+ } else {
+ merge_node *a_node = exec_node_data(merge_node, an, node);
+ merge_node *b_node = exec_node_data(merge_node, bn, node);
+
+ if (a_node->def->live_index <= b_node->def->live_index) {
+ current = a_node;
+ an = an->next;
+ } else {
+ current = b_node;
+ bn = bn->next;
+ }
+ }
+
+ while (dom_idx >= 0 &&
+ !ssa_def_dominates(dom[dom_idx]->def, current->def))
+ dom_idx--;
+
+ if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
+ return true;
+
+ dom[++dom_idx] = current;
+ }
+
+ return false;
+}
+
+static bool
+add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ bool need_end_copy = false;
+ if (block->successors[0]) {
+ nir_instr *instr = nir_block_first_instr(block->successors[0]);
+ if (instr && instr->type == nir_instr_type_phi)
+ need_end_copy = true;
+ }
+
+ if (block->successors[1]) {
+ nir_instr *instr = nir_block_first_instr(block->successors[1]);
+ if (instr && instr->type == nir_instr_type_phi)
+ need_end_copy = true;
+ }
+
+ if (need_end_copy) {
+ /* If one of our successors has at least one phi node, we need to
+ * create a parallel copy at the end of the block but before the jump
+ * (if there is one).
+ */
+ nir_parallel_copy_instr *pcopy =
+ nir_parallel_copy_instr_create(state->dead_ctx);
+
+ nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
+ }
+
+ return true;
+}
+
+static nir_parallel_copy_instr *
+get_parallel_copy_at_end_of_block(nir_block *block)
+{
+ nir_instr *last_instr = nir_block_last_instr(block);
+ if (last_instr == NULL)
+ return NULL;
+
+ /* The last instruction may be a jump in which case the parallel copy is
+ * right before it.
+ */
+ if (last_instr->type == nir_instr_type_jump)
+ last_instr = nir_instr_prev(last_instr);
+
+ if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
+ return nir_instr_as_parallel_copy(last_instr);
+ else
+ return NULL;
+}
+
+/** Isolate phi nodes with parallel copies
+ *
+ * In order to solve the dependency problems with the sources and
+ * destinations of phi nodes, we first isolate them by adding parallel
+ * copies to the beginnings and ends of basic blocks. For every block with
+ * phi nodes, we add a parallel copy immediately following the last phi
+ * node that copies the destinations of all of the phi nodes to new SSA
+ * values. We also add a parallel copy to the end of every block that has
+ * a successor with phi nodes that, for each phi node in each successor,
+ * copies the corresponding sorce of the phi node and adjust the phi to
+ * used the destination of the parallel copy.
+ *
+ * In SSA form, each value has exactly one definition. What this does is
+ * ensure that each value used in a phi also has exactly one use. The
+ * destinations of phis are only used by the parallel copy immediately
+ * following the phi nodes and. Thanks to the parallel copy at the end of
+ * the predecessor block, the sources of phi nodes are are the only use of
+ * that value. This allows us to immediately assign all the sources and
+ * destinations of any given phi node to the same register without worrying
+ * about interference at all. We do coalescing to get rid of the parallel
+ * copies where possible.
+ *
+ * Before this pass can be run, we have to iterate over the blocks with
+ * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
+ * the ends of blocks exist. We can create the ones at the beginnings as
+ * we go, but the ones at the ends of blocks need to be created ahead of
+ * time because of potential back-edges in the CFG.
+ */
+static bool
+isolate_phi_nodes_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ nir_instr *last_phi_instr = NULL;
+ nir_foreach_instr(block, instr) {
+ /* Phi nodes only ever come at the start of a block */
+ if (instr->type != nir_instr_type_phi)
+ break;
+
+ last_phi_instr = instr;
+ }
+
+ /* If we don't have any phi's, then there's nothing for us to do. */
+ if (last_phi_instr == NULL)
+ return true;
+
+ /* If we have phi nodes, we need to create a parallel copy at the
+ * start of this block but after the phi nodes.
+ */
+ nir_parallel_copy_instr *block_pcopy =
+ nir_parallel_copy_instr_create(state->dead_ctx);
+ nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
+
+ nir_foreach_instr(block, instr) {
+ /* Phi nodes only ever come at the start of a block */
+ if (instr->type != nir_instr_type_phi)
+ break;
+
+ nir_phi_instr *phi = nir_instr_as_phi(instr);
+ assert(phi->dest.is_ssa);
+ nir_foreach_phi_src(phi, src) {
+ nir_parallel_copy_instr *pcopy =
+ get_parallel_copy_at_end_of_block(src->pred);
+ assert(pcopy);
+
+ nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
+ nir_parallel_copy_entry);
+ nir_ssa_dest_init(&pcopy->instr, &entry->dest,
+ phi->dest.ssa.num_components, src->src.ssa->name);
+ exec_list_push_tail(&pcopy->entries, &entry->node);
+
+ assert(src->src.is_ssa);
+ nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
+
+ nir_instr_rewrite_src(&phi->instr, &src->src,
+ nir_src_for_ssa(&entry->dest.ssa));
+ }
+
+ nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
+ nir_parallel_copy_entry);
+ nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
+ phi->dest.ssa.num_components, phi->dest.ssa.name);
+ exec_list_push_tail(&block_pcopy->entries, &entry->node);
+
+ nir_ssa_def_rewrite_uses(&phi->dest.ssa,
+ nir_src_for_ssa(&entry->dest.ssa));
+
+ nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
+ nir_src_for_ssa(&phi->dest.ssa));
+ }
+
+ return true;
+}
+
+static bool
+coalesce_phi_nodes_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ nir_foreach_instr(block, instr) {
+ /* Phi nodes only ever come at the start of a block */
+ if (instr->type != nir_instr_type_phi)
+ break;
+
+ nir_phi_instr *phi = nir_instr_as_phi(instr);
+
+ assert(phi->dest.is_ssa);
+ merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
+
+ nir_foreach_phi_src(phi, src) {
+ assert(src->src.is_ssa);
+ merge_node *src_node = get_merge_node(src->src.ssa, state);
+ if (src_node->set != dest_node->set)
+ merge_merge_sets(dest_node->set, src_node->set);
+ }
+ }
+
+ return true;
+}
+
+static void
+aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
+ struct from_ssa_state *state)
+{
+ nir_foreach_parallel_copy_entry(pcopy, entry) {
+ if (!entry->src.is_ssa)
+ continue;
+
+ /* Since load_const instructions are SSA only, we can't replace their
+ * destinations with registers and, therefore, can't coalesce them.
+ */
+ if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
+ continue;
+
+ /* Don't try and coalesce these */
+ if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
+ continue;
+
+ merge_node *src_node = get_merge_node(entry->src.ssa, state);
+ merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
+
+ if (src_node->set == dest_node->set)
+ continue;
+
+ if (!merge_sets_interfere(src_node->set, dest_node->set))
+ merge_merge_sets(src_node->set, dest_node->set);
+ }
+}
+
+static bool
+aggressive_coalesce_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ nir_parallel_copy_instr *start_pcopy = NULL;
+ nir_foreach_instr(block, instr) {
+ /* Phi nodes only ever come at the start of a block */
+ if (instr->type != nir_instr_type_phi) {
+ if (instr->type != nir_instr_type_parallel_copy)
+ break; /* The parallel copy must be right after the phis */
+
+ start_pcopy = nir_instr_as_parallel_copy(instr);
+
+ aggressive_coalesce_parallel_copy(start_pcopy, state);
+
+ break;
+ }
+ }
+
+ nir_parallel_copy_instr *end_pcopy =
+ get_parallel_copy_at_end_of_block(block);
+
+ if (end_pcopy && end_pcopy != start_pcopy)
+ aggressive_coalesce_parallel_copy(end_pcopy, state);
+
+ return true;
+}
+
+static bool
+rewrite_ssa_def(nir_ssa_def *def, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+ nir_register *reg;
+
+ struct hash_entry *entry =
+ _mesa_hash_table_search(state->merge_node_table, def);
+ if (entry) {
+ /* In this case, we're part of a phi web. Use the web's register. */
+ merge_node *node = (merge_node *)entry->data;
+
+ /* If it doesn't have a register yet, create one. Note that all of
+ * the things in the merge set should be the same so it doesn't
+ * matter which node's definition we use.
+ */
+ if (node->set->reg == NULL) {
+ node->set->reg = nir_local_reg_create(state->impl);
+ node->set->reg->name = def->name;
+ node->set->reg->num_components = def->num_components;
+ node->set->reg->num_array_elems = 0;
+ }
+
+ reg = node->set->reg;
+ } else {
+ if (state->phi_webs_only)
+ return true;
+
+ /* We leave load_const SSA values alone. They act as immediates to
+ * the backend. If it got coalesced into a phi, that's ok.
+ */
+ if (def->parent_instr->type == nir_instr_type_load_const)
+ return true;
+
+ reg = nir_local_reg_create(state->impl);
+ reg->name = def->name;
+ reg->num_components = def->num_components;
+ reg->num_array_elems = 0;
+ }
+
+ nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
+ assert(list_empty(&def->uses) && list_empty(&def->if_uses));
+
+ if (def->parent_instr->type == nir_instr_type_ssa_undef) {
+ /* If it's an ssa_undef instruction, remove it since we know we just got
+ * rid of all its uses.
+ */
+ nir_instr *parent_instr = def->parent_instr;
+ nir_instr_remove(parent_instr);
+ ralloc_steal(state->dead_ctx, parent_instr);
+ return true;
+ }
+
+ assert(def->parent_instr->type != nir_instr_type_load_const);
+
+ /* At this point we know a priori that this SSA def is part of a
+ * nir_dest. We can use exec_node_data to get the dest pointer.
+ */
+ nir_dest *dest = exec_node_data(nir_dest, def, ssa);
+
+ nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
+
+ return true;
+}
+
+/* Resolves ssa definitions to registers. While we're at it, we also
+ * remove phi nodes.
+ */
+static bool
+resolve_registers_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ nir_foreach_instr_safe(block, instr) {
+ state->instr = instr;
+ nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
+
+ if (instr->type == nir_instr_type_phi) {
+ nir_instr_remove(instr);
+ ralloc_steal(state->dead_ctx, instr);
+ }
+ }
+ state->instr = NULL;
+
+ return true;
+}
+
+static void
+emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
+ void *mem_ctx)
+{
+ assert(!dest_src.is_ssa &&
+ dest_src.reg.indirect == NULL &&
+ dest_src.reg.base_offset == 0);
+
+ if (src.is_ssa)
+ assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
+ else
+ assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
+
+ nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
+ nir_src_copy(&mov->src[0].src, &src, mov);
+ mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
+ mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
+
+ nir_instr_insert_before(&pcopy->instr, &mov->instr);
+}
+
+/* Resolves a single parallel copy operation into a sequence of mov's
+ *
+ * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
+ * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
+ * However, I never got the algorithm to work as written, so this version
+ * is slightly modified.
+ *
+ * The algorithm works by playing this little shell game with the values.
+ * We start by recording where every source value is and which source value
+ * each destination value should receive. We then grab any copy whose
+ * destination is "empty", i.e. not used as a source, and do the following:
+ * - Find where its source value currently lives
+ * - Emit the move instruction
+ * - Set the location of the source value to the destination
+ * - Mark the location containing the source value
+ * - Mark the destination as no longer needing to be copied
+ *
+ * When we run out of "empty" destinations, we have a cycle and so we
+ * create a temporary register, copy to that register, and mark the value
+ * we copied as living in that temporary. Now, the cycle is broken, so we
+ * can continue with the above steps.
+ */
+static void
+resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
+ struct from_ssa_state *state)
+{
+ unsigned num_copies = 0;
+ nir_foreach_parallel_copy_entry(pcopy, entry) {
+ /* Sources may be SSA */
+ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
+ continue;
+
+ num_copies++;
+ }
+
+ if (num_copies == 0) {
+ /* Hooray, we don't need any copies! */
+ nir_instr_remove(&pcopy->instr);
+ return;
+ }
+
+ /* The register/source corresponding to the given index */
+ NIR_VLA_ZERO(nir_src, values, num_copies * 2);
+
+ /* The current location of a given piece of data. We will use -1 for "null" */
+ NIR_VLA_FILL(int, loc, num_copies * 2, -1);
+
+ /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
+ NIR_VLA_FILL(int, pred, num_copies * 2, -1);
+
+ /* The destinations we have yet to properly fill */
+ NIR_VLA(int, to_do, num_copies * 2);
+ int to_do_idx = -1;
+
+ /* Now we set everything up:
+ * - All values get assigned a temporary index
+ * - Current locations are set from sources
+ * - Predicessors are recorded from sources and destinations
+ */
+ int num_vals = 0;
+ nir_foreach_parallel_copy_entry(pcopy, entry) {
+ /* Sources may be SSA */
+ if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
+ continue;
+
+ int src_idx = -1;
+ for (int i = 0; i < num_vals; ++i) {
+ if (nir_srcs_equal(values[i], entry->src))
+ src_idx = i;
+ }
+ if (src_idx < 0) {
+ src_idx = num_vals++;
+ values[src_idx] = entry->src;
+ }
+
+ nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
+
+ int dest_idx = -1;
+ for (int i = 0; i < num_vals; ++i) {
+ if (nir_srcs_equal(values[i], dest_src)) {
+ /* Each destination of a parallel copy instruction should be
+ * unique. A destination may get used as a source, so we still
+ * have to walk the list. However, the predecessor should not,
+ * at this point, be set yet, so we should have -1 here.
+ */
+ assert(pred[i] == -1);
+ dest_idx = i;
+ }
+ }
+ if (dest_idx < 0) {
+ dest_idx = num_vals++;
+ values[dest_idx] = dest_src;
+ }
+
+ loc[src_idx] = src_idx;
+ pred[dest_idx] = src_idx;
+
+ to_do[++to_do_idx] = dest_idx;
+ }
+
+ /* Currently empty destinations we can go ahead and fill */
+ NIR_VLA(int, ready, num_copies * 2);
+ int ready_idx = -1;
+
+ /* Mark the ones that are ready for copying. We know an index is a
+ * destination if it has a predecessor and it's ready for copying if
+ * it's not marked as containing data.
+ */
+ for (int i = 0; i < num_vals; i++) {
+ if (pred[i] != -1 && loc[i] == -1)
+ ready[++ready_idx] = i;
+ }
+
+ while (to_do_idx >= 0) {
+ while (ready_idx >= 0) {
+ int b = ready[ready_idx--];
+ int a = pred[b];
+ emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
+
+ /* If any other copies want a they can find it at b */
+ loc[a] = b;
+
+ /* b has been filled, mark it as not needing to be copied */
+ pred[b] = -1;
+
+ /* If a needs to be filled, it's ready for copying now */
+ if (pred[a] != -1)
+ ready[++ready_idx] = a;
+ }
+ int b = to_do[to_do_idx--];
+ if (pred[b] == -1)
+ continue;
+
+ /* If we got here, then we don't have any more trivial copies that we
+ * can do. We have to break a cycle, so we create a new temporary
+ * register for that purpose. Normally, if going out of SSA after
+ * register allocation, you would want to avoid creating temporary
+ * registers. However, we are going out of SSA before register
+ * allocation, so we would rather not create extra register
+ * dependencies for the backend to deal with. If it wants, the
+ * backend can coalesce the (possibly multiple) temporaries.
+ */
+ assert(num_vals < num_copies * 2);
+ nir_register *reg = nir_local_reg_create(state->impl);
+ reg->name = "copy_temp";
+ reg->num_array_elems = 0;
+ if (values[b].is_ssa)
+ reg->num_components = values[b].ssa->num_components;
+ else
+ reg->num_components = values[b].reg.reg->num_components;
+ values[num_vals].is_ssa = false;
+ values[num_vals].reg.reg = reg;
+
+ emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
+ loc[b] = num_vals;
+ ready[++ready_idx] = b;
+ num_vals++;
+ }
+
+ nir_instr_remove(&pcopy->instr);
+}
+
+/* Resolves the parallel copies in a block. Each block can have at most
+ * two: One at the beginning, right after all the phi noces, and one at
+ * the end (or right before the final jump if it exists).
+ */
+static bool
+resolve_parallel_copies_block(nir_block *block, void *void_state)
+{
+ struct from_ssa_state *state = void_state;
+
+ /* At this point, we have removed all of the phi nodes. If a parallel
+ * copy existed right after the phi nodes in this block, it is now the
+ * first instruction.
+ */
+ nir_instr *first_instr = nir_block_first_instr(block);
+ if (first_instr == NULL)
+ return true; /* Empty, nothing to do. */
+
+ if (first_instr->type == nir_instr_type_parallel_copy) {
+ nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
+
+ resolve_parallel_copy(pcopy, state);
+ }
+
+ /* It's possible that the above code already cleaned up the end parallel
+ * copy. However, doing so removed it form the instructions list so we
+ * won't find it here. Therefore, it's safe to go ahead and just look
+ * for one and clean it up if it exists.
+ */
+ nir_parallel_copy_instr *end_pcopy =
+ get_parallel_copy_at_end_of_block(block);
+ if (end_pcopy)
+ resolve_parallel_copy(end_pcopy, state);
+
+ return true;
+}
+
+static void
+nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
+{
+ struct from_ssa_state state;
+
+ state.mem_ctx = ralloc_parent(impl);
+ state.dead_ctx = ralloc_context(NULL);
+ state.impl = impl;
+ state.phi_webs_only = phi_webs_only;
+ state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
+ _mesa_key_pointer_equal);
+
+ nir_foreach_block(impl, add_parallel_copy_to_end_of_block, &state);
+ nir_foreach_block(impl, isolate_phi_nodes_block, &state);
+
+ /* Mark metadata as dirty before we ask for liveness analysis */
+ nir_metadata_preserve(impl, nir_metadata_block_index |
+ nir_metadata_dominance);
+
+ nir_metadata_require(impl, nir_metadata_live_ssa_defs |
+ nir_metadata_dominance);
+
+ nir_foreach_block(impl, coalesce_phi_nodes_block, &state);
+ nir_foreach_block(impl, aggressive_coalesce_block, &state);
+
+ nir_foreach_block(impl, resolve_registers_block, &state);
+
+ nir_foreach_block(impl, resolve_parallel_copies_block, &state);
+
+ nir_metadata_preserve(impl, nir_metadata_block_index |
+ nir_metadata_dominance);
+
+ /* Clean up dead instructions and the hash tables */
+ _mesa_hash_table_destroy(state.merge_node_table, NULL);
+ ralloc_free(state.dead_ctx);
+}
+
+void
+nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
+{
+ nir_foreach_function(shader, function) {
+ if (function->impl)
+ nir_convert_from_ssa_impl(function->impl, phi_webs_only);
+ }
+}