diff options
author | Emil Velikov <[email protected]> | 2016-01-18 12:16:48 +0200 |
---|---|---|
committer | Emil Velikov <[email protected]> | 2016-01-26 16:08:33 +0000 |
commit | eb63640c1d38a200a7b1540405051d3ff79d0d8a (patch) | |
tree | da46321a41f309b1d02aeb14d5d5487791c45aeb /src/compiler/glsl/ir_constant_expression.cpp | |
parent | a39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff) |
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]>
Acked-by: Matt Turner <[email protected]>
Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/compiler/glsl/ir_constant_expression.cpp')
-rw-r--r-- | src/compiler/glsl/ir_constant_expression.cpp | 2092 |
1 files changed, 2092 insertions, 0 deletions
diff --git a/src/compiler/glsl/ir_constant_expression.cpp b/src/compiler/glsl/ir_constant_expression.cpp new file mode 100644 index 00000000000..fbbf7794da6 --- /dev/null +++ b/src/compiler/glsl/ir_constant_expression.cpp @@ -0,0 +1,2092 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/** + * \file ir_constant_expression.cpp + * Evaluate and process constant valued expressions + * + * In GLSL, constant valued expressions are used in several places. These + * must be processed and evaluated very early in the compilation process. + * + * * Sizes of arrays + * * Initializers for uniforms + * * Initializers for \c const variables + */ + +#include <math.h> +#include "main/core.h" /* for MAX2, MIN2, CLAMP */ +#include "util/rounding.h" /* for _mesa_roundeven */ +#include "util/half_float.h" +#include "ir.h" +#include "compiler/glsl_types.h" +#include "program/hash_table.h" + +static float +dot_f(ir_constant *op0, ir_constant *op1) +{ + assert(op0->type->is_float() && op1->type->is_float()); + + float result = 0; + for (unsigned c = 0; c < op0->type->components(); c++) + result += op0->value.f[c] * op1->value.f[c]; + + return result; +} + +static double +dot_d(ir_constant *op0, ir_constant *op1) +{ + assert(op0->type->is_double() && op1->type->is_double()); + + double result = 0; + for (unsigned c = 0; c < op0->type->components(); c++) + result += op0->value.d[c] * op1->value.d[c]; + + return result; +} + +/* This method is the only one supported by gcc. Unions in particular + * are iffy, and read-through-converted-pointer is killed by strict + * aliasing. OTOH, the compiler sees through the memcpy, so the + * resulting asm is reasonable. + */ +static float +bitcast_u2f(unsigned int u) +{ + assert(sizeof(float) == sizeof(unsigned int)); + float f; + memcpy(&f, &u, sizeof(f)); + return f; +} + +static unsigned int +bitcast_f2u(float f) +{ + assert(sizeof(float) == sizeof(unsigned int)); + unsigned int u; + memcpy(&u, &f, sizeof(f)); + return u; +} + +/** + * Evaluate one component of a floating-point 4x8 unpacking function. + */ +typedef uint8_t +(*pack_1x8_func_t)(float); + +/** + * Evaluate one component of a floating-point 2x16 unpacking function. + */ +typedef uint16_t +(*pack_1x16_func_t)(float); + +/** + * Evaluate one component of a floating-point 4x8 unpacking function. + */ +typedef float +(*unpack_1x8_func_t)(uint8_t); + +/** + * Evaluate one component of a floating-point 2x16 unpacking function. + */ +typedef float +(*unpack_1x16_func_t)(uint16_t); + +/** + * Evaluate a 2x16 floating-point packing function. + */ +static uint32_t +pack_2x16(pack_1x16_func_t pack_1x16, + float x, float y) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * packSnorm2x16 + * ------------- + * The first component of the vector will be written to the least + * significant bits of the output; the last component will be written to + * the most significant bits. + * + * The specifications for the other packing functions contain similar + * language. + */ + uint32_t u = 0; + u |= ((uint32_t) pack_1x16(x) << 0); + u |= ((uint32_t) pack_1x16(y) << 16); + return u; +} + +/** + * Evaluate a 4x8 floating-point packing function. + */ +static uint32_t +pack_4x8(pack_1x8_func_t pack_1x8, + float x, float y, float z, float w) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * packSnorm4x8 + * ------------ + * The first component of the vector will be written to the least + * significant bits of the output; the last component will be written to + * the most significant bits. + * + * The specifications for the other packing functions contain similar + * language. + */ + uint32_t u = 0; + u |= ((uint32_t) pack_1x8(x) << 0); + u |= ((uint32_t) pack_1x8(y) << 8); + u |= ((uint32_t) pack_1x8(z) << 16); + u |= ((uint32_t) pack_1x8(w) << 24); + return u; +} + +/** + * Evaluate a 2x16 floating-point unpacking function. + */ +static void +unpack_2x16(unpack_1x16_func_t unpack_1x16, + uint32_t u, + float *x, float *y) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * unpackSnorm2x16 + * --------------- + * The first component of the returned vector will be extracted from + * the least significant bits of the input; the last component will be + * extracted from the most significant bits. + * + * The specifications for the other unpacking functions contain similar + * language. + */ + *x = unpack_1x16((uint16_t) (u & 0xffff)); + *y = unpack_1x16((uint16_t) (u >> 16)); +} + +/** + * Evaluate a 4x8 floating-point unpacking function. + */ +static void +unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u, + float *x, float *y, float *z, float *w) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * unpackSnorm4x8 + * -------------- + * The first component of the returned vector will be extracted from + * the least significant bits of the input; the last component will be + * extracted from the most significant bits. + * + * The specifications for the other unpacking functions contain similar + * language. + */ + *x = unpack_1x8((uint8_t) (u & 0xff)); + *y = unpack_1x8((uint8_t) (u >> 8)); + *z = unpack_1x8((uint8_t) (u >> 16)); + *w = unpack_1x8((uint8_t) (u >> 24)); +} + +/** + * Evaluate one component of packSnorm4x8. + */ +static uint8_t +pack_snorm_1x8(float x) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * packSnorm4x8 + * ------------ + * The conversion for component c of v to fixed point is done as + * follows: + * + * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) + */ + return (uint8_t) + _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f); +} + +/** + * Evaluate one component of packSnorm2x16. + */ +static uint16_t +pack_snorm_1x16(float x) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * packSnorm2x16 + * ------------- + * The conversion for component c of v to fixed point is done as + * follows: + * + * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) + */ + return (uint16_t) + _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f); +} + +/** + * Evaluate one component of unpackSnorm4x8. + */ +static float +unpack_snorm_1x8(uint8_t u) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * unpackSnorm4x8 + * -------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackSnorm4x8: clamp(f / 127.0, -1, +1) + */ + return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); +} + +/** + * Evaluate one component of unpackSnorm2x16. + */ +static float +unpack_snorm_1x16(uint16_t u) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * unpackSnorm2x16 + * --------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) + */ + return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); +} + +/** + * Evaluate one component packUnorm4x8. + */ +static uint8_t +pack_unorm_1x8(float x) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * packUnorm4x8 + * ------------ + * The conversion for component c of v to fixed point is done as + * follows: + * + * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) + */ + return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f); +} + +/** + * Evaluate one component packUnorm2x16. + */ +static uint16_t +pack_unorm_1x16(float x) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * packUnorm2x16 + * ------------- + * The conversion for component c of v to fixed point is done as + * follows: + * + * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) + */ + return (uint16_t) (int) + _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f); +} + +/** + * Evaluate one component of unpackUnorm4x8. + */ +static float +unpack_unorm_1x8(uint8_t u) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * unpackUnorm4x8 + * -------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackUnorm4x8: f / 255.0 + */ + return (float) u / 255.0f; +} + +/** + * Evaluate one component of unpackUnorm2x16. + */ +static float +unpack_unorm_1x16(uint16_t u) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * unpackUnorm2x16 + * --------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackUnorm2x16: f / 65535.0 + */ + return (float) u / 65535.0f; +} + +/** + * Evaluate one component of packHalf2x16. + */ +static uint16_t +pack_half_1x16(float x) +{ + return _mesa_float_to_half(x); +} + +/** + * Evaluate one component of unpackHalf2x16. + */ +static float +unpack_half_1x16(uint16_t u) +{ + return _mesa_half_to_float(u); +} + +/** + * Get the constant that is ultimately referenced by an r-value, in a constant + * expression evaluation context. + * + * The offset is used when the reference is to a specific column of a matrix. + */ +static bool +constant_referenced(const ir_dereference *deref, + struct hash_table *variable_context, + ir_constant *&store, int &offset) +{ + store = NULL; + offset = 0; + + if (variable_context == NULL) + return false; + + switch (deref->ir_type) { + case ir_type_dereference_array: { + const ir_dereference_array *const da = + (const ir_dereference_array *) deref; + + ir_constant *const index_c = + da->array_index->constant_expression_value(variable_context); + + if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) + break; + + const int index = index_c->type->base_type == GLSL_TYPE_INT ? + index_c->get_int_component(0) : + index_c->get_uint_component(0); + + ir_constant *substore; + int suboffset; + + const ir_dereference *const deref = da->array->as_dereference(); + if (!deref) + break; + + if (!constant_referenced(deref, variable_context, substore, suboffset)) + break; + + const glsl_type *const vt = da->array->type; + if (vt->is_array()) { + store = substore->get_array_element(index); + offset = 0; + } else if (vt->is_matrix()) { + store = substore; + offset = index * vt->vector_elements; + } else if (vt->is_vector()) { + store = substore; + offset = suboffset + index; + } + + break; + } + + case ir_type_dereference_record: { + const ir_dereference_record *const dr = + (const ir_dereference_record *) deref; + + const ir_dereference *const deref = dr->record->as_dereference(); + if (!deref) + break; + + ir_constant *substore; + int suboffset; + + if (!constant_referenced(deref, variable_context, substore, suboffset)) + break; + + /* Since we're dropping it on the floor... + */ + assert(suboffset == 0); + + store = substore->get_record_field(dr->field); + break; + } + + case ir_type_dereference_variable: { + const ir_dereference_variable *const dv = + (const ir_dereference_variable *) deref; + + store = (ir_constant *) hash_table_find(variable_context, dv->var); + break; + } + + default: + assert(!"Should not get here."); + break; + } + + return store != NULL; +} + + +ir_constant * +ir_rvalue::constant_expression_value(struct hash_table *) +{ + assert(this->type->is_error()); + return NULL; +} + +ir_constant * +ir_expression::constant_expression_value(struct hash_table *variable_context) +{ + if (this->type->is_error()) + return NULL; + + ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, }; + ir_constant_data data; + + memset(&data, 0, sizeof(data)); + + for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { + op[operand] = this->operands[operand]->constant_expression_value(variable_context); + if (!op[operand]) + return NULL; + } + + if (op[1] != NULL) + switch (this->operation) { + case ir_binop_lshift: + case ir_binop_rshift: + case ir_binop_ldexp: + case ir_binop_interpolate_at_offset: + case ir_binop_interpolate_at_sample: + case ir_binop_vector_extract: + case ir_triop_csel: + case ir_triop_bitfield_extract: + break; + + default: + assert(op[0]->type->base_type == op[1]->type->base_type); + break; + } + + bool op0_scalar = op[0]->type->is_scalar(); + bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); + + /* When iterating over a vector or matrix's components, we want to increase + * the loop counter. However, for scalars, we want to stay at 0. + */ + unsigned c0_inc = op0_scalar ? 0 : 1; + unsigned c1_inc = op1_scalar ? 0 : 1; + unsigned components; + if (op1_scalar || !op[1]) { + components = op[0]->type->components(); + } else { + components = op[1]->type->components(); + } + + void *ctx = ralloc_parent(this); + + /* Handle array operations here, rather than below. */ + if (op[0]->type->is_array()) { + assert(op[1] != NULL && op[1]->type->is_array()); + switch (this->operation) { + case ir_binop_all_equal: + return new(ctx) ir_constant(op[0]->has_value(op[1])); + case ir_binop_any_nequal: + return new(ctx) ir_constant(!op[0]->has_value(op[1])); + default: + break; + } + return NULL; + } + + switch (this->operation) { + case ir_unop_bit_not: + switch (op[0]->type->base_type) { + case GLSL_TYPE_INT: + for (unsigned c = 0; c < components; c++) + data.i[c] = ~ op[0]->value.i[c]; + break; + case GLSL_TYPE_UINT: + for (unsigned c = 0; c < components; c++) + data.u[c] = ~ op[0]->value.u[c]; + break; + default: + assert(0); + } + break; + + case ir_unop_logic_not: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) + data.b[c] = !op[0]->value.b[c]; + break; + + case ir_unop_f2i: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.i[c] = (int) op[0]->value.f[c]; + } + break; + case ir_unop_f2u: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.i[c] = (unsigned) op[0]->value.f[c]; + } + break; + case ir_unop_i2f: + assert(op[0]->type->base_type == GLSL_TYPE_INT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = (float) op[0]->value.i[c]; + } + break; + case ir_unop_u2f: + assert(op[0]->type->base_type == GLSL_TYPE_UINT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = (float) op[0]->value.u[c]; + } + break; + case ir_unop_b2f: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; + } + break; + case ir_unop_f2b: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; + } + break; + case ir_unop_b2i: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.u[c] = op[0]->value.b[c] ? 1 : 0; + } + break; + case ir_unop_i2b: + assert(op[0]->type->is_integer()); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.b[c] = op[0]->value.u[c] ? true : false; + } + break; + case ir_unop_u2i: + assert(op[0]->type->base_type == GLSL_TYPE_UINT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.i[c] = op[0]->value.u[c]; + } + break; + case ir_unop_i2u: + assert(op[0]->type->base_type == GLSL_TYPE_INT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.u[c] = op[0]->value.i[c]; + } + break; + case ir_unop_bitcast_i2f: + assert(op[0]->type->base_type == GLSL_TYPE_INT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = bitcast_u2f(op[0]->value.i[c]); + } + break; + case ir_unop_bitcast_f2i: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.i[c] = bitcast_f2u(op[0]->value.f[c]); + } + break; + case ir_unop_bitcast_u2f: + assert(op[0]->type->base_type == GLSL_TYPE_UINT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = bitcast_u2f(op[0]->value.u[c]); + } + break; + case ir_unop_bitcast_f2u: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.u[c] = bitcast_f2u(op[0]->value.f[c]); + } + break; + case ir_unop_d2f: + assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = op[0]->value.d[c]; + } + break; + case ir_unop_f2d: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.d[c] = op[0]->value.f[c]; + } + break; + case ir_unop_d2i: + assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.i[c] = op[0]->value.d[c]; + } + break; + case ir_unop_i2d: + assert(op[0]->type->base_type == GLSL_TYPE_INT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.d[c] = op[0]->value.i[c]; + } + break; + case ir_unop_d2u: + assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.u[c] = op[0]->value.d[c]; + } + break; + case ir_unop_u2d: + assert(op[0]->type->base_type == GLSL_TYPE_UINT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.d[c] = op[0]->value.u[c]; + } + break; + case ir_unop_d2b: + assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.b[c] = op[0]->value.d[c] != 0.0; + } + break; + case ir_unop_trunc: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = trunc(op[0]->value.d[c]); + else + data.f[c] = truncf(op[0]->value.f[c]); + } + break; + + case ir_unop_round_even: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = _mesa_roundeven(op[0]->value.d[c]); + else + data.f[c] = _mesa_roundevenf(op[0]->value.f[c]); + } + break; + + case ir_unop_ceil: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = ceil(op[0]->value.d[c]); + else + data.f[c] = ceilf(op[0]->value.f[c]); + } + break; + + case ir_unop_floor: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = floor(op[0]->value.d[c]); + else + data.f[c] = floorf(op[0]->value.f[c]); + } + break; + + case ir_unop_fract: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (this->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = 0; + break; + case GLSL_TYPE_INT: + data.i[c] = 0; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]); + break; + default: + assert(0); + } + } + break; + + case ir_unop_sin: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = sinf(op[0]->value.f[c]); + } + break; + + case ir_unop_cos: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = cosf(op[0]->value.f[c]); + } + break; + + case ir_unop_neg: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (this->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = -((int) op[0]->value.u[c]); + break; + case GLSL_TYPE_INT: + data.i[c] = -op[0]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = -op[0]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = -op[0]->value.d[c]; + break; + default: + assert(0); + } + } + break; + + case ir_unop_abs: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (this->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c]; + if (data.i[c] < 0) + data.i[c] = -data.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = fabs(op[0]->value.f[c]); + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = fabs(op[0]->value.d[c]); + break; + default: + assert(0); + } + } + break; + + case ir_unop_sign: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (this->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.i[c] > 0; + break; + case GLSL_TYPE_INT: + data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); + break; + case GLSL_TYPE_FLOAT: + data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0)); + break; + default: + assert(0); + } + } + break; + + case ir_unop_rcp: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (this->type->base_type) { + case GLSL_TYPE_UINT: + if (op[0]->value.u[c] != 0.0) + data.u[c] = 1 / op[0]->value.u[c]; + break; + case GLSL_TYPE_INT: + if (op[0]->value.i[c] != 0.0) + data.i[c] = 1 / op[0]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + if (op[0]->value.f[c] != 0.0) + data.f[c] = 1.0F / op[0]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + if (op[0]->value.d[c] != 0.0) + data.d[c] = 1.0 / op[0]->value.d[c]; + break; + default: + assert(0); + } + } + break; + + case ir_unop_rsq: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = 1.0 / sqrt(op[0]->value.d[c]); + else + data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]); + } + break; + + case ir_unop_sqrt: + for (unsigned c = 0; c < op[0]->type->components(); c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = sqrt(op[0]->value.d[c]); + else + data.f[c] = sqrtf(op[0]->value.f[c]); + } + break; + + case ir_unop_exp: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = expf(op[0]->value.f[c]); + } + break; + + case ir_unop_exp2: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = exp2f(op[0]->value.f[c]); + } + break; + + case ir_unop_log: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = logf(op[0]->value.f[c]); + } + break; + + case ir_unop_log2: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = log2f(op[0]->value.f[c]); + } + break; + + case ir_unop_dFdx: + case ir_unop_dFdx_coarse: + case ir_unop_dFdx_fine: + case ir_unop_dFdy: + case ir_unop_dFdy_coarse: + case ir_unop_dFdy_fine: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = 0.0; + } + break; + + case ir_unop_pack_snorm_2x16: + assert(op[0]->type == glsl_type::vec2_type); + data.u[0] = pack_2x16(pack_snorm_1x16, + op[0]->value.f[0], + op[0]->value.f[1]); + break; + case ir_unop_pack_snorm_4x8: + assert(op[0]->type == glsl_type::vec4_type); + data.u[0] = pack_4x8(pack_snorm_1x8, + op[0]->value.f[0], + op[0]->value.f[1], + op[0]->value.f[2], + op[0]->value.f[3]); + break; + case ir_unop_unpack_snorm_2x16: + assert(op[0]->type == glsl_type::uint_type); + unpack_2x16(unpack_snorm_1x16, + op[0]->value.u[0], + &data.f[0], &data.f[1]); + break; + case ir_unop_unpack_snorm_4x8: + assert(op[0]->type == glsl_type::uint_type); + unpack_4x8(unpack_snorm_1x8, + op[0]->value.u[0], + &data.f[0], &data.f[1], &data.f[2], &data.f[3]); + break; + case ir_unop_pack_unorm_2x16: + assert(op[0]->type == glsl_type::vec2_type); + data.u[0] = pack_2x16(pack_unorm_1x16, + op[0]->value.f[0], + op[0]->value.f[1]); + break; + case ir_unop_pack_unorm_4x8: + assert(op[0]->type == glsl_type::vec4_type); + data.u[0] = pack_4x8(pack_unorm_1x8, + op[0]->value.f[0], + op[0]->value.f[1], + op[0]->value.f[2], + op[0]->value.f[3]); + break; + case ir_unop_unpack_unorm_2x16: + assert(op[0]->type == glsl_type::uint_type); + unpack_2x16(unpack_unorm_1x16, + op[0]->value.u[0], + &data.f[0], &data.f[1]); + break; + case ir_unop_unpack_unorm_4x8: + assert(op[0]->type == glsl_type::uint_type); + unpack_4x8(unpack_unorm_1x8, + op[0]->value.u[0], + &data.f[0], &data.f[1], &data.f[2], &data.f[3]); + break; + case ir_unop_pack_half_2x16: + assert(op[0]->type == glsl_type::vec2_type); + data.u[0] = pack_2x16(pack_half_1x16, + op[0]->value.f[0], + op[0]->value.f[1]); + break; + case ir_unop_unpack_half_2x16: + assert(op[0]->type == glsl_type::uint_type); + unpack_2x16(unpack_half_1x16, + op[0]->value.u[0], + &data.f[0], &data.f[1]); + break; + case ir_binop_pow: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); + } + break; + + case ir_binop_dot: + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[0] = dot_d(op[0], op[1]); + else + data.f[0] = dot_f(op[0], op[1]); + break; + + case ir_binop_min: + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); + break; + case GLSL_TYPE_INT: + data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); + break; + case GLSL_TYPE_FLOAT: + data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]); + break; + default: + assert(0); + } + } + + break; + case ir_binop_max: + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); + break; + case GLSL_TYPE_INT: + data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); + break; + case GLSL_TYPE_FLOAT: + data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]); + break; + default: + assert(0); + } + } + break; + + case ir_binop_add: + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; + break; + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1]; + break; + default: + assert(0); + } + } + + break; + case ir_binop_sub: + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; + break; + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]; + break; + default: + assert(0); + } + } + + break; + case ir_binop_mul: + /* Check for equal types, or unequal types involving scalars */ + if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) + || op0_scalar || op1_scalar) { + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; + break; + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1]; + break; + default: + assert(0); + } + } + } else { + assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); + + /* Multiply an N-by-M matrix with an M-by-P matrix. Since either + * matrix can be a GLSL vector, either N or P can be 1. + * + * For vec*mat, the vector is treated as a row vector. This + * means the vector is a 1-row x M-column matrix. + * + * For mat*vec, the vector is treated as a column vector. Since + * matrix_columns is 1 for vectors, this just works. + */ + const unsigned n = op[0]->type->is_vector() + ? 1 : op[0]->type->vector_elements; + const unsigned m = op[1]->type->vector_elements; + const unsigned p = op[1]->type->matrix_columns; + for (unsigned j = 0; j < p; j++) { + for (unsigned i = 0; i < n; i++) { + for (unsigned k = 0; k < m; k++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j]; + else + data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; + } + } + } + } + + break; + case ir_binop_div: + /* FINISHME: Emit warning when division-by-zero is detected. */ + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + if (op[1]->value.u[c1] == 0) { + data.u[c] = 0; + } else { + data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; + } + break; + case GLSL_TYPE_INT: + if (op[1]->value.i[c1] == 0) { + data.i[c] = 0; + } else { + data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; + } + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1]; + break; + default: + assert(0); + } + } + + break; + case ir_binop_mod: + /* FINISHME: Emit warning when division-by-zero is detected. */ + assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + if (op[1]->value.u[c1] == 0) { + data.u[c] = 0; + } else { + data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; + } + break; + case GLSL_TYPE_INT: + if (op[1]->value.i[c1] == 0) { + data.i[c] = 0; + } else { + data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; + } + break; + case GLSL_TYPE_FLOAT: + /* We don't use fmod because it rounds toward zero; GLSL specifies + * the use of floor. + */ + data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] + * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); + break; + case GLSL_TYPE_DOUBLE: + /* We don't use fmod because it rounds toward zero; GLSL specifies + * the use of floor. + */ + data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1] + * floor(op[0]->value.d[c0] / op[1]->value.d[c1]); + break; + default: + assert(0); + } + } + + break; + + case ir_binop_logic_and: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) + data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; + break; + case ir_binop_logic_xor: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) + data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; + break; + case ir_binop_logic_or: + assert(op[0]->type->base_type == GLSL_TYPE_BOOL); + for (unsigned c = 0; c < op[0]->type->components(); c++) + data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; + break; + + case ir_binop_less: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] < op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_greater: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] > op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_lequal: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_gequal: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < op[0]->type->components(); c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_equal: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < components; c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; + break; + case GLSL_TYPE_BOOL: + data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] == op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_nequal: + assert(op[0]->type == op[1]->type); + for (unsigned c = 0; c < components; c++) { + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; + break; + case GLSL_TYPE_BOOL: + data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; + break; + case GLSL_TYPE_DOUBLE: + data.b[c] = op[0]->value.d[c] != op[1]->value.d[c]; + break; + default: + assert(0); + } + } + break; + case ir_binop_all_equal: + data.b[0] = op[0]->has_value(op[1]); + break; + case ir_binop_any_nequal: + data.b[0] = !op[0]->has_value(op[1]); + break; + + case ir_binop_lshift: + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + if (op[0]->type->base_type == GLSL_TYPE_INT && + op[1]->type->base_type == GLSL_TYPE_INT) { + data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_INT && + op[1]->type->base_type == GLSL_TYPE_UINT) { + data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_UINT && + op[1]->type->base_type == GLSL_TYPE_INT) { + data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_UINT && + op[1]->type->base_type == GLSL_TYPE_UINT) { + data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; + } + } + break; + + case ir_binop_rshift: + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + if (op[0]->type->base_type == GLSL_TYPE_INT && + op[1]->type->base_type == GLSL_TYPE_INT) { + data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_INT && + op[1]->type->base_type == GLSL_TYPE_UINT) { + data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_UINT && + op[1]->type->base_type == GLSL_TYPE_INT) { + data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; + + } else if (op[0]->type->base_type == GLSL_TYPE_UINT && + op[1]->type->base_type == GLSL_TYPE_UINT) { + data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; + } + } + break; + + case ir_binop_bit_and: + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; + break; + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; + break; + default: + assert(0); + } + } + break; + + case ir_binop_bit_or: + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; + break; + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; + break; + default: + assert(0); + } + } + break; + + case ir_binop_vector_extract: { + const int c = CLAMP(op[1]->value.i[0], 0, + (int) op[0]->type->vector_elements - 1); + + switch (op[0]->type->base_type) { + case GLSL_TYPE_UINT: + data.u[0] = op[0]->value.u[c]; + break; + case GLSL_TYPE_INT: + data.i[0] = op[0]->value.i[c]; + break; + case GLSL_TYPE_FLOAT: + data.f[0] = op[0]->value.f[c]; + break; + case GLSL_TYPE_DOUBLE: + data.d[0] = op[0]->value.d[c]; + break; + case GLSL_TYPE_BOOL: + data.b[0] = op[0]->value.b[c]; + break; + default: + assert(0); + } + break; + } + + case ir_binop_bit_xor: + for (unsigned c = 0, c0 = 0, c1 = 0; + c < components; + c0 += c0_inc, c1 += c1_inc, c++) { + + switch (op[0]->type->base_type) { + case GLSL_TYPE_INT: + data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; + break; + case GLSL_TYPE_UINT: + data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; + break; + default: + assert(0); + } + } + break; + + case ir_unop_bitfield_reverse: + /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ + for (unsigned c = 0; c < components; c++) { + unsigned int v = op[0]->value.u[c]; // input bits to be reversed + unsigned int r = v; // r will be reversed bits of v; first get LSB of v + int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end + + for (v >>= 1; v; v >>= 1) { + r <<= 1; + r |= v & 1; + s--; + } + r <<= s; // shift when v's highest bits are zero + + data.u[c] = r; + } + break; + + case ir_unop_bit_count: + for (unsigned c = 0; c < components; c++) { + unsigned count = 0; + unsigned v = op[0]->value.u[c]; + + for (; v; count++) { + v &= v - 1; + } + data.u[c] = count; + } + break; + + case ir_unop_find_msb: + for (unsigned c = 0; c < components; c++) { + int v = op[0]->value.i[c]; + + if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1)) + data.i[c] = -1; + else { + int count = 0; + unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT + ? 0 : v & (1u << 31); + + while (((v & (1u << 31)) == top_bit) && count != 32) { + count++; + v <<= 1; + } + + data.i[c] = 31 - count; + } + } + break; + + case ir_unop_find_lsb: + for (unsigned c = 0; c < components; c++) { + if (op[0]->value.i[c] == 0) + data.i[c] = -1; + else { + unsigned pos = 0; + unsigned v = op[0]->value.u[c]; + + for (; !(v & 1); v >>= 1) { + pos++; + } + data.u[c] = pos; + } + } + break; + + case ir_unop_saturate: + for (unsigned c = 0; c < components; c++) { + data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f); + } + break; + case ir_unop_pack_double_2x32: { + /* XXX needs to be checked on big-endian */ + uint64_t temp; + temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32); + data.d[0] = *(double *)&temp; + + break; + } + case ir_unop_unpack_double_2x32: + /* XXX needs to be checked on big-endian */ + data.u[0] = *(uint32_t *)&op[0]->value.d[0]; + data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1); + break; + + case ir_triop_bitfield_extract: { + for (unsigned c = 0; c < components; c++) { + int offset = op[1]->value.i[c]; + int bits = op[2]->value.i[c]; + + if (bits == 0) + data.u[c] = 0; + else if (offset < 0 || bits < 0) + data.u[c] = 0; /* Undefined, per spec. */ + else if (offset + bits > 32) + data.u[c] = 0; /* Undefined, per spec. */ + else { + if (op[0]->type->base_type == GLSL_TYPE_INT) { + /* int so that the right shift will sign-extend. */ + int value = op[0]->value.i[c]; + value <<= 32 - bits - offset; + value >>= 32 - bits; + data.i[c] = value; + } else { + unsigned value = op[0]->value.u[c]; + value <<= 32 - bits - offset; + value >>= 32 - bits; + data.u[c] = value; + } + } + } + break; + } + + case ir_binop_ldexp: + for (unsigned c = 0; c < components; c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) { + data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]); + /* Flush subnormal values to zero. */ + if (!isnormal(data.d[c])) + data.d[c] = copysign(0.0, op[0]->value.d[c]); + } else { + data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]); + /* Flush subnormal values to zero. */ + if (!isnormal(data.f[c])) + data.f[c] = copysignf(0.0f, op[0]->value.f[c]); + } + } + break; + + case ir_triop_fma: + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || + op[0]->type->base_type == GLSL_TYPE_DOUBLE); + assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || + op[1]->type->base_type == GLSL_TYPE_DOUBLE); + assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || + op[2]->type->base_type == GLSL_TYPE_DOUBLE); + + for (unsigned c = 0; c < components; c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = op[0]->value.d[c] * op[1]->value.d[c] + + op[2]->value.d[c]; + else + data.f[c] = op[0]->value.f[c] * op[1]->value.f[c] + + op[2]->value.f[c]; + } + break; + + case ir_triop_lrp: { + assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || + op[0]->type->base_type == GLSL_TYPE_DOUBLE); + assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || + op[1]->type->base_type == GLSL_TYPE_DOUBLE); + assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || + op[2]->type->base_type == GLSL_TYPE_DOUBLE); + + unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; + for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { + if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) + + (op[1]->value.d[c] * op[2]->value.d[c2]); + else + data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) + + (op[1]->value.f[c] * op[2]->value.f[c2]); + } + break; + } + + case ir_triop_csel: + for (unsigned c = 0; c < components; c++) { + if (op[1]->type->base_type == GLSL_TYPE_DOUBLE) + data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c] + : op[2]->value.d[c]; + else + data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c] + : op[2]->value.u[c]; + } + break; + + case ir_triop_vector_insert: { + const unsigned idx = op[2]->value.u[0]; + + memcpy(&data, &op[0]->value, sizeof(data)); + + switch (this->type->base_type) { + case GLSL_TYPE_INT: + data.i[idx] = op[1]->value.i[0]; + break; + case GLSL_TYPE_UINT: + data.u[idx] = op[1]->value.u[0]; + break; + case GLSL_TYPE_FLOAT: + data.f[idx] = op[1]->value.f[0]; + break; + case GLSL_TYPE_BOOL: + data.b[idx] = op[1]->value.b[0]; + break; + case GLSL_TYPE_DOUBLE: + data.d[idx] = op[1]->value.d[0]; + break; + default: + assert(!"Should not get here."); + break; + } + break; + } + + case ir_quadop_bitfield_insert: { + for (unsigned c = 0; c < components; c++) { + int offset = op[2]->value.i[c]; + int bits = op[3]->value.i[c]; + + if (bits == 0) + data.u[c] = op[0]->value.u[c]; + else if (offset < 0 || bits < 0) + data.u[c] = 0; /* Undefined, per spec. */ + else if (offset + bits > 32) + data.u[c] = 0; /* Undefined, per spec. */ + else { + unsigned insert_mask = ((1ull << bits) - 1) << offset; + + unsigned insert = op[1]->value.u[c]; + insert <<= offset; + insert &= insert_mask; + + unsigned base = op[0]->value.u[c]; + base &= ~insert_mask; + + data.u[c] = base | insert; + } + } + break; + } + + case ir_quadop_vector: + for (unsigned c = 0; c < this->type->vector_elements; c++) { + switch (this->type->base_type) { + case GLSL_TYPE_INT: + data.i[c] = op[c]->value.i[0]; + break; + case GLSL_TYPE_UINT: + data.u[c] = op[c]->value.u[0]; + break; + case GLSL_TYPE_FLOAT: + data.f[c] = op[c]->value.f[0]; + break; + case GLSL_TYPE_DOUBLE: + data.d[c] = op[c]->value.d[0]; + break; + default: + assert(0); + } + } + break; + + default: + /* FINISHME: Should handle all expression types. */ + return NULL; + } + + return new(ctx) ir_constant(this->type, &data); +} + + +ir_constant * +ir_texture::constant_expression_value(struct hash_table *) +{ + /* texture lookups aren't constant expressions */ + return NULL; +} + + +ir_constant * +ir_swizzle::constant_expression_value(struct hash_table *variable_context) +{ + ir_constant *v = this->val->constant_expression_value(variable_context); + + if (v != NULL) { + ir_constant_data data = { { 0 } }; + + const unsigned swiz_idx[4] = { + this->mask.x, this->mask.y, this->mask.z, this->mask.w + }; + + for (unsigned i = 0; i < this->mask.num_components; i++) { + switch (v->type->base_type) { + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; + case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; + case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; + case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; + default: assert(!"Should not get here."); break; + } + } + + void *ctx = ralloc_parent(this); + return new(ctx) ir_constant(this->type, &data); + } + return NULL; +} + + +ir_constant * +ir_dereference_variable::constant_expression_value(struct hash_table *variable_context) +{ + assert(var); + + /* Give priority to the context hashtable, if it exists */ + if (variable_context) { + ir_constant *value = (ir_constant *)hash_table_find(variable_context, var); + if(value) + return value; + } + + /* The constant_value of a uniform variable is its initializer, + * not the lifetime constant value of the uniform. + */ + if (var->data.mode == ir_var_uniform) + return NULL; + + if (!var->constant_value) + return NULL; + + return var->constant_value->clone(ralloc_parent(var), NULL); +} + + +ir_constant * +ir_dereference_array::constant_expression_value(struct hash_table *variable_context) +{ + ir_constant *array = this->array->constant_expression_value(variable_context); + ir_constant *idx = this->array_index->constant_expression_value(variable_context); + + if ((array != NULL) && (idx != NULL)) { + void *ctx = ralloc_parent(this); + if (array->type->is_matrix()) { + /* Array access of a matrix results in a vector. + */ + const unsigned column = idx->value.u[0]; + + const glsl_type *const column_type = array->type->column_type(); + + /* Offset in the constant matrix to the first element of the column + * to be extracted. + */ + const unsigned mat_idx = column * column_type->vector_elements; + + ir_constant_data data = { { 0 } }; + + switch (column_type->base_type) { + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + for (unsigned i = 0; i < column_type->vector_elements; i++) + data.u[i] = array->value.u[mat_idx + i]; + + break; + + case GLSL_TYPE_FLOAT: + for (unsigned i = 0; i < column_type->vector_elements; i++) + data.f[i] = array->value.f[mat_idx + i]; + + break; + + case GLSL_TYPE_DOUBLE: + for (unsigned i = 0; i < column_type->vector_elements; i++) + data.d[i] = array->value.d[mat_idx + i]; + + break; + + default: + assert(!"Should not get here."); + break; + } + + return new(ctx) ir_constant(column_type, &data); + } else if (array->type->is_vector()) { + const unsigned component = idx->value.u[0]; + + return new(ctx) ir_constant(array, component); + } else { + const unsigned index = idx->value.u[0]; + return array->get_array_element(index)->clone(ctx, NULL); + } + } + return NULL; +} + + +ir_constant * +ir_dereference_record::constant_expression_value(struct hash_table *) +{ + ir_constant *v = this->record->constant_expression_value(); + + return (v != NULL) ? v->get_record_field(this->field) : NULL; +} + + +ir_constant * +ir_assignment::constant_expression_value(struct hash_table *) +{ + /* FINISHME: Handle CEs involving assignment (return RHS) */ + return NULL; +} + + +ir_constant * +ir_constant::constant_expression_value(struct hash_table *) +{ + return this; +} + + +ir_constant * +ir_call::constant_expression_value(struct hash_table *variable_context) +{ + return this->callee->constant_expression_value(&this->actual_parameters, variable_context); +} + + +bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body, + struct hash_table *variable_context, + ir_constant **result) +{ + foreach_in_list(ir_instruction, inst, &body) { + switch(inst->ir_type) { + + /* (declare () type symbol) */ + case ir_type_variable: { + ir_variable *var = inst->as_variable(); + hash_table_insert(variable_context, ir_constant::zero(this, var->type), var); + break; + } + + /* (assign [condition] (write-mask) (ref) (value)) */ + case ir_type_assignment: { + ir_assignment *asg = inst->as_assignment(); + if (asg->condition) { + ir_constant *cond = asg->condition->constant_expression_value(variable_context); + if (!cond) + return false; + if (!cond->get_bool_component(0)) + break; + } + + ir_constant *store = NULL; + int offset = 0; + + if (!constant_referenced(asg->lhs, variable_context, store, offset)) + return false; + + ir_constant *value = asg->rhs->constant_expression_value(variable_context); + + if (!value) + return false; + + store->copy_masked_offset(value, offset, asg->write_mask); + break; + } + + /* (return (expression)) */ + case ir_type_return: + assert (result); + *result = inst->as_return()->value->constant_expression_value(variable_context); + return *result != NULL; + + /* (call name (ref) (params))*/ + case ir_type_call: { + ir_call *call = inst->as_call(); + + /* Just say no to void functions in constant expressions. We + * don't need them at that point. + */ + + if (!call->return_deref) + return false; + + ir_constant *store = NULL; + int offset = 0; + + if (!constant_referenced(call->return_deref, variable_context, + store, offset)) + return false; + + ir_constant *value = call->constant_expression_value(variable_context); + + if(!value) + return false; + + store->copy_offset(value, offset); + break; + } + + /* (if condition (then-instructions) (else-instructions)) */ + case ir_type_if: { + ir_if *iif = inst->as_if(); + + ir_constant *cond = iif->condition->constant_expression_value(variable_context); + if (!cond || !cond->type->is_boolean()) + return false; + + exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; + + *result = NULL; + if (!constant_expression_evaluate_expression_list(branch, variable_context, result)) + return false; + + /* If there was a return in the branch chosen, drop out now. */ + if (*result) + return true; + + break; + } + + /* Every other expression type, we drop out. */ + default: + return false; + } + } + + /* Reaching the end of the block is not an error condition */ + if (result) + *result = NULL; + + return true; +} + +ir_constant * +ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context) +{ + const glsl_type *type = this->return_type; + if (type == glsl_type::void_type) + return NULL; + + /* From the GLSL 1.20 spec, page 23: + * "Function calls to user-defined functions (non-built-in functions) + * cannot be used to form constant expressions." + */ + if (!this->is_builtin()) + return NULL; + + /* + * Of the builtin functions, only the texture lookups and the noise + * ones must not be used in constant expressions. They all include + * specific opcodes so they don't need to be special-cased at this + * point. + */ + + /* Initialize the table of dereferencable names with the function + * parameters. Verify their const-ness on the way. + * + * We expect the correctness of the number of parameters to have + * been checked earlier. + */ + hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash, + hash_table_pointer_compare); + + /* If "origin" is non-NULL, then the function body is there. So we + * have to use the variable objects from the object with the body, + * but the parameter instanciation on the current object. + */ + const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head; + + foreach_in_list(ir_rvalue, n, actual_parameters) { + ir_constant *constant = n->constant_expression_value(variable_context); + if (constant == NULL) { + hash_table_dtor(deref_hash); + return NULL; + } + + + ir_variable *var = (ir_variable *)parameter_info; + hash_table_insert(deref_hash, constant, var); + + parameter_info = parameter_info->next; + } + + ir_constant *result = NULL; + + /* Now run the builtin function until something non-constant + * happens or we get the result. + */ + if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result) + result = result->clone(ralloc_parent(this), NULL); + + hash_table_dtor(deref_hash); + + return result; +} |