summaryrefslogtreecommitdiffstats
path: root/src/compiler/glsl/ir_constant_expression.cpp
diff options
context:
space:
mode:
authorEmil Velikov <[email protected]>2016-01-18 12:16:48 +0200
committerEmil Velikov <[email protected]>2016-01-26 16:08:33 +0000
commiteb63640c1d38a200a7b1540405051d3ff79d0d8a (patch)
treeda46321a41f309b1d02aeb14d5d5487791c45aeb /src/compiler/glsl/ir_constant_expression.cpp
parenta39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff)
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]> Acked-by: Matt Turner <[email protected]> Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/compiler/glsl/ir_constant_expression.cpp')
-rw-r--r--src/compiler/glsl/ir_constant_expression.cpp2092
1 files changed, 2092 insertions, 0 deletions
diff --git a/src/compiler/glsl/ir_constant_expression.cpp b/src/compiler/glsl/ir_constant_expression.cpp
new file mode 100644
index 00000000000..fbbf7794da6
--- /dev/null
+++ b/src/compiler/glsl/ir_constant_expression.cpp
@@ -0,0 +1,2092 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file ir_constant_expression.cpp
+ * Evaluate and process constant valued expressions
+ *
+ * In GLSL, constant valued expressions are used in several places. These
+ * must be processed and evaluated very early in the compilation process.
+ *
+ * * Sizes of arrays
+ * * Initializers for uniforms
+ * * Initializers for \c const variables
+ */
+
+#include <math.h>
+#include "main/core.h" /* for MAX2, MIN2, CLAMP */
+#include "util/rounding.h" /* for _mesa_roundeven */
+#include "util/half_float.h"
+#include "ir.h"
+#include "compiler/glsl_types.h"
+#include "program/hash_table.h"
+
+static float
+dot_f(ir_constant *op0, ir_constant *op1)
+{
+ assert(op0->type->is_float() && op1->type->is_float());
+
+ float result = 0;
+ for (unsigned c = 0; c < op0->type->components(); c++)
+ result += op0->value.f[c] * op1->value.f[c];
+
+ return result;
+}
+
+static double
+dot_d(ir_constant *op0, ir_constant *op1)
+{
+ assert(op0->type->is_double() && op1->type->is_double());
+
+ double result = 0;
+ for (unsigned c = 0; c < op0->type->components(); c++)
+ result += op0->value.d[c] * op1->value.d[c];
+
+ return result;
+}
+
+/* This method is the only one supported by gcc. Unions in particular
+ * are iffy, and read-through-converted-pointer is killed by strict
+ * aliasing. OTOH, the compiler sees through the memcpy, so the
+ * resulting asm is reasonable.
+ */
+static float
+bitcast_u2f(unsigned int u)
+{
+ assert(sizeof(float) == sizeof(unsigned int));
+ float f;
+ memcpy(&f, &u, sizeof(f));
+ return f;
+}
+
+static unsigned int
+bitcast_f2u(float f)
+{
+ assert(sizeof(float) == sizeof(unsigned int));
+ unsigned int u;
+ memcpy(&u, &f, sizeof(f));
+ return u;
+}
+
+/**
+ * Evaluate one component of a floating-point 4x8 unpacking function.
+ */
+typedef uint8_t
+(*pack_1x8_func_t)(float);
+
+/**
+ * Evaluate one component of a floating-point 2x16 unpacking function.
+ */
+typedef uint16_t
+(*pack_1x16_func_t)(float);
+
+/**
+ * Evaluate one component of a floating-point 4x8 unpacking function.
+ */
+typedef float
+(*unpack_1x8_func_t)(uint8_t);
+
+/**
+ * Evaluate one component of a floating-point 2x16 unpacking function.
+ */
+typedef float
+(*unpack_1x16_func_t)(uint16_t);
+
+/**
+ * Evaluate a 2x16 floating-point packing function.
+ */
+static uint32_t
+pack_2x16(pack_1x16_func_t pack_1x16,
+ float x, float y)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * packSnorm2x16
+ * -------------
+ * The first component of the vector will be written to the least
+ * significant bits of the output; the last component will be written to
+ * the most significant bits.
+ *
+ * The specifications for the other packing functions contain similar
+ * language.
+ */
+ uint32_t u = 0;
+ u |= ((uint32_t) pack_1x16(x) << 0);
+ u |= ((uint32_t) pack_1x16(y) << 16);
+ return u;
+}
+
+/**
+ * Evaluate a 4x8 floating-point packing function.
+ */
+static uint32_t
+pack_4x8(pack_1x8_func_t pack_1x8,
+ float x, float y, float z, float w)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * packSnorm4x8
+ * ------------
+ * The first component of the vector will be written to the least
+ * significant bits of the output; the last component will be written to
+ * the most significant bits.
+ *
+ * The specifications for the other packing functions contain similar
+ * language.
+ */
+ uint32_t u = 0;
+ u |= ((uint32_t) pack_1x8(x) << 0);
+ u |= ((uint32_t) pack_1x8(y) << 8);
+ u |= ((uint32_t) pack_1x8(z) << 16);
+ u |= ((uint32_t) pack_1x8(w) << 24);
+ return u;
+}
+
+/**
+ * Evaluate a 2x16 floating-point unpacking function.
+ */
+static void
+unpack_2x16(unpack_1x16_func_t unpack_1x16,
+ uint32_t u,
+ float *x, float *y)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * unpackSnorm2x16
+ * ---------------
+ * The first component of the returned vector will be extracted from
+ * the least significant bits of the input; the last component will be
+ * extracted from the most significant bits.
+ *
+ * The specifications for the other unpacking functions contain similar
+ * language.
+ */
+ *x = unpack_1x16((uint16_t) (u & 0xffff));
+ *y = unpack_1x16((uint16_t) (u >> 16));
+}
+
+/**
+ * Evaluate a 4x8 floating-point unpacking function.
+ */
+static void
+unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
+ float *x, float *y, float *z, float *w)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * unpackSnorm4x8
+ * --------------
+ * The first component of the returned vector will be extracted from
+ * the least significant bits of the input; the last component will be
+ * extracted from the most significant bits.
+ *
+ * The specifications for the other unpacking functions contain similar
+ * language.
+ */
+ *x = unpack_1x8((uint8_t) (u & 0xff));
+ *y = unpack_1x8((uint8_t) (u >> 8));
+ *z = unpack_1x8((uint8_t) (u >> 16));
+ *w = unpack_1x8((uint8_t) (u >> 24));
+}
+
+/**
+ * Evaluate one component of packSnorm4x8.
+ */
+static uint8_t
+pack_snorm_1x8(float x)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * packSnorm4x8
+ * ------------
+ * The conversion for component c of v to fixed point is done as
+ * follows:
+ *
+ * packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
+ */
+ return (uint8_t)
+ _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
+}
+
+/**
+ * Evaluate one component of packSnorm2x16.
+ */
+static uint16_t
+pack_snorm_1x16(float x)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * packSnorm2x16
+ * -------------
+ * The conversion for component c of v to fixed point is done as
+ * follows:
+ *
+ * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
+ */
+ return (uint16_t)
+ _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
+}
+
+/**
+ * Evaluate one component of unpackSnorm4x8.
+ */
+static float
+unpack_snorm_1x8(uint8_t u)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * unpackSnorm4x8
+ * --------------
+ * The conversion for unpacked fixed-point value f to floating point is
+ * done as follows:
+ *
+ * unpackSnorm4x8: clamp(f / 127.0, -1, +1)
+ */
+ return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
+}
+
+/**
+ * Evaluate one component of unpackSnorm2x16.
+ */
+static float
+unpack_snorm_1x16(uint16_t u)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * unpackSnorm2x16
+ * ---------------
+ * The conversion for unpacked fixed-point value f to floating point is
+ * done as follows:
+ *
+ * unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
+ */
+ return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
+}
+
+/**
+ * Evaluate one component packUnorm4x8.
+ */
+static uint8_t
+pack_unorm_1x8(float x)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * packUnorm4x8
+ * ------------
+ * The conversion for component c of v to fixed point is done as
+ * follows:
+ *
+ * packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
+ */
+ return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
+}
+
+/**
+ * Evaluate one component packUnorm2x16.
+ */
+static uint16_t
+pack_unorm_1x16(float x)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * packUnorm2x16
+ * -------------
+ * The conversion for component c of v to fixed point is done as
+ * follows:
+ *
+ * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
+ */
+ return (uint16_t) (int)
+ _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
+}
+
+/**
+ * Evaluate one component of unpackUnorm4x8.
+ */
+static float
+unpack_unorm_1x8(uint8_t u)
+{
+ /* From section 8.4 of the GLSL 4.30 spec:
+ *
+ * unpackUnorm4x8
+ * --------------
+ * The conversion for unpacked fixed-point value f to floating point is
+ * done as follows:
+ *
+ * unpackUnorm4x8: f / 255.0
+ */
+ return (float) u / 255.0f;
+}
+
+/**
+ * Evaluate one component of unpackUnorm2x16.
+ */
+static float
+unpack_unorm_1x16(uint16_t u)
+{
+ /* From section 8.4 of the GLSL ES 3.00 spec:
+ *
+ * unpackUnorm2x16
+ * ---------------
+ * The conversion for unpacked fixed-point value f to floating point is
+ * done as follows:
+ *
+ * unpackUnorm2x16: f / 65535.0
+ */
+ return (float) u / 65535.0f;
+}
+
+/**
+ * Evaluate one component of packHalf2x16.
+ */
+static uint16_t
+pack_half_1x16(float x)
+{
+ return _mesa_float_to_half(x);
+}
+
+/**
+ * Evaluate one component of unpackHalf2x16.
+ */
+static float
+unpack_half_1x16(uint16_t u)
+{
+ return _mesa_half_to_float(u);
+}
+
+/**
+ * Get the constant that is ultimately referenced by an r-value, in a constant
+ * expression evaluation context.
+ *
+ * The offset is used when the reference is to a specific column of a matrix.
+ */
+static bool
+constant_referenced(const ir_dereference *deref,
+ struct hash_table *variable_context,
+ ir_constant *&store, int &offset)
+{
+ store = NULL;
+ offset = 0;
+
+ if (variable_context == NULL)
+ return false;
+
+ switch (deref->ir_type) {
+ case ir_type_dereference_array: {
+ const ir_dereference_array *const da =
+ (const ir_dereference_array *) deref;
+
+ ir_constant *const index_c =
+ da->array_index->constant_expression_value(variable_context);
+
+ if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer())
+ break;
+
+ const int index = index_c->type->base_type == GLSL_TYPE_INT ?
+ index_c->get_int_component(0) :
+ index_c->get_uint_component(0);
+
+ ir_constant *substore;
+ int suboffset;
+
+ const ir_dereference *const deref = da->array->as_dereference();
+ if (!deref)
+ break;
+
+ if (!constant_referenced(deref, variable_context, substore, suboffset))
+ break;
+
+ const glsl_type *const vt = da->array->type;
+ if (vt->is_array()) {
+ store = substore->get_array_element(index);
+ offset = 0;
+ } else if (vt->is_matrix()) {
+ store = substore;
+ offset = index * vt->vector_elements;
+ } else if (vt->is_vector()) {
+ store = substore;
+ offset = suboffset + index;
+ }
+
+ break;
+ }
+
+ case ir_type_dereference_record: {
+ const ir_dereference_record *const dr =
+ (const ir_dereference_record *) deref;
+
+ const ir_dereference *const deref = dr->record->as_dereference();
+ if (!deref)
+ break;
+
+ ir_constant *substore;
+ int suboffset;
+
+ if (!constant_referenced(deref, variable_context, substore, suboffset))
+ break;
+
+ /* Since we're dropping it on the floor...
+ */
+ assert(suboffset == 0);
+
+ store = substore->get_record_field(dr->field);
+ break;
+ }
+
+ case ir_type_dereference_variable: {
+ const ir_dereference_variable *const dv =
+ (const ir_dereference_variable *) deref;
+
+ store = (ir_constant *) hash_table_find(variable_context, dv->var);
+ break;
+ }
+
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+
+ return store != NULL;
+}
+
+
+ir_constant *
+ir_rvalue::constant_expression_value(struct hash_table *)
+{
+ assert(this->type->is_error());
+ return NULL;
+}
+
+ir_constant *
+ir_expression::constant_expression_value(struct hash_table *variable_context)
+{
+ if (this->type->is_error())
+ return NULL;
+
+ ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
+ ir_constant_data data;
+
+ memset(&data, 0, sizeof(data));
+
+ for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
+ op[operand] = this->operands[operand]->constant_expression_value(variable_context);
+ if (!op[operand])
+ return NULL;
+ }
+
+ if (op[1] != NULL)
+ switch (this->operation) {
+ case ir_binop_lshift:
+ case ir_binop_rshift:
+ case ir_binop_ldexp:
+ case ir_binop_interpolate_at_offset:
+ case ir_binop_interpolate_at_sample:
+ case ir_binop_vector_extract:
+ case ir_triop_csel:
+ case ir_triop_bitfield_extract:
+ break;
+
+ default:
+ assert(op[0]->type->base_type == op[1]->type->base_type);
+ break;
+ }
+
+ bool op0_scalar = op[0]->type->is_scalar();
+ bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
+
+ /* When iterating over a vector or matrix's components, we want to increase
+ * the loop counter. However, for scalars, we want to stay at 0.
+ */
+ unsigned c0_inc = op0_scalar ? 0 : 1;
+ unsigned c1_inc = op1_scalar ? 0 : 1;
+ unsigned components;
+ if (op1_scalar || !op[1]) {
+ components = op[0]->type->components();
+ } else {
+ components = op[1]->type->components();
+ }
+
+ void *ctx = ralloc_parent(this);
+
+ /* Handle array operations here, rather than below. */
+ if (op[0]->type->is_array()) {
+ assert(op[1] != NULL && op[1]->type->is_array());
+ switch (this->operation) {
+ case ir_binop_all_equal:
+ return new(ctx) ir_constant(op[0]->has_value(op[1]));
+ case ir_binop_any_nequal:
+ return new(ctx) ir_constant(!op[0]->has_value(op[1]));
+ default:
+ break;
+ }
+ return NULL;
+ }
+
+ switch (this->operation) {
+ case ir_unop_bit_not:
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ for (unsigned c = 0; c < components; c++)
+ data.i[c] = ~ op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_UINT:
+ for (unsigned c = 0; c < components; c++)
+ data.u[c] = ~ op[0]->value.u[c];
+ break;
+ default:
+ assert(0);
+ }
+ break;
+
+ case ir_unop_logic_not:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = !op[0]->value.b[c];
+ break;
+
+ case ir_unop_f2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = (int) op[0]->value.f[c];
+ }
+ break;
+ case ir_unop_f2u:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = (unsigned) op[0]->value.f[c];
+ }
+ break;
+ case ir_unop_i2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_INT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = (float) op[0]->value.i[c];
+ }
+ break;
+ case ir_unop_u2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_UINT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = (float) op[0]->value.u[c];
+ }
+ break;
+ case ir_unop_b2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
+ }
+ break;
+ case ir_unop_f2b:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
+ }
+ break;
+ case ir_unop_b2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.u[c] = op[0]->value.b[c] ? 1 : 0;
+ }
+ break;
+ case ir_unop_i2b:
+ assert(op[0]->type->is_integer());
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.b[c] = op[0]->value.u[c] ? true : false;
+ }
+ break;
+ case ir_unop_u2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_UINT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = op[0]->value.u[c];
+ }
+ break;
+ case ir_unop_i2u:
+ assert(op[0]->type->base_type == GLSL_TYPE_INT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.u[c] = op[0]->value.i[c];
+ }
+ break;
+ case ir_unop_bitcast_i2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_INT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = bitcast_u2f(op[0]->value.i[c]);
+ }
+ break;
+ case ir_unop_bitcast_f2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = bitcast_f2u(op[0]->value.f[c]);
+ }
+ break;
+ case ir_unop_bitcast_u2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_UINT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = bitcast_u2f(op[0]->value.u[c]);
+ }
+ break;
+ case ir_unop_bitcast_f2u:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.u[c] = bitcast_f2u(op[0]->value.f[c]);
+ }
+ break;
+ case ir_unop_d2f:
+ assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = op[0]->value.d[c];
+ }
+ break;
+ case ir_unop_f2d:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.d[c] = op[0]->value.f[c];
+ }
+ break;
+ case ir_unop_d2i:
+ assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.i[c] = op[0]->value.d[c];
+ }
+ break;
+ case ir_unop_i2d:
+ assert(op[0]->type->base_type == GLSL_TYPE_INT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.d[c] = op[0]->value.i[c];
+ }
+ break;
+ case ir_unop_d2u:
+ assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.u[c] = op[0]->value.d[c];
+ }
+ break;
+ case ir_unop_u2d:
+ assert(op[0]->type->base_type == GLSL_TYPE_UINT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.d[c] = op[0]->value.u[c];
+ }
+ break;
+ case ir_unop_d2b:
+ assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.b[c] = op[0]->value.d[c] != 0.0;
+ }
+ break;
+ case ir_unop_trunc:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = trunc(op[0]->value.d[c]);
+ else
+ data.f[c] = truncf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_round_even:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = _mesa_roundeven(op[0]->value.d[c]);
+ else
+ data.f[c] = _mesa_roundevenf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_ceil:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = ceil(op[0]->value.d[c]);
+ else
+ data.f[c] = ceilf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_floor:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = floor(op[0]->value.d[c]);
+ else
+ data.f[c] = floorf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_fract:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = 0;
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = 0;
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_sin:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = sinf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_cos:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = cosf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_neg:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = -((int) op[0]->value.u[c]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = -op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = -op[0]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = -op[0]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_abs:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c];
+ if (data.i[c] < 0)
+ data.i[c] = -data.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = fabs(op[0]->value.f[c]);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = fabs(op[0]->value.d[c]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_sign:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.i[c] > 0;
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0));
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_rcp:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[0]->value.u[c] != 0.0)
+ data.u[c] = 1 / op[0]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ if (op[0]->value.i[c] != 0.0)
+ data.i[c] = 1 / op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ if (op[0]->value.f[c] != 0.0)
+ data.f[c] = 1.0F / op[0]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ if (op[0]->value.d[c] != 0.0)
+ data.d[c] = 1.0 / op[0]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_rsq:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = 1.0 / sqrt(op[0]->value.d[c]);
+ else
+ data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_sqrt:
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = sqrt(op[0]->value.d[c]);
+ else
+ data.f[c] = sqrtf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_exp:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = expf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_exp2:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = exp2f(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_log:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = logf(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_log2:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = log2f(op[0]->value.f[c]);
+ }
+ break;
+
+ case ir_unop_dFdx:
+ case ir_unop_dFdx_coarse:
+ case ir_unop_dFdx_fine:
+ case ir_unop_dFdy:
+ case ir_unop_dFdy_coarse:
+ case ir_unop_dFdy_fine:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = 0.0;
+ }
+ break;
+
+ case ir_unop_pack_snorm_2x16:
+ assert(op[0]->type == glsl_type::vec2_type);
+ data.u[0] = pack_2x16(pack_snorm_1x16,
+ op[0]->value.f[0],
+ op[0]->value.f[1]);
+ break;
+ case ir_unop_pack_snorm_4x8:
+ assert(op[0]->type == glsl_type::vec4_type);
+ data.u[0] = pack_4x8(pack_snorm_1x8,
+ op[0]->value.f[0],
+ op[0]->value.f[1],
+ op[0]->value.f[2],
+ op[0]->value.f[3]);
+ break;
+ case ir_unop_unpack_snorm_2x16:
+ assert(op[0]->type == glsl_type::uint_type);
+ unpack_2x16(unpack_snorm_1x16,
+ op[0]->value.u[0],
+ &data.f[0], &data.f[1]);
+ break;
+ case ir_unop_unpack_snorm_4x8:
+ assert(op[0]->type == glsl_type::uint_type);
+ unpack_4x8(unpack_snorm_1x8,
+ op[0]->value.u[0],
+ &data.f[0], &data.f[1], &data.f[2], &data.f[3]);
+ break;
+ case ir_unop_pack_unorm_2x16:
+ assert(op[0]->type == glsl_type::vec2_type);
+ data.u[0] = pack_2x16(pack_unorm_1x16,
+ op[0]->value.f[0],
+ op[0]->value.f[1]);
+ break;
+ case ir_unop_pack_unorm_4x8:
+ assert(op[0]->type == glsl_type::vec4_type);
+ data.u[0] = pack_4x8(pack_unorm_1x8,
+ op[0]->value.f[0],
+ op[0]->value.f[1],
+ op[0]->value.f[2],
+ op[0]->value.f[3]);
+ break;
+ case ir_unop_unpack_unorm_2x16:
+ assert(op[0]->type == glsl_type::uint_type);
+ unpack_2x16(unpack_unorm_1x16,
+ op[0]->value.u[0],
+ &data.f[0], &data.f[1]);
+ break;
+ case ir_unop_unpack_unorm_4x8:
+ assert(op[0]->type == glsl_type::uint_type);
+ unpack_4x8(unpack_unorm_1x8,
+ op[0]->value.u[0],
+ &data.f[0], &data.f[1], &data.f[2], &data.f[3]);
+ break;
+ case ir_unop_pack_half_2x16:
+ assert(op[0]->type == glsl_type::vec2_type);
+ data.u[0] = pack_2x16(pack_half_1x16,
+ op[0]->value.f[0],
+ op[0]->value.f[1]);
+ break;
+ case ir_unop_unpack_half_2x16:
+ assert(op[0]->type == glsl_type::uint_type);
+ unpack_2x16(unpack_half_1x16,
+ op[0]->value.u[0],
+ &data.f[0], &data.f[1]);
+ break;
+ case ir_binop_pow:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
+ }
+ break;
+
+ case ir_binop_dot:
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[0] = dot_d(op[0], op[1]);
+ else
+ data.f[0] = dot_f(op[0], op[1]);
+ break;
+
+ case ir_binop_min:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_max:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_add:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_sub:
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_mul:
+ /* Check for equal types, or unequal types involving scalars */
+ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
+ || op0_scalar || op1_scalar) {
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ } else {
+ assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
+
+ /* Multiply an N-by-M matrix with an M-by-P matrix. Since either
+ * matrix can be a GLSL vector, either N or P can be 1.
+ *
+ * For vec*mat, the vector is treated as a row vector. This
+ * means the vector is a 1-row x M-column matrix.
+ *
+ * For mat*vec, the vector is treated as a column vector. Since
+ * matrix_columns is 1 for vectors, this just works.
+ */
+ const unsigned n = op[0]->type->is_vector()
+ ? 1 : op[0]->type->vector_elements;
+ const unsigned m = op[1]->type->vector_elements;
+ const unsigned p = op[1]->type->matrix_columns;
+ for (unsigned j = 0; j < p; j++) {
+ for (unsigned i = 0; i < n; i++) {
+ for (unsigned k = 0; k < m; k++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
+ else
+ data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
+ }
+ }
+ }
+ }
+
+ break;
+ case ir_binop_div:
+ /* FINISHME: Emit warning when division-by-zero is detected. */
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[1]->value.u[c1] == 0) {
+ data.u[c] = 0;
+ } else {
+ data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
+ }
+ break;
+ case GLSL_TYPE_INT:
+ if (op[1]->value.i[c1] == 0) {
+ data.i[c] = 0;
+ } else {
+ data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+ case ir_binop_mod:
+ /* FINISHME: Emit warning when division-by-zero is detected. */
+ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ if (op[1]->value.u[c1] == 0) {
+ data.u[c] = 0;
+ } else {
+ data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
+ }
+ break;
+ case GLSL_TYPE_INT:
+ if (op[1]->value.i[c1] == 0) {
+ data.i[c] = 0;
+ } else {
+ data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ /* We don't use fmod because it rounds toward zero; GLSL specifies
+ * the use of floor.
+ */
+ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
+ * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ /* We don't use fmod because it rounds toward zero; GLSL specifies
+ * the use of floor.
+ */
+ data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]
+ * floor(op[0]->value.d[c0] / op[1]->value.d[c1]);
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ break;
+
+ case ir_binop_logic_and:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
+ break;
+ case ir_binop_logic_xor:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
+ break;
+ case ir_binop_logic_or:
+ assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
+ for (unsigned c = 0; c < op[0]->type->components(); c++)
+ data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
+ break;
+
+ case ir_binop_less:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] < op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_greater:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] > op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_lequal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_gequal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < op[0]->type->components(); c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_equal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < components; c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] == op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_nequal:
+ assert(op[0]->type == op[1]->type);
+ for (unsigned c = 0; c < components; c++) {
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.b[c] = op[0]->value.d[c] != op[1]->value.d[c];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+ case ir_binop_all_equal:
+ data.b[0] = op[0]->has_value(op[1]);
+ break;
+ case ir_binop_any_nequal:
+ data.b[0] = !op[0]->has_value(op[1]);
+ break;
+
+ case ir_binop_lshift:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
+ }
+ }
+ break;
+
+ case ir_binop_rshift:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_INT) {
+ data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
+
+ } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
+ op[1]->type->base_type == GLSL_TYPE_UINT) {
+ data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
+ }
+ }
+ break;
+
+ case ir_binop_bit_and:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_bit_or:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_binop_vector_extract: {
+ const int c = CLAMP(op[1]->value.i[0], 0,
+ (int) op[0]->type->vector_elements - 1);
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[0] = op[0]->value.u[c];
+ break;
+ case GLSL_TYPE_INT:
+ data.i[0] = op[0]->value.i[c];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[0] = op[0]->value.f[c];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[0] = op[0]->value.d[c];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[0] = op[0]->value.b[c];
+ break;
+ default:
+ assert(0);
+ }
+ break;
+ }
+
+ case ir_binop_bit_xor:
+ for (unsigned c = 0, c0 = 0, c1 = 0;
+ c < components;
+ c0 += c0_inc, c1 += c1_inc, c++) {
+
+ switch (op[0]->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ case ir_unop_bitfield_reverse:
+ /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
+ for (unsigned c = 0; c < components; c++) {
+ unsigned int v = op[0]->value.u[c]; // input bits to be reversed
+ unsigned int r = v; // r will be reversed bits of v; first get LSB of v
+ int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
+
+ for (v >>= 1; v; v >>= 1) {
+ r <<= 1;
+ r |= v & 1;
+ s--;
+ }
+ r <<= s; // shift when v's highest bits are zero
+
+ data.u[c] = r;
+ }
+ break;
+
+ case ir_unop_bit_count:
+ for (unsigned c = 0; c < components; c++) {
+ unsigned count = 0;
+ unsigned v = op[0]->value.u[c];
+
+ for (; v; count++) {
+ v &= v - 1;
+ }
+ data.u[c] = count;
+ }
+ break;
+
+ case ir_unop_find_msb:
+ for (unsigned c = 0; c < components; c++) {
+ int v = op[0]->value.i[c];
+
+ if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1))
+ data.i[c] = -1;
+ else {
+ int count = 0;
+ unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT
+ ? 0 : v & (1u << 31);
+
+ while (((v & (1u << 31)) == top_bit) && count != 32) {
+ count++;
+ v <<= 1;
+ }
+
+ data.i[c] = 31 - count;
+ }
+ }
+ break;
+
+ case ir_unop_find_lsb:
+ for (unsigned c = 0; c < components; c++) {
+ if (op[0]->value.i[c] == 0)
+ data.i[c] = -1;
+ else {
+ unsigned pos = 0;
+ unsigned v = op[0]->value.u[c];
+
+ for (; !(v & 1); v >>= 1) {
+ pos++;
+ }
+ data.u[c] = pos;
+ }
+ }
+ break;
+
+ case ir_unop_saturate:
+ for (unsigned c = 0; c < components; c++) {
+ data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f);
+ }
+ break;
+ case ir_unop_pack_double_2x32: {
+ /* XXX needs to be checked on big-endian */
+ uint64_t temp;
+ temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32);
+ data.d[0] = *(double *)&temp;
+
+ break;
+ }
+ case ir_unop_unpack_double_2x32:
+ /* XXX needs to be checked on big-endian */
+ data.u[0] = *(uint32_t *)&op[0]->value.d[0];
+ data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1);
+ break;
+
+ case ir_triop_bitfield_extract: {
+ for (unsigned c = 0; c < components; c++) {
+ int offset = op[1]->value.i[c];
+ int bits = op[2]->value.i[c];
+
+ if (bits == 0)
+ data.u[c] = 0;
+ else if (offset < 0 || bits < 0)
+ data.u[c] = 0; /* Undefined, per spec. */
+ else if (offset + bits > 32)
+ data.u[c] = 0; /* Undefined, per spec. */
+ else {
+ if (op[0]->type->base_type == GLSL_TYPE_INT) {
+ /* int so that the right shift will sign-extend. */
+ int value = op[0]->value.i[c];
+ value <<= 32 - bits - offset;
+ value >>= 32 - bits;
+ data.i[c] = value;
+ } else {
+ unsigned value = op[0]->value.u[c];
+ value <<= 32 - bits - offset;
+ value >>= 32 - bits;
+ data.u[c] = value;
+ }
+ }
+ }
+ break;
+ }
+
+ case ir_binop_ldexp:
+ for (unsigned c = 0; c < components; c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) {
+ data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]);
+ /* Flush subnormal values to zero. */
+ if (!isnormal(data.d[c]))
+ data.d[c] = copysign(0.0, op[0]->value.d[c]);
+ } else {
+ data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]);
+ /* Flush subnormal values to zero. */
+ if (!isnormal(data.f[c]))
+ data.f[c] = copysignf(0.0f, op[0]->value.f[c]);
+ }
+ }
+ break;
+
+ case ir_triop_fma:
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[1]->type->base_type == GLSL_TYPE_DOUBLE);
+ assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[2]->type->base_type == GLSL_TYPE_DOUBLE);
+
+ for (unsigned c = 0; c < components; c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = op[0]->value.d[c] * op[1]->value.d[c]
+ + op[2]->value.d[c];
+ else
+ data.f[c] = op[0]->value.f[c] * op[1]->value.f[c]
+ + op[2]->value.f[c];
+ }
+ break;
+
+ case ir_triop_lrp: {
+ assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[0]->type->base_type == GLSL_TYPE_DOUBLE);
+ assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[1]->type->base_type == GLSL_TYPE_DOUBLE);
+ assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
+ op[2]->type->base_type == GLSL_TYPE_DOUBLE);
+
+ unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
+ for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
+ if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) +
+ (op[1]->value.d[c] * op[2]->value.d[c2]);
+ else
+ data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) +
+ (op[1]->value.f[c] * op[2]->value.f[c2]);
+ }
+ break;
+ }
+
+ case ir_triop_csel:
+ for (unsigned c = 0; c < components; c++) {
+ if (op[1]->type->base_type == GLSL_TYPE_DOUBLE)
+ data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c]
+ : op[2]->value.d[c];
+ else
+ data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c]
+ : op[2]->value.u[c];
+ }
+ break;
+
+ case ir_triop_vector_insert: {
+ const unsigned idx = op[2]->value.u[0];
+
+ memcpy(&data, &op[0]->value, sizeof(data));
+
+ switch (this->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[idx] = op[1]->value.i[0];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[idx] = op[1]->value.u[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[idx] = op[1]->value.f[0];
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[idx] = op[1]->value.b[0];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[idx] = op[1]->value.d[0];
+ break;
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+ break;
+ }
+
+ case ir_quadop_bitfield_insert: {
+ for (unsigned c = 0; c < components; c++) {
+ int offset = op[2]->value.i[c];
+ int bits = op[3]->value.i[c];
+
+ if (bits == 0)
+ data.u[c] = op[0]->value.u[c];
+ else if (offset < 0 || bits < 0)
+ data.u[c] = 0; /* Undefined, per spec. */
+ else if (offset + bits > 32)
+ data.u[c] = 0; /* Undefined, per spec. */
+ else {
+ unsigned insert_mask = ((1ull << bits) - 1) << offset;
+
+ unsigned insert = op[1]->value.u[c];
+ insert <<= offset;
+ insert &= insert_mask;
+
+ unsigned base = op[0]->value.u[c];
+ base &= ~insert_mask;
+
+ data.u[c] = base | insert;
+ }
+ }
+ break;
+ }
+
+ case ir_quadop_vector:
+ for (unsigned c = 0; c < this->type->vector_elements; c++) {
+ switch (this->type->base_type) {
+ case GLSL_TYPE_INT:
+ data.i[c] = op[c]->value.i[0];
+ break;
+ case GLSL_TYPE_UINT:
+ data.u[c] = op[c]->value.u[0];
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[c] = op[c]->value.f[0];
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[c] = op[c]->value.d[0];
+ break;
+ default:
+ assert(0);
+ }
+ }
+ break;
+
+ default:
+ /* FINISHME: Should handle all expression types. */
+ return NULL;
+ }
+
+ return new(ctx) ir_constant(this->type, &data);
+}
+
+
+ir_constant *
+ir_texture::constant_expression_value(struct hash_table *)
+{
+ /* texture lookups aren't constant expressions */
+ return NULL;
+}
+
+
+ir_constant *
+ir_swizzle::constant_expression_value(struct hash_table *variable_context)
+{
+ ir_constant *v = this->val->constant_expression_value(variable_context);
+
+ if (v != NULL) {
+ ir_constant_data data = { { 0 } };
+
+ const unsigned swiz_idx[4] = {
+ this->mask.x, this->mask.y, this->mask.z, this->mask.w
+ };
+
+ for (unsigned i = 0; i < this->mask.num_components; i++) {
+ switch (v->type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
+ case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
+ case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
+ case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
+ default: assert(!"Should not get here."); break;
+ }
+ }
+
+ void *ctx = ralloc_parent(this);
+ return new(ctx) ir_constant(this->type, &data);
+ }
+ return NULL;
+}
+
+
+ir_constant *
+ir_dereference_variable::constant_expression_value(struct hash_table *variable_context)
+{
+ assert(var);
+
+ /* Give priority to the context hashtable, if it exists */
+ if (variable_context) {
+ ir_constant *value = (ir_constant *)hash_table_find(variable_context, var);
+ if(value)
+ return value;
+ }
+
+ /* The constant_value of a uniform variable is its initializer,
+ * not the lifetime constant value of the uniform.
+ */
+ if (var->data.mode == ir_var_uniform)
+ return NULL;
+
+ if (!var->constant_value)
+ return NULL;
+
+ return var->constant_value->clone(ralloc_parent(var), NULL);
+}
+
+
+ir_constant *
+ir_dereference_array::constant_expression_value(struct hash_table *variable_context)
+{
+ ir_constant *array = this->array->constant_expression_value(variable_context);
+ ir_constant *idx = this->array_index->constant_expression_value(variable_context);
+
+ if ((array != NULL) && (idx != NULL)) {
+ void *ctx = ralloc_parent(this);
+ if (array->type->is_matrix()) {
+ /* Array access of a matrix results in a vector.
+ */
+ const unsigned column = idx->value.u[0];
+
+ const glsl_type *const column_type = array->type->column_type();
+
+ /* Offset in the constant matrix to the first element of the column
+ * to be extracted.
+ */
+ const unsigned mat_idx = column * column_type->vector_elements;
+
+ ir_constant_data data = { { 0 } };
+
+ switch (column_type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ for (unsigned i = 0; i < column_type->vector_elements; i++)
+ data.u[i] = array->value.u[mat_idx + i];
+
+ break;
+
+ case GLSL_TYPE_FLOAT:
+ for (unsigned i = 0; i < column_type->vector_elements; i++)
+ data.f[i] = array->value.f[mat_idx + i];
+
+ break;
+
+ case GLSL_TYPE_DOUBLE:
+ for (unsigned i = 0; i < column_type->vector_elements; i++)
+ data.d[i] = array->value.d[mat_idx + i];
+
+ break;
+
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+
+ return new(ctx) ir_constant(column_type, &data);
+ } else if (array->type->is_vector()) {
+ const unsigned component = idx->value.u[0];
+
+ return new(ctx) ir_constant(array, component);
+ } else {
+ const unsigned index = idx->value.u[0];
+ return array->get_array_element(index)->clone(ctx, NULL);
+ }
+ }
+ return NULL;
+}
+
+
+ir_constant *
+ir_dereference_record::constant_expression_value(struct hash_table *)
+{
+ ir_constant *v = this->record->constant_expression_value();
+
+ return (v != NULL) ? v->get_record_field(this->field) : NULL;
+}
+
+
+ir_constant *
+ir_assignment::constant_expression_value(struct hash_table *)
+{
+ /* FINISHME: Handle CEs involving assignment (return RHS) */
+ return NULL;
+}
+
+
+ir_constant *
+ir_constant::constant_expression_value(struct hash_table *)
+{
+ return this;
+}
+
+
+ir_constant *
+ir_call::constant_expression_value(struct hash_table *variable_context)
+{
+ return this->callee->constant_expression_value(&this->actual_parameters, variable_context);
+}
+
+
+bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body,
+ struct hash_table *variable_context,
+ ir_constant **result)
+{
+ foreach_in_list(ir_instruction, inst, &body) {
+ switch(inst->ir_type) {
+
+ /* (declare () type symbol) */
+ case ir_type_variable: {
+ ir_variable *var = inst->as_variable();
+ hash_table_insert(variable_context, ir_constant::zero(this, var->type), var);
+ break;
+ }
+
+ /* (assign [condition] (write-mask) (ref) (value)) */
+ case ir_type_assignment: {
+ ir_assignment *asg = inst->as_assignment();
+ if (asg->condition) {
+ ir_constant *cond = asg->condition->constant_expression_value(variable_context);
+ if (!cond)
+ return false;
+ if (!cond->get_bool_component(0))
+ break;
+ }
+
+ ir_constant *store = NULL;
+ int offset = 0;
+
+ if (!constant_referenced(asg->lhs, variable_context, store, offset))
+ return false;
+
+ ir_constant *value = asg->rhs->constant_expression_value(variable_context);
+
+ if (!value)
+ return false;
+
+ store->copy_masked_offset(value, offset, asg->write_mask);
+ break;
+ }
+
+ /* (return (expression)) */
+ case ir_type_return:
+ assert (result);
+ *result = inst->as_return()->value->constant_expression_value(variable_context);
+ return *result != NULL;
+
+ /* (call name (ref) (params))*/
+ case ir_type_call: {
+ ir_call *call = inst->as_call();
+
+ /* Just say no to void functions in constant expressions. We
+ * don't need them at that point.
+ */
+
+ if (!call->return_deref)
+ return false;
+
+ ir_constant *store = NULL;
+ int offset = 0;
+
+ if (!constant_referenced(call->return_deref, variable_context,
+ store, offset))
+ return false;
+
+ ir_constant *value = call->constant_expression_value(variable_context);
+
+ if(!value)
+ return false;
+
+ store->copy_offset(value, offset);
+ break;
+ }
+
+ /* (if condition (then-instructions) (else-instructions)) */
+ case ir_type_if: {
+ ir_if *iif = inst->as_if();
+
+ ir_constant *cond = iif->condition->constant_expression_value(variable_context);
+ if (!cond || !cond->type->is_boolean())
+ return false;
+
+ exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
+
+ *result = NULL;
+ if (!constant_expression_evaluate_expression_list(branch, variable_context, result))
+ return false;
+
+ /* If there was a return in the branch chosen, drop out now. */
+ if (*result)
+ return true;
+
+ break;
+ }
+
+ /* Every other expression type, we drop out. */
+ default:
+ return false;
+ }
+ }
+
+ /* Reaching the end of the block is not an error condition */
+ if (result)
+ *result = NULL;
+
+ return true;
+}
+
+ir_constant *
+ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context)
+{
+ const glsl_type *type = this->return_type;
+ if (type == glsl_type::void_type)
+ return NULL;
+
+ /* From the GLSL 1.20 spec, page 23:
+ * "Function calls to user-defined functions (non-built-in functions)
+ * cannot be used to form constant expressions."
+ */
+ if (!this->is_builtin())
+ return NULL;
+
+ /*
+ * Of the builtin functions, only the texture lookups and the noise
+ * ones must not be used in constant expressions. They all include
+ * specific opcodes so they don't need to be special-cased at this
+ * point.
+ */
+
+ /* Initialize the table of dereferencable names with the function
+ * parameters. Verify their const-ness on the way.
+ *
+ * We expect the correctness of the number of parameters to have
+ * been checked earlier.
+ */
+ hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+
+ /* If "origin" is non-NULL, then the function body is there. So we
+ * have to use the variable objects from the object with the body,
+ * but the parameter instanciation on the current object.
+ */
+ const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head;
+
+ foreach_in_list(ir_rvalue, n, actual_parameters) {
+ ir_constant *constant = n->constant_expression_value(variable_context);
+ if (constant == NULL) {
+ hash_table_dtor(deref_hash);
+ return NULL;
+ }
+
+
+ ir_variable *var = (ir_variable *)parameter_info;
+ hash_table_insert(deref_hash, constant, var);
+
+ parameter_info = parameter_info->next;
+ }
+
+ ir_constant *result = NULL;
+
+ /* Now run the builtin function until something non-constant
+ * happens or we get the result.
+ */
+ if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result)
+ result = result->clone(ralloc_parent(this), NULL);
+
+ hash_table_dtor(deref_hash);
+
+ return result;
+}