summaryrefslogtreecommitdiffstats
path: root/src/compiler/glsl/ast_to_hir.cpp
diff options
context:
space:
mode:
authorEmil Velikov <[email protected]>2016-01-18 12:16:48 +0200
committerEmil Velikov <[email protected]>2016-01-26 16:08:33 +0000
commiteb63640c1d38a200a7b1540405051d3ff79d0d8a (patch)
treeda46321a41f309b1d02aeb14d5d5487791c45aeb /src/compiler/glsl/ast_to_hir.cpp
parenta39a8fbbaa129f4e52f2a3ad2747182e9a74d910 (diff)
glsl: move to compiler/
Signed-off-by: Emil Velikov <[email protected]> Acked-by: Matt Turner <[email protected]> Acked-by: Jose Fonseca <[email protected]>
Diffstat (limited to 'src/compiler/glsl/ast_to_hir.cpp')
-rw-r--r--src/compiler/glsl/ast_to_hir.cpp7583
1 files changed, 7583 insertions, 0 deletions
diff --git a/src/compiler/glsl/ast_to_hir.cpp b/src/compiler/glsl/ast_to_hir.cpp
new file mode 100644
index 00000000000..dfd31966eb0
--- /dev/null
+++ b/src/compiler/glsl/ast_to_hir.cpp
@@ -0,0 +1,7583 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file ast_to_hir.c
+ * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
+ *
+ * During the conversion to HIR, the majority of the symantic checking is
+ * preformed on the program. This includes:
+ *
+ * * Symbol table management
+ * * Type checking
+ * * Function binding
+ *
+ * The majority of this work could be done during parsing, and the parser could
+ * probably generate HIR directly. However, this results in frequent changes
+ * to the parser code. Since we do not assume that every system this complier
+ * is built on will have Flex and Bison installed, we have to store the code
+ * generated by these tools in our version control system. In other parts of
+ * the system we've seen problems where a parser was changed but the generated
+ * code was not committed, merge conflicts where created because two developers
+ * had slightly different versions of Bison installed, etc.
+ *
+ * I have also noticed that running Bison generated parsers in GDB is very
+ * irritating. When you get a segfault on '$$ = $1->foo', you can't very
+ * well 'print $1' in GDB.
+ *
+ * As a result, my preference is to put as little C code as possible in the
+ * parser (and lexer) sources.
+ */
+
+#include "glsl_symbol_table.h"
+#include "glsl_parser_extras.h"
+#include "ast.h"
+#include "compiler/glsl_types.h"
+#include "program/hash_table.h"
+#include "main/shaderobj.h"
+#include "ir.h"
+#include "ir_builder.h"
+
+using namespace ir_builder;
+
+static void
+detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
+ exec_list *instructions);
+static void
+remove_per_vertex_blocks(exec_list *instructions,
+ _mesa_glsl_parse_state *state, ir_variable_mode mode);
+
+/**
+ * Visitor class that finds the first instance of any write-only variable that
+ * is ever read, if any
+ */
+class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
+{
+public:
+ read_from_write_only_variable_visitor() : found(NULL)
+ {
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (this->in_assignee)
+ return visit_continue;
+
+ ir_variable *var = ir->variable_referenced();
+ /* We can have image_write_only set on both images and buffer variables,
+ * but in the former there is a distinction between reads from
+ * the variable itself (write_only) and from the memory they point to
+ * (image_write_only), while in the case of buffer variables there is
+ * no such distinction, that is why this check here is limited to
+ * buffer variables alone.
+ */
+ if (!var || var->data.mode != ir_var_shader_storage)
+ return visit_continue;
+
+ if (var->data.image_write_only) {
+ found = var;
+ return visit_stop;
+ }
+
+ return visit_continue;
+ }
+
+ ir_variable *get_variable() {
+ return found;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_expression *ir)
+ {
+ /* .length() doesn't actually read anything */
+ if (ir->operation == ir_unop_ssbo_unsized_array_length)
+ return visit_continue_with_parent;
+
+ return visit_continue;
+ }
+
+private:
+ ir_variable *found;
+};
+
+void
+_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
+{
+ _mesa_glsl_initialize_variables(instructions, state);
+
+ state->symbols->separate_function_namespace = state->language_version == 110;
+
+ state->current_function = NULL;
+
+ state->toplevel_ir = instructions;
+
+ state->gs_input_prim_type_specified = false;
+ state->tcs_output_vertices_specified = false;
+ state->cs_input_local_size_specified = false;
+
+ /* Section 4.2 of the GLSL 1.20 specification states:
+ * "The built-in functions are scoped in a scope outside the global scope
+ * users declare global variables in. That is, a shader's global scope,
+ * available for user-defined functions and global variables, is nested
+ * inside the scope containing the built-in functions."
+ *
+ * Since built-in functions like ftransform() access built-in variables,
+ * it follows that those must be in the outer scope as well.
+ *
+ * We push scope here to create this nesting effect...but don't pop.
+ * This way, a shader's globals are still in the symbol table for use
+ * by the linker.
+ */
+ state->symbols->push_scope();
+
+ foreach_list_typed (ast_node, ast, link, & state->translation_unit)
+ ast->hir(instructions, state);
+
+ detect_recursion_unlinked(state, instructions);
+ detect_conflicting_assignments(state, instructions);
+
+ state->toplevel_ir = NULL;
+
+ /* Move all of the variable declarations to the front of the IR list, and
+ * reverse the order. This has the (intended!) side effect that vertex
+ * shader inputs and fragment shader outputs will appear in the IR in the
+ * same order that they appeared in the shader code. This results in the
+ * locations being assigned in the declared order. Many (arguably buggy)
+ * applications depend on this behavior, and it matches what nearly all
+ * other drivers do.
+ */
+ foreach_in_list_safe(ir_instruction, node, instructions) {
+ ir_variable *const var = node->as_variable();
+
+ if (var == NULL)
+ continue;
+
+ var->remove();
+ instructions->push_head(var);
+ }
+
+ /* Figure out if gl_FragCoord is actually used in fragment shader */
+ ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
+ if (var != NULL)
+ state->fs_uses_gl_fragcoord = var->data.used;
+
+ /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
+ *
+ * If multiple shaders using members of a built-in block belonging to
+ * the same interface are linked together in the same program, they
+ * must all redeclare the built-in block in the same way, as described
+ * in section 4.3.7 "Interface Blocks" for interface block matching, or
+ * a link error will result.
+ *
+ * The phrase "using members of a built-in block" implies that if two
+ * shaders are linked together and one of them *does not use* any members
+ * of the built-in block, then that shader does not need to have a matching
+ * redeclaration of the built-in block.
+ *
+ * This appears to be a clarification to the behaviour established for
+ * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
+ * version.
+ *
+ * The definition of "interface" in section 4.3.7 that applies here is as
+ * follows:
+ *
+ * The boundary between adjacent programmable pipeline stages: This
+ * spans all the outputs in all compilation units of the first stage
+ * and all the inputs in all compilation units of the second stage.
+ *
+ * Therefore this rule applies to both inter- and intra-stage linking.
+ *
+ * The easiest way to implement this is to check whether the shader uses
+ * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
+ * remove all the relevant variable declaration from the IR, so that the
+ * linker won't see them and complain about mismatches.
+ */
+ remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
+ remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
+
+ /* Check that we don't have reads from write-only variables */
+ read_from_write_only_variable_visitor v;
+ v.run(instructions);
+ ir_variable *error_var = v.get_variable();
+ if (error_var) {
+ /* It would be nice to have proper location information, but for that
+ * we would need to check this as we process each kind of AST node
+ */
+ YYLTYPE loc;
+ memset(&loc, 0, sizeof(loc));
+ _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
+ error_var->name);
+ }
+}
+
+
+static ir_expression_operation
+get_conversion_operation(const glsl_type *to, const glsl_type *from,
+ struct _mesa_glsl_parse_state *state)
+{
+ switch (to->base_type) {
+ case GLSL_TYPE_FLOAT:
+ switch (from->base_type) {
+ case GLSL_TYPE_INT: return ir_unop_i2f;
+ case GLSL_TYPE_UINT: return ir_unop_u2f;
+ case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
+ default: return (ir_expression_operation)0;
+ }
+
+ case GLSL_TYPE_UINT:
+ if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
+ return (ir_expression_operation)0;
+ switch (from->base_type) {
+ case GLSL_TYPE_INT: return ir_unop_i2u;
+ default: return (ir_expression_operation)0;
+ }
+
+ case GLSL_TYPE_DOUBLE:
+ if (!state->has_double())
+ return (ir_expression_operation)0;
+ switch (from->base_type) {
+ case GLSL_TYPE_INT: return ir_unop_i2d;
+ case GLSL_TYPE_UINT: return ir_unop_u2d;
+ case GLSL_TYPE_FLOAT: return ir_unop_f2d;
+ default: return (ir_expression_operation)0;
+ }
+
+ default: return (ir_expression_operation)0;
+ }
+}
+
+
+/**
+ * If a conversion is available, convert one operand to a different type
+ *
+ * The \c from \c ir_rvalue is converted "in place".
+ *
+ * \param to Type that the operand it to be converted to
+ * \param from Operand that is being converted
+ * \param state GLSL compiler state
+ *
+ * \return
+ * If a conversion is possible (or unnecessary), \c true is returned.
+ * Otherwise \c false is returned.
+ */
+bool
+apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ if (to->base_type == from->type->base_type)
+ return true;
+
+ /* Prior to GLSL 1.20, there are no implicit conversions */
+ if (!state->is_version(120, 0))
+ return false;
+
+ /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "There are no implicit array or structure conversions. For
+ * example, an array of int cannot be implicitly converted to an
+ * array of float.
+ */
+ if (!to->is_numeric() || !from->type->is_numeric())
+ return false;
+
+ /* We don't actually want the specific type `to`, we want a type
+ * with the same base type as `to`, but the same vector width as
+ * `from`.
+ */
+ to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
+ from->type->matrix_columns);
+
+ ir_expression_operation op = get_conversion_operation(to, from->type, state);
+ if (op) {
+ from = new(ctx) ir_expression(op, to, from, NULL);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+
+static const struct glsl_type *
+arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
+ bool multiply,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ const glsl_type *type_a = value_a->type;
+ const glsl_type *type_b = value_b->type;
+
+ /* From GLSL 1.50 spec, page 56:
+ *
+ * "The arithmetic binary operators add (+), subtract (-),
+ * multiply (*), and divide (/) operate on integer and
+ * floating-point scalars, vectors, and matrices."
+ */
+ if (!type_a->is_numeric() || !type_b->is_numeric()) {
+ _mesa_glsl_error(loc, state,
+ "operands to arithmetic operators must be numeric");
+ return glsl_type::error_type;
+ }
+
+
+ /* "If one operand is floating-point based and the other is
+ * not, then the conversions from Section 4.1.10 "Implicit
+ * Conversions" are applied to the non-floating-point-based operand."
+ */
+ if (!apply_implicit_conversion(type_a, value_b, state)
+ && !apply_implicit_conversion(type_b, value_a, state)) {
+ _mesa_glsl_error(loc, state,
+ "could not implicitly convert operands to "
+ "arithmetic operator");
+ return glsl_type::error_type;
+ }
+ type_a = value_a->type;
+ type_b = value_b->type;
+
+ /* "If the operands are integer types, they must both be signed or
+ * both be unsigned."
+ *
+ * From this rule and the preceeding conversion it can be inferred that
+ * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
+ * The is_numeric check above already filtered out the case where either
+ * type is not one of these, so now the base types need only be tested for
+ * equality.
+ */
+ if (type_a->base_type != type_b->base_type) {
+ _mesa_glsl_error(loc, state,
+ "base type mismatch for arithmetic operator");
+ return glsl_type::error_type;
+ }
+
+ /* "All arithmetic binary operators result in the same fundamental type
+ * (signed integer, unsigned integer, or floating-point) as the
+ * operands they operate on, after operand type conversion. After
+ * conversion, the following cases are valid
+ *
+ * * The two operands are scalars. In this case the operation is
+ * applied, resulting in a scalar."
+ */
+ if (type_a->is_scalar() && type_b->is_scalar())
+ return type_a;
+
+ /* "* One operand is a scalar, and the other is a vector or matrix.
+ * In this case, the scalar operation is applied independently to each
+ * component of the vector or matrix, resulting in the same size
+ * vector or matrix."
+ */
+ if (type_a->is_scalar()) {
+ if (!type_b->is_scalar())
+ return type_b;
+ } else if (type_b->is_scalar()) {
+ return type_a;
+ }
+
+ /* All of the combinations of <scalar, scalar>, <vector, scalar>,
+ * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
+ * handled.
+ */
+ assert(!type_a->is_scalar());
+ assert(!type_b->is_scalar());
+
+ /* "* The two operands are vectors of the same size. In this case, the
+ * operation is done component-wise resulting in the same size
+ * vector."
+ */
+ if (type_a->is_vector() && type_b->is_vector()) {
+ if (type_a == type_b) {
+ return type_a;
+ } else {
+ _mesa_glsl_error(loc, state,
+ "vector size mismatch for arithmetic operator");
+ return glsl_type::error_type;
+ }
+ }
+
+ /* All of the combinations of <scalar, scalar>, <vector, scalar>,
+ * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
+ * <vector, vector> have been handled. At least one of the operands must
+ * be matrix. Further, since there are no integer matrix types, the base
+ * type of both operands must be float.
+ */
+ assert(type_a->is_matrix() || type_b->is_matrix());
+ assert(type_a->base_type == GLSL_TYPE_FLOAT ||
+ type_a->base_type == GLSL_TYPE_DOUBLE);
+ assert(type_b->base_type == GLSL_TYPE_FLOAT ||
+ type_b->base_type == GLSL_TYPE_DOUBLE);
+
+ /* "* The operator is add (+), subtract (-), or divide (/), and the
+ * operands are matrices with the same number of rows and the same
+ * number of columns. In this case, the operation is done component-
+ * wise resulting in the same size matrix."
+ * * The operator is multiply (*), where both operands are matrices or
+ * one operand is a vector and the other a matrix. A right vector
+ * operand is treated as a column vector and a left vector operand as a
+ * row vector. In all these cases, it is required that the number of
+ * columns of the left operand is equal to the number of rows of the
+ * right operand. Then, the multiply (*) operation does a linear
+ * algebraic multiply, yielding an object that has the same number of
+ * rows as the left operand and the same number of columns as the right
+ * operand. Section 5.10 "Vector and Matrix Operations" explains in
+ * more detail how vectors and matrices are operated on."
+ */
+ if (! multiply) {
+ if (type_a == type_b)
+ return type_a;
+ } else {
+ const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
+
+ if (type == glsl_type::error_type) {
+ _mesa_glsl_error(loc, state,
+ "size mismatch for matrix multiplication");
+ }
+
+ return type;
+ }
+
+
+ /* "All other cases are illegal."
+ */
+ _mesa_glsl_error(loc, state, "type mismatch");
+ return glsl_type::error_type;
+}
+
+
+static const struct glsl_type *
+unary_arithmetic_result_type(const struct glsl_type *type,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ /* From GLSL 1.50 spec, page 57:
+ *
+ * "The arithmetic unary operators negate (-), post- and pre-increment
+ * and decrement (-- and ++) operate on integer or floating-point
+ * values (including vectors and matrices). All unary operators work
+ * component-wise on their operands. These result with the same type
+ * they operated on."
+ */
+ if (!type->is_numeric()) {
+ _mesa_glsl_error(loc, state,
+ "operands to arithmetic operators must be numeric");
+ return glsl_type::error_type;
+ }
+
+ return type;
+}
+
+/**
+ * \brief Return the result type of a bit-logic operation.
+ *
+ * If the given types to the bit-logic operator are invalid, return
+ * glsl_type::error_type.
+ *
+ * \param value_a LHS of bit-logic op
+ * \param value_b RHS of bit-logic op
+ */
+static const struct glsl_type *
+bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
+ ast_operators op,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ const glsl_type *type_a = value_a->type;
+ const glsl_type *type_b = value_b->type;
+
+ if (!state->check_bitwise_operations_allowed(loc)) {
+ return glsl_type::error_type;
+ }
+
+ /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
+ *
+ * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
+ * (|). The operands must be of type signed or unsigned integers or
+ * integer vectors."
+ */
+ if (!type_a->is_integer()) {
+ _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
+ ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+ if (!type_b->is_integer()) {
+ _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
+ ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
+ * make sense for bitwise operations, as they don't operate on floats.
+ *
+ * GLSL 4.0 added implicit int -> uint conversions, which are relevant
+ * here. It wasn't clear whether or not we should apply them to bitwise
+ * operations. However, Khronos has decided that they should in future
+ * language revisions. Applications also rely on this behavior. We opt
+ * to apply them in general, but issue a portability warning.
+ *
+ * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
+ */
+ if (type_a->base_type != type_b->base_type) {
+ if (!apply_implicit_conversion(type_a, value_b, state)
+ && !apply_implicit_conversion(type_b, value_a, state)) {
+ _mesa_glsl_error(loc, state,
+ "could not implicitly convert operands to "
+ "`%s` operator",
+ ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ } else {
+ _mesa_glsl_warning(loc, state,
+ "some implementations may not support implicit "
+ "int -> uint conversions for `%s' operators; "
+ "consider casting explicitly for portability",
+ ast_expression::operator_string(op));
+ }
+ type_a = value_a->type;
+ type_b = value_b->type;
+ }
+
+ /* "The fundamental types of the operands (signed or unsigned) must
+ * match,"
+ */
+ if (type_a->base_type != type_b->base_type) {
+ _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
+ "base type", ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* "The operands cannot be vectors of differing size." */
+ if (type_a->is_vector() &&
+ type_b->is_vector() &&
+ type_a->vector_elements != type_b->vector_elements) {
+ _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
+ "different sizes", ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* "If one operand is a scalar and the other a vector, the scalar is
+ * applied component-wise to the vector, resulting in the same type as
+ * the vector. The fundamental types of the operands [...] will be the
+ * resulting fundamental type."
+ */
+ if (type_a->is_scalar())
+ return type_b;
+ else
+ return type_a;
+}
+
+static const struct glsl_type *
+modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ const glsl_type *type_a = value_a->type;
+ const glsl_type *type_b = value_b->type;
+
+ if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
+ return glsl_type::error_type;
+ }
+
+ /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
+ *
+ * "The operator modulus (%) operates on signed or unsigned integers or
+ * integer vectors."
+ */
+ if (!type_a->is_integer()) {
+ _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
+ return glsl_type::error_type;
+ }
+ if (!type_b->is_integer()) {
+ _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
+ return glsl_type::error_type;
+ }
+
+ /* "If the fundamental types in the operands do not match, then the
+ * conversions from section 4.1.10 "Implicit Conversions" are applied
+ * to create matching types."
+ *
+ * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
+ * int -> uint conversion rules. Prior to that, there were no implicit
+ * conversions. So it's harmless to apply them universally - no implicit
+ * conversions will exist. If the types don't match, we'll receive false,
+ * and raise an error, satisfying the GLSL 1.50 spec, page 56:
+ *
+ * "The operand types must both be signed or unsigned."
+ */
+ if (!apply_implicit_conversion(type_a, value_b, state) &&
+ !apply_implicit_conversion(type_b, value_a, state)) {
+ _mesa_glsl_error(loc, state,
+ "could not implicitly convert operands to "
+ "modulus (%%) operator");
+ return glsl_type::error_type;
+ }
+ type_a = value_a->type;
+ type_b = value_b->type;
+
+ /* "The operands cannot be vectors of differing size. If one operand is
+ * a scalar and the other vector, then the scalar is applied component-
+ * wise to the vector, resulting in the same type as the vector. If both
+ * are vectors of the same size, the result is computed component-wise."
+ */
+ if (type_a->is_vector()) {
+ if (!type_b->is_vector()
+ || (type_a->vector_elements == type_b->vector_elements))
+ return type_a;
+ } else
+ return type_b;
+
+ /* "The operator modulus (%) is not defined for any other data types
+ * (non-integer types)."
+ */
+ _mesa_glsl_error(loc, state, "type mismatch");
+ return glsl_type::error_type;
+}
+
+
+static const struct glsl_type *
+relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ const glsl_type *type_a = value_a->type;
+ const glsl_type *type_b = value_b->type;
+
+ /* From GLSL 1.50 spec, page 56:
+ * "The relational operators greater than (>), less than (<), greater
+ * than or equal (>=), and less than or equal (<=) operate only on
+ * scalar integer and scalar floating-point expressions."
+ */
+ if (!type_a->is_numeric()
+ || !type_b->is_numeric()
+ || !type_a->is_scalar()
+ || !type_b->is_scalar()) {
+ _mesa_glsl_error(loc, state,
+ "operands to relational operators must be scalar and "
+ "numeric");
+ return glsl_type::error_type;
+ }
+
+ /* "Either the operands' types must match, or the conversions from
+ * Section 4.1.10 "Implicit Conversions" will be applied to the integer
+ * operand, after which the types must match."
+ */
+ if (!apply_implicit_conversion(type_a, value_b, state)
+ && !apply_implicit_conversion(type_b, value_a, state)) {
+ _mesa_glsl_error(loc, state,
+ "could not implicitly convert operands to "
+ "relational operator");
+ return glsl_type::error_type;
+ }
+ type_a = value_a->type;
+ type_b = value_b->type;
+
+ if (type_a->base_type != type_b->base_type) {
+ _mesa_glsl_error(loc, state, "base type mismatch");
+ return glsl_type::error_type;
+ }
+
+ /* "The result is scalar Boolean."
+ */
+ return glsl_type::bool_type;
+}
+
+/**
+ * \brief Return the result type of a bit-shift operation.
+ *
+ * If the given types to the bit-shift operator are invalid, return
+ * glsl_type::error_type.
+ *
+ * \param type_a Type of LHS of bit-shift op
+ * \param type_b Type of RHS of bit-shift op
+ */
+static const struct glsl_type *
+shift_result_type(const struct glsl_type *type_a,
+ const struct glsl_type *type_b,
+ ast_operators op,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ if (!state->check_bitwise_operations_allowed(loc)) {
+ return glsl_type::error_type;
+ }
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
+ *
+ * "The shift operators (<<) and (>>). For both operators, the operands
+ * must be signed or unsigned integers or integer vectors. One operand
+ * can be signed while the other is unsigned."
+ */
+ if (!type_a->is_integer()) {
+ _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
+ "integer vector", ast_expression::operator_string(op));
+ return glsl_type::error_type;
+
+ }
+ if (!type_b->is_integer()) {
+ _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
+ "integer vector", ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* "If the first operand is a scalar, the second operand has to be
+ * a scalar as well."
+ */
+ if (type_a->is_scalar() && !type_b->is_scalar()) {
+ _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
+ "second must be scalar as well",
+ ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* If both operands are vectors, check that they have same number of
+ * elements.
+ */
+ if (type_a->is_vector() &&
+ type_b->is_vector() &&
+ type_a->vector_elements != type_b->vector_elements) {
+ _mesa_glsl_error(loc, state, "vector operands to operator %s must "
+ "have same number of elements",
+ ast_expression::operator_string(op));
+ return glsl_type::error_type;
+ }
+
+ /* "In all cases, the resulting type will be the same type as the left
+ * operand."
+ */
+ return type_a;
+}
+
+/**
+ * Returns the innermost array index expression in an rvalue tree.
+ * This is the largest indexing level -- if an array of blocks, then
+ * it is the block index rather than an indexing expression for an
+ * array-typed member of an array of blocks.
+ */
+static ir_rvalue *
+find_innermost_array_index(ir_rvalue *rv)
+{
+ ir_dereference_array *last = NULL;
+ while (rv) {
+ if (rv->as_dereference_array()) {
+ last = rv->as_dereference_array();
+ rv = last->array;
+ } else if (rv->as_dereference_record())
+ rv = rv->as_dereference_record()->record;
+ else if (rv->as_swizzle())
+ rv = rv->as_swizzle()->val;
+ else
+ rv = NULL;
+ }
+
+ if (last)
+ return last->array_index;
+
+ return NULL;
+}
+
+/**
+ * Validates that a value can be assigned to a location with a specified type
+ *
+ * Validates that \c rhs can be assigned to some location. If the types are
+ * not an exact match but an automatic conversion is possible, \c rhs will be
+ * converted.
+ *
+ * \return
+ * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
+ * Otherwise the actual RHS to be assigned will be returned. This may be
+ * \c rhs, or it may be \c rhs after some type conversion.
+ *
+ * \note
+ * In addition to being used for assignments, this function is used to
+ * type-check return values.
+ */
+static ir_rvalue *
+validate_assignment(struct _mesa_glsl_parse_state *state,
+ YYLTYPE loc, ir_rvalue *lhs,
+ ir_rvalue *rhs, bool is_initializer)
+{
+ /* If there is already some error in the RHS, just return it. Anything
+ * else will lead to an avalanche of error message back to the user.
+ */
+ if (rhs->type->is_error())
+ return rhs;
+
+ /* In the Tessellation Control Shader:
+ * If a per-vertex output variable is used as an l-value, it is an error
+ * if the expression indicating the vertex number is not the identifier
+ * `gl_InvocationID`.
+ */
+ if (state->stage == MESA_SHADER_TESS_CTRL) {
+ ir_variable *var = lhs->variable_referenced();
+ if (var->data.mode == ir_var_shader_out && !var->data.patch) {
+ ir_rvalue *index = find_innermost_array_index(lhs);
+ ir_variable *index_var = index ? index->variable_referenced() : NULL;
+ if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
+ _mesa_glsl_error(&loc, state,
+ "Tessellation control shader outputs can only "
+ "be indexed by gl_InvocationID");
+ return NULL;
+ }
+ }
+ }
+
+ /* If the types are identical, the assignment can trivially proceed.
+ */
+ if (rhs->type == lhs->type)
+ return rhs;
+
+ /* If the array element types are the same and the LHS is unsized,
+ * the assignment is okay for initializers embedded in variable
+ * declarations.
+ *
+ * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
+ * is handled by ir_dereference::is_lvalue.
+ */
+ const glsl_type *lhs_t = lhs->type;
+ const glsl_type *rhs_t = rhs->type;
+ bool unsized_array = false;
+ while(lhs_t->is_array()) {
+ if (rhs_t == lhs_t)
+ break; /* the rest of the inner arrays match so break out early */
+ if (!rhs_t->is_array()) {
+ unsized_array = false;
+ break; /* number of dimensions mismatch */
+ }
+ if (lhs_t->length == rhs_t->length) {
+ lhs_t = lhs_t->fields.array;
+ rhs_t = rhs_t->fields.array;
+ continue;
+ } else if (lhs_t->is_unsized_array()) {
+ unsized_array = true;
+ } else {
+ unsized_array = false;
+ break; /* sized array mismatch */
+ }
+ lhs_t = lhs_t->fields.array;
+ rhs_t = rhs_t->fields.array;
+ }
+ if (unsized_array) {
+ if (is_initializer) {
+ return rhs;
+ } else {
+ _mesa_glsl_error(&loc, state,
+ "implicitly sized arrays cannot be assigned");
+ return NULL;
+ }
+ }
+
+ /* Check for implicit conversion in GLSL 1.20 */
+ if (apply_implicit_conversion(lhs->type, rhs, state)) {
+ if (rhs->type == lhs->type)
+ return rhs;
+ }
+
+ _mesa_glsl_error(&loc, state,
+ "%s of type %s cannot be assigned to "
+ "variable of type %s",
+ is_initializer ? "initializer" : "value",
+ rhs->type->name, lhs->type->name);
+
+ return NULL;
+}
+
+static void
+mark_whole_array_access(ir_rvalue *access)
+{
+ ir_dereference_variable *deref = access->as_dereference_variable();
+
+ if (deref && deref->var) {
+ deref->var->data.max_array_access = deref->type->length - 1;
+ }
+}
+
+static bool
+do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
+ const char *non_lvalue_description,
+ ir_rvalue *lhs, ir_rvalue *rhs,
+ ir_rvalue **out_rvalue, bool needs_rvalue,
+ bool is_initializer,
+ YYLTYPE lhs_loc)
+{
+ void *ctx = state;
+ bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
+
+ ir_variable *lhs_var = lhs->variable_referenced();
+ if (lhs_var)
+ lhs_var->data.assigned = true;
+
+ if (!error_emitted) {
+ if (non_lvalue_description != NULL) {
+ _mesa_glsl_error(&lhs_loc, state,
+ "assignment to %s",
+ non_lvalue_description);
+ error_emitted = true;
+ } else if (lhs_var != NULL && (lhs_var->data.read_only ||
+ (lhs_var->data.mode == ir_var_shader_storage &&
+ lhs_var->data.image_read_only))) {
+ /* We can have image_read_only set on both images and buffer variables,
+ * but in the former there is a distinction between assignments to
+ * the variable itself (read_only) and to the memory they point to
+ * (image_read_only), while in the case of buffer variables there is
+ * no such distinction, that is why this check here is limited to
+ * buffer variables alone.
+ */
+ _mesa_glsl_error(&lhs_loc, state,
+ "assignment to read-only variable '%s'",
+ lhs_var->name);
+ error_emitted = true;
+ } else if (lhs->type->is_array() &&
+ !state->check_version(120, 300, &lhs_loc,
+ "whole array assignment forbidden")) {
+ /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "Other binary or unary expressions, non-dereferenced
+ * arrays, function names, swizzles with repeated fields,
+ * and constants cannot be l-values."
+ *
+ * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
+ */
+ error_emitted = true;
+ } else if (!lhs->is_lvalue()) {
+ _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
+ error_emitted = true;
+ }
+ }
+
+ ir_rvalue *new_rhs =
+ validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
+ if (new_rhs != NULL) {
+ rhs = new_rhs;
+
+ /* If the LHS array was not declared with a size, it takes it size from
+ * the RHS. If the LHS is an l-value and a whole array, it must be a
+ * dereference of a variable. Any other case would require that the LHS
+ * is either not an l-value or not a whole array.
+ */
+ if (lhs->type->is_unsized_array()) {
+ ir_dereference *const d = lhs->as_dereference();
+
+ assert(d != NULL);
+
+ ir_variable *const var = d->variable_referenced();
+
+ assert(var != NULL);
+
+ if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
+ /* FINISHME: This should actually log the location of the RHS. */
+ _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
+ "previous access",
+ var->data.max_array_access);
+ }
+
+ var->type = glsl_type::get_array_instance(lhs->type->fields.array,
+ rhs->type->array_size());
+ d->type = var->type;
+ }
+ if (lhs->type->is_array()) {
+ mark_whole_array_access(rhs);
+ mark_whole_array_access(lhs);
+ }
+ }
+
+ /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
+ * but not post_inc) need the converted assigned value as an rvalue
+ * to handle things like:
+ *
+ * i = j += 1;
+ */
+ if (needs_rvalue) {
+ ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
+ ir_var_temporary);
+ instructions->push_tail(var);
+ instructions->push_tail(assign(var, rhs));
+
+ if (!error_emitted) {
+ ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
+ instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
+ }
+ ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
+
+ *out_rvalue = rvalue;
+ } else {
+ if (!error_emitted)
+ instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
+ *out_rvalue = NULL;
+ }
+
+ return error_emitted;
+}
+
+static ir_rvalue *
+get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
+{
+ void *ctx = ralloc_parent(lvalue);
+ ir_variable *var;
+
+ var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
+ ir_var_temporary);
+ instructions->push_tail(var);
+
+ instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
+ lvalue));
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+ir_rvalue *
+ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
+{
+ (void) instructions;
+ (void) state;
+
+ return NULL;
+}
+
+bool
+ast_node::has_sequence_subexpression() const
+{
+ return false;
+}
+
+void
+ast_function_expression::hir_no_rvalue(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ (void)hir(instructions, state);
+}
+
+void
+ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ (void)hir(instructions, state);
+}
+
+static ir_rvalue *
+do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
+{
+ int join_op;
+ ir_rvalue *cmp = NULL;
+
+ if (operation == ir_binop_all_equal)
+ join_op = ir_binop_logic_and;
+ else
+ join_op = ir_binop_logic_or;
+
+ switch (op0->type->base_type) {
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_DOUBLE:
+ return new(mem_ctx) ir_expression(operation, op0, op1);
+
+ case GLSL_TYPE_ARRAY: {
+ for (unsigned int i = 0; i < op0->type->length; i++) {
+ ir_rvalue *e0, *e1, *result;
+
+ e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
+ new(mem_ctx) ir_constant(i));
+ e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
+ new(mem_ctx) ir_constant(i));
+ result = do_comparison(mem_ctx, operation, e0, e1);
+
+ if (cmp) {
+ cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
+ } else {
+ cmp = result;
+ }
+ }
+
+ mark_whole_array_access(op0);
+ mark_whole_array_access(op1);
+ break;
+ }
+
+ case GLSL_TYPE_STRUCT: {
+ for (unsigned int i = 0; i < op0->type->length; i++) {
+ ir_rvalue *e0, *e1, *result;
+ const char *field_name = op0->type->fields.structure[i].name;
+
+ e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
+ field_name);
+ e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
+ field_name);
+ result = do_comparison(mem_ctx, operation, e0, e1);
+
+ if (cmp) {
+ cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
+ } else {
+ cmp = result;
+ }
+ }
+ break;
+ }
+
+ case GLSL_TYPE_ERROR:
+ case GLSL_TYPE_VOID:
+ case GLSL_TYPE_SAMPLER:
+ case GLSL_TYPE_IMAGE:
+ case GLSL_TYPE_INTERFACE:
+ case GLSL_TYPE_ATOMIC_UINT:
+ case GLSL_TYPE_SUBROUTINE:
+ /* I assume a comparison of a struct containing a sampler just
+ * ignores the sampler present in the type.
+ */
+ break;
+ }
+
+ if (cmp == NULL)
+ cmp = new(mem_ctx) ir_constant(true);
+
+ return cmp;
+}
+
+/* For logical operations, we want to ensure that the operands are
+ * scalar booleans. If it isn't, emit an error and return a constant
+ * boolean to avoid triggering cascading error messages.
+ */
+ir_rvalue *
+get_scalar_boolean_operand(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state,
+ ast_expression *parent_expr,
+ int operand,
+ const char *operand_name,
+ bool *error_emitted)
+{
+ ast_expression *expr = parent_expr->subexpressions[operand];
+ void *ctx = state;
+ ir_rvalue *val = expr->hir(instructions, state);
+
+ if (val->type->is_boolean() && val->type->is_scalar())
+ return val;
+
+ if (!*error_emitted) {
+ YYLTYPE loc = expr->get_location();
+ _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
+ operand_name,
+ parent_expr->operator_string(parent_expr->oper));
+ *error_emitted = true;
+ }
+
+ return new(ctx) ir_constant(true);
+}
+
+/**
+ * If name refers to a builtin array whose maximum allowed size is less than
+ * size, report an error and return true. Otherwise return false.
+ */
+void
+check_builtin_array_max_size(const char *name, unsigned size,
+ YYLTYPE loc, struct _mesa_glsl_parse_state *state)
+{
+ if ((strcmp("gl_TexCoord", name) == 0)
+ && (size > state->Const.MaxTextureCoords)) {
+ /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
+ *
+ * "The size [of gl_TexCoord] can be at most
+ * gl_MaxTextureCoords."
+ */
+ _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
+ "be larger than gl_MaxTextureCoords (%u)",
+ state->Const.MaxTextureCoords);
+ } else if (strcmp("gl_ClipDistance", name) == 0
+ && size > state->Const.MaxClipPlanes) {
+ /* From section 7.1 (Vertex Shader Special Variables) of the
+ * GLSL 1.30 spec:
+ *
+ * "The gl_ClipDistance array is predeclared as unsized and
+ * must be sized by the shader either redeclaring it with a
+ * size or indexing it only with integral constant
+ * expressions. ... The size can be at most
+ * gl_MaxClipDistances."
+ */
+ _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
+ "be larger than gl_MaxClipDistances (%u)",
+ state->Const.MaxClipPlanes);
+ }
+}
+
+/**
+ * Create the constant 1, of a which is appropriate for incrementing and
+ * decrementing values of the given GLSL type. For example, if type is vec4,
+ * this creates a constant value of 1.0 having type float.
+ *
+ * If the given type is invalid for increment and decrement operators, return
+ * a floating point 1--the error will be detected later.
+ */
+static ir_rvalue *
+constant_one_for_inc_dec(void *ctx, const glsl_type *type)
+{
+ switch (type->base_type) {
+ case GLSL_TYPE_UINT:
+ return new(ctx) ir_constant((unsigned) 1);
+ case GLSL_TYPE_INT:
+ return new(ctx) ir_constant(1);
+ default:
+ case GLSL_TYPE_FLOAT:
+ return new(ctx) ir_constant(1.0f);
+ }
+}
+
+ir_rvalue *
+ast_expression::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ return do_hir(instructions, state, true);
+}
+
+void
+ast_expression::hir_no_rvalue(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ do_hir(instructions, state, false);
+}
+
+ir_rvalue *
+ast_expression::do_hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state,
+ bool needs_rvalue)
+{
+ void *ctx = state;
+ static const int operations[AST_NUM_OPERATORS] = {
+ -1, /* ast_assign doesn't convert to ir_expression. */
+ -1, /* ast_plus doesn't convert to ir_expression. */
+ ir_unop_neg,
+ ir_binop_add,
+ ir_binop_sub,
+ ir_binop_mul,
+ ir_binop_div,
+ ir_binop_mod,
+ ir_binop_lshift,
+ ir_binop_rshift,
+ ir_binop_less,
+ ir_binop_greater,
+ ir_binop_lequal,
+ ir_binop_gequal,
+ ir_binop_all_equal,
+ ir_binop_any_nequal,
+ ir_binop_bit_and,
+ ir_binop_bit_xor,
+ ir_binop_bit_or,
+ ir_unop_bit_not,
+ ir_binop_logic_and,
+ ir_binop_logic_xor,
+ ir_binop_logic_or,
+ ir_unop_logic_not,
+
+ /* Note: The following block of expression types actually convert
+ * to multiple IR instructions.
+ */
+ ir_binop_mul, /* ast_mul_assign */
+ ir_binop_div, /* ast_div_assign */
+ ir_binop_mod, /* ast_mod_assign */
+ ir_binop_add, /* ast_add_assign */
+ ir_binop_sub, /* ast_sub_assign */
+ ir_binop_lshift, /* ast_ls_assign */
+ ir_binop_rshift, /* ast_rs_assign */
+ ir_binop_bit_and, /* ast_and_assign */
+ ir_binop_bit_xor, /* ast_xor_assign */
+ ir_binop_bit_or, /* ast_or_assign */
+
+ -1, /* ast_conditional doesn't convert to ir_expression. */
+ ir_binop_add, /* ast_pre_inc. */
+ ir_binop_sub, /* ast_pre_dec. */
+ ir_binop_add, /* ast_post_inc. */
+ ir_binop_sub, /* ast_post_dec. */
+ -1, /* ast_field_selection doesn't conv to ir_expression. */
+ -1, /* ast_array_index doesn't convert to ir_expression. */
+ -1, /* ast_function_call doesn't conv to ir_expression. */
+ -1, /* ast_identifier doesn't convert to ir_expression. */
+ -1, /* ast_int_constant doesn't convert to ir_expression. */
+ -1, /* ast_uint_constant doesn't conv to ir_expression. */
+ -1, /* ast_float_constant doesn't conv to ir_expression. */
+ -1, /* ast_bool_constant doesn't conv to ir_expression. */
+ -1, /* ast_sequence doesn't convert to ir_expression. */
+ };
+ ir_rvalue *result = NULL;
+ ir_rvalue *op[3];
+ const struct glsl_type *type; /* a temporary variable for switch cases */
+ bool error_emitted = false;
+ YYLTYPE loc;
+
+ loc = this->get_location();
+
+ switch (this->oper) {
+ case ast_aggregate:
+ assert(!"ast_aggregate: Should never get here.");
+ break;
+
+ case ast_assign: {
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0], op[1], &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+ break;
+ }
+
+ case ast_plus:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+
+ type = unary_arithmetic_result_type(op[0]->type, state, & loc);
+
+ error_emitted = type->is_error();
+
+ result = op[0];
+ break;
+
+ case ast_neg:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+
+ type = unary_arithmetic_result_type(op[0]->type, state, & loc);
+
+ error_emitted = type->is_error();
+
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], NULL);
+ break;
+
+ case ast_add:
+ case ast_sub:
+ case ast_mul:
+ case ast_div:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ type = arithmetic_result_type(op[0], op[1],
+ (this->oper == ast_mul),
+ state, & loc);
+ error_emitted = type->is_error();
+
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+ break;
+
+ case ast_mod:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ type = modulus_result_type(op[0], op[1], state, &loc);
+
+ assert(operations[this->oper] == ir_binop_mod);
+
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+ error_emitted = type->is_error();
+ break;
+
+ case ast_lshift:
+ case ast_rshift:
+ if (!state->check_bitwise_operations_allowed(&loc)) {
+ error_emitted = true;
+ }
+
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+ type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
+ &loc);
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+ error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
+ break;
+
+ case ast_less:
+ case ast_greater:
+ case ast_lequal:
+ case ast_gequal:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ type = relational_result_type(op[0], op[1], state, & loc);
+
+ /* The relational operators must either generate an error or result
+ * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
+ */
+ assert(type->is_error()
+ || ((type->base_type == GLSL_TYPE_BOOL)
+ && type->is_scalar()));
+
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+ error_emitted = type->is_error();
+ break;
+
+ case ast_nequal:
+ case ast_equal:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "The equality operators equal (==), and not equal (!=)
+ * operate on all types. They result in a scalar Boolean. If
+ * the operand types do not match, then there must be a
+ * conversion from Section 4.1.10 "Implicit Conversions"
+ * applied to one operand that can make them match, in which
+ * case this conversion is done."
+ */
+
+ if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
+ _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
+ "no operation `%1$s' exists that takes a left-hand "
+ "operand of type 'void' or a right operand of type "
+ "'void'", (this->oper == ast_equal) ? "==" : "!=");
+ error_emitted = true;
+ } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
+ && !apply_implicit_conversion(op[1]->type, op[0], state))
+ || (op[0]->type != op[1]->type)) {
+ _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
+ "type", (this->oper == ast_equal) ? "==" : "!=");
+ error_emitted = true;
+ } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
+ !state->check_version(120, 300, &loc,
+ "array comparisons forbidden")) {
+ error_emitted = true;
+ } else if ((op[0]->type->contains_opaque() ||
+ op[1]->type->contains_opaque())) {
+ _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
+ error_emitted = true;
+ }
+
+ if (error_emitted) {
+ result = new(ctx) ir_constant(false);
+ } else {
+ result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
+ assert(result->type == glsl_type::bool_type);
+ }
+ break;
+
+ case ast_bit_and:
+ case ast_bit_xor:
+ case ast_bit_or:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+ type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
+ result = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+ error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
+ break;
+
+ case ast_bit_not:
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+
+ if (!state->check_bitwise_operations_allowed(&loc)) {
+ error_emitted = true;
+ }
+
+ if (!op[0]->type->is_integer()) {
+ _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
+ error_emitted = true;
+ }
+
+ type = error_emitted ? glsl_type::error_type : op[0]->type;
+ result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
+ break;
+
+ case ast_logic_and: {
+ exec_list rhs_instructions;
+ op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
+ "LHS", &error_emitted);
+ op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
+ "RHS", &error_emitted);
+
+ if (rhs_instructions.is_empty()) {
+ result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
+ type = result->type;
+ } else {
+ ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
+ "and_tmp",
+ ir_var_temporary);
+ instructions->push_tail(tmp);
+
+ ir_if *const stmt = new(ctx) ir_if(op[0]);
+ instructions->push_tail(stmt);
+
+ stmt->then_instructions.append_list(&rhs_instructions);
+ ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const then_assign =
+ new(ctx) ir_assignment(then_deref, op[1]);
+ stmt->then_instructions.push_tail(then_assign);
+
+ ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const else_assign =
+ new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
+ stmt->else_instructions.push_tail(else_assign);
+
+ result = new(ctx) ir_dereference_variable(tmp);
+ type = tmp->type;
+ }
+ break;
+ }
+
+ case ast_logic_or: {
+ exec_list rhs_instructions;
+ op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
+ "LHS", &error_emitted);
+ op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
+ "RHS", &error_emitted);
+
+ if (rhs_instructions.is_empty()) {
+ result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
+ type = result->type;
+ } else {
+ ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
+ "or_tmp",
+ ir_var_temporary);
+ instructions->push_tail(tmp);
+
+ ir_if *const stmt = new(ctx) ir_if(op[0]);
+ instructions->push_tail(stmt);
+
+ ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const then_assign =
+ new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
+ stmt->then_instructions.push_tail(then_assign);
+
+ stmt->else_instructions.append_list(&rhs_instructions);
+ ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const else_assign =
+ new(ctx) ir_assignment(else_deref, op[1]);
+ stmt->else_instructions.push_tail(else_assign);
+
+ result = new(ctx) ir_dereference_variable(tmp);
+ type = tmp->type;
+ }
+ break;
+ }
+
+ case ast_logic_xor:
+ /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "The logical binary operators and (&&), or ( | | ), and
+ * exclusive or (^^). They operate only on two Boolean
+ * expressions and result in a Boolean expression."
+ */
+ op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
+ &error_emitted);
+ op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
+ &error_emitted);
+
+ result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
+ op[0], op[1]);
+ break;
+
+ case ast_logic_not:
+ op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
+ "operand", &error_emitted);
+
+ result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
+ op[0], NULL);
+ break;
+
+ case ast_mul_assign:
+ case ast_div_assign:
+ case ast_add_assign:
+ case ast_sub_assign: {
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ type = arithmetic_result_type(op[0], op[1],
+ (this->oper == ast_mul_assign),
+ state, & loc);
+
+ ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+
+ /* GLSL 1.10 does not allow array assignment. However, we don't have to
+ * explicitly test for this because none of the binary expression
+ * operators allow array operands either.
+ */
+
+ break;
+ }
+
+ case ast_mod_assign: {
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+
+ type = modulus_result_type(op[0], op[1], state, &loc);
+
+ assert(operations[this->oper] == ir_binop_mod);
+
+ ir_rvalue *temp_rhs;
+ temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+ break;
+ }
+
+ case ast_ls_assign:
+ case ast_rs_assign: {
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+ type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
+ &loc);
+ ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
+ type, op[0], op[1]);
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+ break;
+ }
+
+ case ast_and_assign:
+ case ast_xor_assign:
+ case ast_or_assign: {
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = this->subexpressions[1]->hir(instructions, state);
+ type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
+ ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
+ type, op[0], op[1]);
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+ break;
+ }
+
+ case ast_conditional: {
+ /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "The ternary selection operator (?:). It operates on three
+ * expressions (exp1 ? exp2 : exp3). This operator evaluates the
+ * first expression, which must result in a scalar Boolean."
+ */
+ op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
+ "condition", &error_emitted);
+
+ /* The :? operator is implemented by generating an anonymous temporary
+ * followed by an if-statement. The last instruction in each branch of
+ * the if-statement assigns a value to the anonymous temporary. This
+ * temporary is the r-value of the expression.
+ */
+ exec_list then_instructions;
+ exec_list else_instructions;
+
+ op[1] = this->subexpressions[1]->hir(&then_instructions, state);
+ op[2] = this->subexpressions[2]->hir(&else_instructions, state);
+
+ /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "The second and third expressions can be any type, as
+ * long their types match, or there is a conversion in
+ * Section 4.1.10 "Implicit Conversions" that can be applied
+ * to one of the expressions to make their types match. This
+ * resulting matching type is the type of the entire
+ * expression."
+ */
+ if ((!apply_implicit_conversion(op[1]->type, op[2], state)
+ && !apply_implicit_conversion(op[2]->type, op[1], state))
+ || (op[1]->type != op[2]->type)) {
+ YYLTYPE loc = this->subexpressions[1]->get_location();
+
+ _mesa_glsl_error(& loc, state, "second and third operands of ?: "
+ "operator must have matching types");
+ error_emitted = true;
+ type = glsl_type::error_type;
+ } else {
+ type = op[1]->type;
+ }
+
+ /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "The second and third expressions must be the same type, but can
+ * be of any type other than an array."
+ */
+ if (type->is_array() &&
+ !state->check_version(120, 300, &loc,
+ "second and third operands of ?: operator "
+ "cannot be arrays")) {
+ error_emitted = true;
+ }
+
+ /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
+ *
+ * "Except for array indexing, structure member selection, and
+ * parentheses, opaque variables are not allowed to be operands in
+ * expressions; such use results in a compile-time error."
+ */
+ if (type->contains_opaque()) {
+ _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
+ "of the ?: operator");
+ error_emitted = true;
+ }
+
+ ir_constant *cond_val = op[0]->constant_expression_value();
+
+ if (then_instructions.is_empty()
+ && else_instructions.is_empty()
+ && cond_val != NULL) {
+ result = cond_val->value.b[0] ? op[1] : op[2];
+ } else {
+ /* The copy to conditional_tmp reads the whole array. */
+ if (type->is_array()) {
+ mark_whole_array_access(op[1]);
+ mark_whole_array_access(op[2]);
+ }
+
+ ir_variable *const tmp =
+ new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
+ instructions->push_tail(tmp);
+
+ ir_if *const stmt = new(ctx) ir_if(op[0]);
+ instructions->push_tail(stmt);
+
+ then_instructions.move_nodes_to(& stmt->then_instructions);
+ ir_dereference *const then_deref =
+ new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const then_assign =
+ new(ctx) ir_assignment(then_deref, op[1]);
+ stmt->then_instructions.push_tail(then_assign);
+
+ else_instructions.move_nodes_to(& stmt->else_instructions);
+ ir_dereference *const else_deref =
+ new(ctx) ir_dereference_variable(tmp);
+ ir_assignment *const else_assign =
+ new(ctx) ir_assignment(else_deref, op[2]);
+ stmt->else_instructions.push_tail(else_assign);
+
+ result = new(ctx) ir_dereference_variable(tmp);
+ }
+ break;
+ }
+
+ case ast_pre_inc:
+ case ast_pre_dec: {
+ this->non_lvalue_description = (this->oper == ast_pre_inc)
+ ? "pre-increment operation" : "pre-decrement operation";
+
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
+
+ type = arithmetic_result_type(op[0], op[1], false, state, & loc);
+
+ ir_rvalue *temp_rhs;
+ temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &result, needs_rvalue, false,
+ this->subexpressions[0]->get_location());
+ break;
+ }
+
+ case ast_post_inc:
+ case ast_post_dec: {
+ this->non_lvalue_description = (this->oper == ast_post_inc)
+ ? "post-increment operation" : "post-decrement operation";
+ op[0] = this->subexpressions[0]->hir(instructions, state);
+ op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
+
+ error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
+
+ type = arithmetic_result_type(op[0], op[1], false, state, & loc);
+
+ ir_rvalue *temp_rhs;
+ temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
+ op[0], op[1]);
+
+ /* Get a temporary of a copy of the lvalue before it's modified.
+ * This may get thrown away later.
+ */
+ result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
+
+ ir_rvalue *junk_rvalue;
+ error_emitted =
+ do_assignment(instructions, state,
+ this->subexpressions[0]->non_lvalue_description,
+ op[0]->clone(ctx, NULL), temp_rhs,
+ &junk_rvalue, false, false,
+ this->subexpressions[0]->get_location());
+
+ break;
+ }
+
+ case ast_field_selection:
+ result = _mesa_ast_field_selection_to_hir(this, instructions, state);
+ break;
+
+ case ast_array_index: {
+ YYLTYPE index_loc = subexpressions[1]->get_location();
+
+ op[0] = subexpressions[0]->hir(instructions, state);
+ op[1] = subexpressions[1]->hir(instructions, state);
+
+ result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
+ loc, index_loc);
+
+ if (result->type->is_error())
+ error_emitted = true;
+
+ break;
+ }
+
+ case ast_unsized_array_dim:
+ assert(!"ast_unsized_array_dim: Should never get here.");
+ break;
+
+ case ast_function_call:
+ /* Should *NEVER* get here. ast_function_call should always be handled
+ * by ast_function_expression::hir.
+ */
+ assert(0);
+ break;
+
+ case ast_identifier: {
+ /* ast_identifier can appear several places in a full abstract syntax
+ * tree. This particular use must be at location specified in the grammar
+ * as 'variable_identifier'.
+ */
+ ir_variable *var =
+ state->symbols->get_variable(this->primary_expression.identifier);
+
+ if (var != NULL) {
+ var->data.used = true;
+ result = new(ctx) ir_dereference_variable(var);
+ } else {
+ _mesa_glsl_error(& loc, state, "`%s' undeclared",
+ this->primary_expression.identifier);
+
+ result = ir_rvalue::error_value(ctx);
+ error_emitted = true;
+ }
+ break;
+ }
+
+ case ast_int_constant:
+ result = new(ctx) ir_constant(this->primary_expression.int_constant);
+ break;
+
+ case ast_uint_constant:
+ result = new(ctx) ir_constant(this->primary_expression.uint_constant);
+ break;
+
+ case ast_float_constant:
+ result = new(ctx) ir_constant(this->primary_expression.float_constant);
+ break;
+
+ case ast_bool_constant:
+ result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
+ break;
+
+ case ast_double_constant:
+ result = new(ctx) ir_constant(this->primary_expression.double_constant);
+ break;
+
+ case ast_sequence: {
+ /* It should not be possible to generate a sequence in the AST without
+ * any expressions in it.
+ */
+ assert(!this->expressions.is_empty());
+
+ /* The r-value of a sequence is the last expression in the sequence. If
+ * the other expressions in the sequence do not have side-effects (and
+ * therefore add instructions to the instruction list), they get dropped
+ * on the floor.
+ */
+ exec_node *previous_tail_pred = NULL;
+ YYLTYPE previous_operand_loc = loc;
+
+ foreach_list_typed (ast_node, ast, link, &this->expressions) {
+ /* If one of the operands of comma operator does not generate any
+ * code, we want to emit a warning. At each pass through the loop
+ * previous_tail_pred will point to the last instruction in the
+ * stream *before* processing the previous operand. Naturally,
+ * instructions->tail_pred will point to the last instruction in the
+ * stream *after* processing the previous operand. If the two
+ * pointers match, then the previous operand had no effect.
+ *
+ * The warning behavior here differs slightly from GCC. GCC will
+ * only emit a warning if none of the left-hand operands have an
+ * effect. However, it will emit a warning for each. I believe that
+ * there are some cases in C (especially with GCC extensions) where
+ * it is useful to have an intermediate step in a sequence have no
+ * effect, but I don't think these cases exist in GLSL. Either way,
+ * it would be a giant hassle to replicate that behavior.
+ */
+ if (previous_tail_pred == instructions->tail_pred) {
+ _mesa_glsl_warning(&previous_operand_loc, state,
+ "left-hand operand of comma expression has "
+ "no effect");
+ }
+
+ /* tail_pred is directly accessed instead of using the get_tail()
+ * method for performance reasons. get_tail() has extra code to
+ * return NULL when the list is empty. We don't care about that
+ * here, so using tail_pred directly is fine.
+ */
+ previous_tail_pred = instructions->tail_pred;
+ previous_operand_loc = ast->get_location();
+
+ result = ast->hir(instructions, state);
+ }
+
+ /* Any errors should have already been emitted in the loop above.
+ */
+ error_emitted = true;
+ break;
+ }
+ }
+ type = NULL; /* use result->type, not type. */
+ assert(result != NULL || !needs_rvalue);
+
+ if (result && result->type->is_error() && !error_emitted)
+ _mesa_glsl_error(& loc, state, "type mismatch");
+
+ return result;
+}
+
+bool
+ast_expression::has_sequence_subexpression() const
+{
+ switch (this->oper) {
+ case ast_plus:
+ case ast_neg:
+ case ast_bit_not:
+ case ast_logic_not:
+ case ast_pre_inc:
+ case ast_pre_dec:
+ case ast_post_inc:
+ case ast_post_dec:
+ return this->subexpressions[0]->has_sequence_subexpression();
+
+ case ast_assign:
+ case ast_add:
+ case ast_sub:
+ case ast_mul:
+ case ast_div:
+ case ast_mod:
+ case ast_lshift:
+ case ast_rshift:
+ case ast_less:
+ case ast_greater:
+ case ast_lequal:
+ case ast_gequal:
+ case ast_nequal:
+ case ast_equal:
+ case ast_bit_and:
+ case ast_bit_xor:
+ case ast_bit_or:
+ case ast_logic_and:
+ case ast_logic_or:
+ case ast_logic_xor:
+ case ast_array_index:
+ case ast_mul_assign:
+ case ast_div_assign:
+ case ast_add_assign:
+ case ast_sub_assign:
+ case ast_mod_assign:
+ case ast_ls_assign:
+ case ast_rs_assign:
+ case ast_and_assign:
+ case ast_xor_assign:
+ case ast_or_assign:
+ return this->subexpressions[0]->has_sequence_subexpression() ||
+ this->subexpressions[1]->has_sequence_subexpression();
+
+ case ast_conditional:
+ return this->subexpressions[0]->has_sequence_subexpression() ||
+ this->subexpressions[1]->has_sequence_subexpression() ||
+ this->subexpressions[2]->has_sequence_subexpression();
+
+ case ast_sequence:
+ return true;
+
+ case ast_field_selection:
+ case ast_identifier:
+ case ast_int_constant:
+ case ast_uint_constant:
+ case ast_float_constant:
+ case ast_bool_constant:
+ case ast_double_constant:
+ return false;
+
+ case ast_aggregate:
+ unreachable("ast_aggregate: Should never get here.");
+
+ case ast_function_call:
+ unreachable("should be handled by ast_function_expression::hir");
+
+ case ast_unsized_array_dim:
+ unreachable("ast_unsized_array_dim: Should never get here.");
+ }
+
+ return false;
+}
+
+ir_rvalue *
+ast_expression_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ /* It is possible to have expression statements that don't have an
+ * expression. This is the solitary semicolon:
+ *
+ * for (i = 0; i < 5; i++)
+ * ;
+ *
+ * In this case the expression will be NULL. Test for NULL and don't do
+ * anything in that case.
+ */
+ if (expression != NULL)
+ expression->hir_no_rvalue(instructions, state);
+
+ /* Statements do not have r-values.
+ */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_compound_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ if (new_scope)
+ state->symbols->push_scope();
+
+ foreach_list_typed (ast_node, ast, link, &this->statements)
+ ast->hir(instructions, state);
+
+ if (new_scope)
+ state->symbols->pop_scope();
+
+ /* Compound statements do not have r-values.
+ */
+ return NULL;
+}
+
+/**
+ * Evaluate the given exec_node (which should be an ast_node representing
+ * a single array dimension) and return its integer value.
+ */
+static unsigned
+process_array_size(exec_node *node,
+ struct _mesa_glsl_parse_state *state)
+{
+ exec_list dummy_instructions;
+
+ ast_node *array_size = exec_node_data(ast_node, node, link);
+
+ /**
+ * Dimensions other than the outermost dimension can by unsized if they
+ * are immediately sized by a constructor or initializer.
+ */
+ if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
+ return 0;
+
+ ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
+ YYLTYPE loc = array_size->get_location();
+
+ if (ir == NULL) {
+ _mesa_glsl_error(& loc, state,
+ "array size could not be resolved");
+ return 0;
+ }
+
+ if (!ir->type->is_integer()) {
+ _mesa_glsl_error(& loc, state,
+ "array size must be integer type");
+ return 0;
+ }
+
+ if (!ir->type->is_scalar()) {
+ _mesa_glsl_error(& loc, state,
+ "array size must be scalar type");
+ return 0;
+ }
+
+ ir_constant *const size = ir->constant_expression_value();
+ if (size == NULL || array_size->has_sequence_subexpression()) {
+ _mesa_glsl_error(& loc, state, "array size must be a "
+ "constant valued expression");
+ return 0;
+ }
+
+ if (size->value.i[0] <= 0) {
+ _mesa_glsl_error(& loc, state, "array size must be > 0");
+ return 0;
+ }
+
+ assert(size->type == ir->type);
+
+ /* If the array size is const (and we've verified that
+ * it is) then no instructions should have been emitted
+ * when we converted it to HIR. If they were emitted,
+ * then either the array size isn't const after all, or
+ * we are emitting unnecessary instructions.
+ */
+ assert(dummy_instructions.is_empty());
+
+ return size->value.u[0];
+}
+
+static const glsl_type *
+process_array_type(YYLTYPE *loc, const glsl_type *base,
+ ast_array_specifier *array_specifier,
+ struct _mesa_glsl_parse_state *state)
+{
+ const glsl_type *array_type = base;
+
+ if (array_specifier != NULL) {
+ if (base->is_array()) {
+
+ /* From page 19 (page 25) of the GLSL 1.20 spec:
+ *
+ * "Only one-dimensional arrays may be declared."
+ */
+ if (!state->check_arrays_of_arrays_allowed(loc)) {
+ return glsl_type::error_type;
+ }
+ }
+
+ for (exec_node *node = array_specifier->array_dimensions.tail_pred;
+ !node->is_head_sentinel(); node = node->prev) {
+ unsigned array_size = process_array_size(node, state);
+ array_type = glsl_type::get_array_instance(array_type, array_size);
+ }
+ }
+
+ return array_type;
+}
+
+static bool
+precision_qualifier_allowed(const glsl_type *type)
+{
+ /* Precision qualifiers apply to floating point, integer and opaque
+ * types.
+ *
+ * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
+ * "Any floating point or any integer declaration can have the type
+ * preceded by one of these precision qualifiers [...] Literal
+ * constants do not have precision qualifiers. Neither do Boolean
+ * variables.
+ *
+ * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
+ * spec also says:
+ *
+ * "Precision qualifiers are added for code portability with OpenGL
+ * ES, not for functionality. They have the same syntax as in OpenGL
+ * ES."
+ *
+ * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
+ *
+ * "uniform lowp sampler2D sampler;
+ * highp vec2 coord;
+ * ...
+ * lowp vec4 col = texture2D (sampler, coord);
+ * // texture2D returns lowp"
+ *
+ * From this, we infer that GLSL 1.30 (and later) should allow precision
+ * qualifiers on sampler types just like float and integer types.
+ */
+ return (type->is_float()
+ || type->is_integer()
+ || type->contains_opaque())
+ && !type->without_array()->is_record();
+}
+
+const glsl_type *
+ast_type_specifier::glsl_type(const char **name,
+ struct _mesa_glsl_parse_state *state) const
+{
+ const struct glsl_type *type;
+
+ type = state->symbols->get_type(this->type_name);
+ *name = this->type_name;
+
+ YYLTYPE loc = this->get_location();
+ type = process_array_type(&loc, type, this->array_specifier, state);
+
+ return type;
+}
+
+/**
+ * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
+ *
+ * "The precision statement
+ *
+ * precision precision-qualifier type;
+ *
+ * can be used to establish a default precision qualifier. The type field can
+ * be either int or float or any of the sampler types, (...) If type is float,
+ * the directive applies to non-precision-qualified floating point type
+ * (scalar, vector, and matrix) declarations. If type is int, the directive
+ * applies to all non-precision-qualified integer type (scalar, vector, signed,
+ * and unsigned) declarations."
+ *
+ * We use the symbol table to keep the values of the default precisions for
+ * each 'type' in each scope and we use the 'type' string from the precision
+ * statement as key in the symbol table. When we want to retrieve the default
+ * precision associated with a given glsl_type we need to know the type string
+ * associated with it. This is what this function returns.
+ */
+static const char *
+get_type_name_for_precision_qualifier(const glsl_type *type)
+{
+ switch (type->base_type) {
+ case GLSL_TYPE_FLOAT:
+ return "float";
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ return "int";
+ case GLSL_TYPE_ATOMIC_UINT:
+ return "atomic_uint";
+ case GLSL_TYPE_IMAGE:
+ /* fallthrough */
+ case GLSL_TYPE_SAMPLER: {
+ const unsigned type_idx =
+ type->sampler_array + 2 * type->sampler_shadow;
+ const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
+ assert(type_idx < 4);
+ switch (type->sampler_type) {
+ case GLSL_TYPE_FLOAT:
+ switch (type->sampler_dimensionality) {
+ case GLSL_SAMPLER_DIM_1D: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "sampler1D", "sampler1DArray",
+ "sampler1DShadow", "sampler1DArrayShadow"
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_2D: {
+ static const char *const names[8] = {
+ "sampler2D", "sampler2DArray",
+ "sampler2DShadow", "sampler2DArrayShadow",
+ "image2D", "image2DArray", NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_3D: {
+ static const char *const names[8] = {
+ "sampler3D", NULL, NULL, NULL,
+ "image3D", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_CUBE: {
+ static const char *const names[8] = {
+ "samplerCube", "samplerCubeArray",
+ "samplerCubeShadow", "samplerCubeArrayShadow",
+ "imageCube", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_MS: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "sampler2DMS", "sampler2DMSArray", NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_RECT: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "samplerRect", NULL, "samplerRectShadow", NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_BUF: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "samplerBuffer", NULL, NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_EXTERNAL: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "samplerExternalOES", NULL, NULL, NULL
+ };
+ return names[type_idx];
+ }
+ default:
+ unreachable("Unsupported sampler/image dimensionality");
+ } /* sampler/image float dimensionality */
+ break;
+ case GLSL_TYPE_INT:
+ switch (type->sampler_dimensionality) {
+ case GLSL_SAMPLER_DIM_1D: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "isampler1D", "isampler1DArray", NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_2D: {
+ static const char *const names[8] = {
+ "isampler2D", "isampler2DArray", NULL, NULL,
+ "iimage2D", "iimage2DArray", NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_3D: {
+ static const char *const names[8] = {
+ "isampler3D", NULL, NULL, NULL,
+ "iimage3D", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_CUBE: {
+ static const char *const names[8] = {
+ "isamplerCube", "isamplerCubeArray", NULL, NULL,
+ "iimageCube", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_MS: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "isampler2DMS", "isampler2DMSArray", NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_RECT: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "isamplerRect", NULL, "isamplerRectShadow", NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_BUF: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "isamplerBuffer", NULL, NULL, NULL
+ };
+ return names[type_idx];
+ }
+ default:
+ unreachable("Unsupported isampler/iimage dimensionality");
+ } /* sampler/image int dimensionality */
+ break;
+ case GLSL_TYPE_UINT:
+ switch (type->sampler_dimensionality) {
+ case GLSL_SAMPLER_DIM_1D: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "usampler1D", "usampler1DArray", NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_2D: {
+ static const char *const names[8] = {
+ "usampler2D", "usampler2DArray", NULL, NULL,
+ "uimage2D", "uimage2DArray", NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_3D: {
+ static const char *const names[8] = {
+ "usampler3D", NULL, NULL, NULL,
+ "uimage3D", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_CUBE: {
+ static const char *const names[8] = {
+ "usamplerCube", "usamplerCubeArray", NULL, NULL,
+ "uimageCube", NULL, NULL, NULL
+ };
+ return names[offset + type_idx];
+ }
+ case GLSL_SAMPLER_DIM_MS: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "usampler2DMS", "usampler2DMSArray", NULL, NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_RECT: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "usamplerRect", NULL, "usamplerRectShadow", NULL
+ };
+ return names[type_idx];
+ }
+ case GLSL_SAMPLER_DIM_BUF: {
+ assert(type->base_type == GLSL_TYPE_SAMPLER);
+ static const char *const names[4] = {
+ "usamplerBuffer", NULL, NULL, NULL
+ };
+ return names[type_idx];
+ }
+ default:
+ unreachable("Unsupported usampler/uimage dimensionality");
+ } /* sampler/image uint dimensionality */
+ break;
+ default:
+ unreachable("Unsupported sampler/image type");
+ } /* sampler/image type */
+ break;
+ } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
+ break;
+ default:
+ unreachable("Unsupported type");
+ } /* base type */
+}
+
+static unsigned
+select_gles_precision(unsigned qual_precision,
+ const glsl_type *type,
+ struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
+{
+ /* Precision qualifiers do not have any meaning in Desktop GLSL.
+ * In GLES we take the precision from the type qualifier if present,
+ * otherwise, if the type of the variable allows precision qualifiers at
+ * all, we look for the default precision qualifier for that type in the
+ * current scope.
+ */
+ assert(state->es_shader);
+
+ unsigned precision = GLSL_PRECISION_NONE;
+ if (qual_precision) {
+ precision = qual_precision;
+ } else if (precision_qualifier_allowed(type)) {
+ const char *type_name =
+ get_type_name_for_precision_qualifier(type->without_array());
+ assert(type_name != NULL);
+
+ precision =
+ state->symbols->get_default_precision_qualifier(type_name);
+ if (precision == ast_precision_none) {
+ _mesa_glsl_error(loc, state,
+ "No precision specified in this scope for type `%s'",
+ type->name);
+ }
+ }
+ return precision;
+}
+
+const glsl_type *
+ast_fully_specified_type::glsl_type(const char **name,
+ struct _mesa_glsl_parse_state *state) const
+{
+ return this->specifier->glsl_type(name, state);
+}
+
+/**
+ * Determine whether a toplevel variable declaration declares a varying. This
+ * function operates by examining the variable's mode and the shader target,
+ * so it correctly identifies linkage variables regardless of whether they are
+ * declared using the deprecated "varying" syntax or the new "in/out" syntax.
+ *
+ * Passing a non-toplevel variable declaration (e.g. a function parameter) to
+ * this function will produce undefined results.
+ */
+static bool
+is_varying_var(ir_variable *var, gl_shader_stage target)
+{
+ switch (target) {
+ case MESA_SHADER_VERTEX:
+ return var->data.mode == ir_var_shader_out;
+ case MESA_SHADER_FRAGMENT:
+ return var->data.mode == ir_var_shader_in;
+ default:
+ return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
+ }
+}
+
+
+/**
+ * Matrix layout qualifiers are only allowed on certain types
+ */
+static void
+validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc,
+ const glsl_type *type,
+ ir_variable *var)
+{
+ if (var && !var->is_in_buffer_block()) {
+ /* Layout qualifiers may only apply to interface blocks and fields in
+ * them.
+ */
+ _mesa_glsl_error(loc, state,
+ "uniform block layout qualifiers row_major and "
+ "column_major may not be applied to variables "
+ "outside of uniform blocks");
+ } else if (!type->without_array()->is_matrix()) {
+ /* The OpenGL ES 3.0 conformance tests did not originally allow
+ * matrix layout qualifiers on non-matrices. However, the OpenGL
+ * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
+ * amended to specifically allow these layouts on all types. Emit
+ * a warning so that people know their code may not be portable.
+ */
+ _mesa_glsl_warning(loc, state,
+ "uniform block layout qualifiers row_major and "
+ "column_major applied to non-matrix types may "
+ "be rejected by older compilers");
+ }
+}
+
+static bool
+process_qualifier_constant(struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc,
+ const char *qual_indentifier,
+ ast_expression *const_expression,
+ unsigned *value)
+{
+ exec_list dummy_instructions;
+
+ if (const_expression == NULL) {
+ *value = 0;
+ return true;
+ }
+
+ ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
+
+ ir_constant *const const_int = ir->constant_expression_value();
+ if (const_int == NULL || !const_int->type->is_integer()) {
+ _mesa_glsl_error(loc, state, "%s must be an integral constant "
+ "expression", qual_indentifier);
+ return false;
+ }
+
+ if (const_int->value.i[0] < 0) {
+ _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
+ qual_indentifier, const_int->value.u[0]);
+ return false;
+ }
+
+ /* If the location is const (and we've verified that
+ * it is) then no instructions should have been emitted
+ * when we converted it to HIR. If they were emitted,
+ * then either the location isn't const after all, or
+ * we are emitting unnecessary instructions.
+ */
+ assert(dummy_instructions.is_empty());
+
+ *value = const_int->value.u[0];
+ return true;
+}
+
+static bool
+validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
+ unsigned stream)
+{
+ if (stream >= state->ctx->Const.MaxVertexStreams) {
+ _mesa_glsl_error(loc, state,
+ "invalid stream specified %d is larger than "
+ "MAX_VERTEX_STREAMS - 1 (%d).",
+ stream, state->ctx->Const.MaxVertexStreams - 1);
+ return false;
+ }
+
+ return true;
+}
+
+static void
+apply_explicit_binding(struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc,
+ ir_variable *var,
+ const glsl_type *type,
+ const ast_type_qualifier *qual)
+{
+ if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
+ _mesa_glsl_error(loc, state,
+ "the \"binding\" qualifier only applies to uniforms and "
+ "shader storage buffer objects");
+ return;
+ }
+
+ unsigned qual_binding;
+ if (!process_qualifier_constant(state, loc, "binding", qual->binding,
+ &qual_binding)) {
+ return;
+ }
+
+ const struct gl_context *const ctx = state->ctx;
+ unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
+ unsigned max_index = qual_binding + elements - 1;
+ const glsl_type *base_type = type->without_array();
+
+ if (base_type->is_interface()) {
+ /* UBOs. From page 60 of the GLSL 4.20 specification:
+ * "If the binding point for any uniform block instance is less than zero,
+ * or greater than or equal to the implementation-dependent maximum
+ * number of uniform buffer bindings, a compilation error will occur.
+ * When the binding identifier is used with a uniform block instanced as
+ * an array of size N, all elements of the array from binding through
+ * binding + N – 1 must be within this range."
+ *
+ * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
+ */
+ if (qual->flags.q.uniform &&
+ max_index >= ctx->Const.MaxUniformBufferBindings) {
+ _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
+ "the maximum number of UBO binding points (%d)",
+ qual_binding, elements,
+ ctx->Const.MaxUniformBufferBindings);
+ return;
+ }
+
+ /* SSBOs. From page 67 of the GLSL 4.30 specification:
+ * "If the binding point for any uniform or shader storage block instance
+ * is less than zero, or greater than or equal to the
+ * implementation-dependent maximum number of uniform buffer bindings, a
+ * compile-time error will occur. When the binding identifier is used
+ * with a uniform or shader storage block instanced as an array of size
+ * N, all elements of the array from binding through binding + N – 1 must
+ * be within this range."
+ */
+ if (qual->flags.q.buffer &&
+ max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
+ _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
+ "the maximum number of SSBO binding points (%d)",
+ qual_binding, elements,
+ ctx->Const.MaxShaderStorageBufferBindings);
+ return;
+ }
+ } else if (base_type->is_sampler()) {
+ /* Samplers. From page 63 of the GLSL 4.20 specification:
+ * "If the binding is less than zero, or greater than or equal to the
+ * implementation-dependent maximum supported number of units, a
+ * compilation error will occur. When the binding identifier is used
+ * with an array of size N, all elements of the array from binding
+ * through binding + N - 1 must be within this range."
+ */
+ unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
+
+ if (max_index >= limit) {
+ _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
+ "exceeds the maximum number of texture image units "
+ "(%u)", qual_binding, elements, limit);
+
+ return;
+ }
+ } else if (base_type->contains_atomic()) {
+ assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
+ if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
+ _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
+ " maximum number of atomic counter buffer bindings"
+ "(%u)", qual_binding,
+ ctx->Const.MaxAtomicBufferBindings);
+
+ return;
+ }
+ } else if ((state->is_version(420, 310) ||
+ state->ARB_shading_language_420pack_enable) &&
+ base_type->is_image()) {
+ assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
+ if (max_index >= ctx->Const.MaxImageUnits) {
+ _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
+ " maximum number of image units (%d)", max_index,
+ ctx->Const.MaxImageUnits);
+ return;
+ }
+
+ } else {
+ _mesa_glsl_error(loc, state,
+ "the \"binding\" qualifier only applies to uniform "
+ "blocks, opaque variables, or arrays thereof");
+ return;
+ }
+
+ var->data.explicit_binding = true;
+ var->data.binding = qual_binding;
+
+ return;
+}
+
+
+static glsl_interp_qualifier
+interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
+ ir_variable_mode mode,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc)
+{
+ glsl_interp_qualifier interpolation;
+ if (qual->flags.q.flat)
+ interpolation = INTERP_QUALIFIER_FLAT;
+ else if (qual->flags.q.noperspective)
+ interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
+ else if (qual->flags.q.smooth)
+ interpolation = INTERP_QUALIFIER_SMOOTH;
+ else
+ interpolation = INTERP_QUALIFIER_NONE;
+
+ if (interpolation != INTERP_QUALIFIER_NONE) {
+ if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
+ _mesa_glsl_error(loc, state,
+ "interpolation qualifier `%s' can only be applied to "
+ "shader inputs or outputs.",
+ interpolation_string(interpolation));
+
+ }
+
+ if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
+ (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
+ _mesa_glsl_error(loc, state,
+ "interpolation qualifier `%s' cannot be applied to "
+ "vertex shader inputs or fragment shader outputs",
+ interpolation_string(interpolation));
+ }
+ }
+
+ return interpolation;
+}
+
+
+static void
+apply_explicit_location(const struct ast_type_qualifier *qual,
+ ir_variable *var,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc)
+{
+ bool fail = false;
+
+ unsigned qual_location;
+ if (!process_qualifier_constant(state, loc, "location", qual->location,
+ &qual_location)) {
+ return;
+ }
+
+ /* Checks for GL_ARB_explicit_uniform_location. */
+ if (qual->flags.q.uniform) {
+ if (!state->check_explicit_uniform_location_allowed(loc, var))
+ return;
+
+ const struct gl_context *const ctx = state->ctx;
+ unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
+
+ if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
+ _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
+ ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
+ ctx->Const.MaxUserAssignableUniformLocations);
+ return;
+ }
+
+ var->data.explicit_location = true;
+ var->data.location = qual_location;
+ return;
+ }
+
+ /* Between GL_ARB_explicit_attrib_location an
+ * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
+ * stage can be assigned explicit locations. The checking here associates
+ * the correct extension with the correct stage's input / output:
+ *
+ * input output
+ * ----- ------
+ * vertex explicit_loc sso
+ * tess control sso sso
+ * tess eval sso sso
+ * geometry sso sso
+ * fragment sso explicit_loc
+ */
+ switch (state->stage) {
+ case MESA_SHADER_VERTEX:
+ if (var->data.mode == ir_var_shader_in) {
+ if (!state->check_explicit_attrib_location_allowed(loc, var))
+ return;
+
+ break;
+ }
+
+ if (var->data.mode == ir_var_shader_out) {
+ if (!state->check_separate_shader_objects_allowed(loc, var))
+ return;
+
+ break;
+ }
+
+ fail = true;
+ break;
+
+ case MESA_SHADER_TESS_CTRL:
+ case MESA_SHADER_TESS_EVAL:
+ case MESA_SHADER_GEOMETRY:
+ if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
+ if (!state->check_separate_shader_objects_allowed(loc, var))
+ return;
+
+ break;
+ }
+
+ fail = true;
+ break;
+
+ case MESA_SHADER_FRAGMENT:
+ if (var->data.mode == ir_var_shader_in) {
+ if (!state->check_separate_shader_objects_allowed(loc, var))
+ return;
+
+ break;
+ }
+
+ if (var->data.mode == ir_var_shader_out) {
+ if (!state->check_explicit_attrib_location_allowed(loc, var))
+ return;
+
+ break;
+ }
+
+ fail = true;
+ break;
+
+ case MESA_SHADER_COMPUTE:
+ _mesa_glsl_error(loc, state,
+ "compute shader variables cannot be given "
+ "explicit locations");
+ return;
+ };
+
+ if (fail) {
+ _mesa_glsl_error(loc, state,
+ "%s cannot be given an explicit location in %s shader",
+ mode_string(var),
+ _mesa_shader_stage_to_string(state->stage));
+ } else {
+ var->data.explicit_location = true;
+
+ switch (state->stage) {
+ case MESA_SHADER_VERTEX:
+ var->data.location = (var->data.mode == ir_var_shader_in)
+ ? (qual_location + VERT_ATTRIB_GENERIC0)
+ : (qual_location + VARYING_SLOT_VAR0);
+ break;
+
+ case MESA_SHADER_TESS_CTRL:
+ case MESA_SHADER_TESS_EVAL:
+ case MESA_SHADER_GEOMETRY:
+ if (var->data.patch)
+ var->data.location = qual_location + VARYING_SLOT_PATCH0;
+ else
+ var->data.location = qual_location + VARYING_SLOT_VAR0;
+ break;
+
+ case MESA_SHADER_FRAGMENT:
+ var->data.location = (var->data.mode == ir_var_shader_out)
+ ? (qual_location + FRAG_RESULT_DATA0)
+ : (qual_location + VARYING_SLOT_VAR0);
+ break;
+ case MESA_SHADER_COMPUTE:
+ assert(!"Unexpected shader type");
+ break;
+ }
+
+ /* Check if index was set for the uniform instead of the function */
+ if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
+ _mesa_glsl_error(loc, state, "an index qualifier can only be "
+ "used with subroutine functions");
+ return;
+ }
+
+ unsigned qual_index;
+ if (qual->flags.q.explicit_index &&
+ process_qualifier_constant(state, loc, "index", qual->index,
+ &qual_index)) {
+ /* From the GLSL 4.30 specification, section 4.4.2 (Output
+ * Layout Qualifiers):
+ *
+ * "It is also a compile-time error if a fragment shader
+ * sets a layout index to less than 0 or greater than 1."
+ *
+ * Older specifications don't mandate a behavior; we take
+ * this as a clarification and always generate the error.
+ */
+ if (qual_index > 1) {
+ _mesa_glsl_error(loc, state,
+ "explicit index may only be 0 or 1");
+ } else {
+ var->data.explicit_index = true;
+ var->data.index = qual_index;
+ }
+ }
+ }
+}
+
+static void
+apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
+ ir_variable *var,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc)
+{
+ const glsl_type *base_type = var->type->without_array();
+
+ if (base_type->is_image()) {
+ if (var->data.mode != ir_var_uniform &&
+ var->data.mode != ir_var_function_in) {
+ _mesa_glsl_error(loc, state, "image variables may only be declared as "
+ "function parameters or uniform-qualified "
+ "global variables");
+ }
+
+ var->data.image_read_only |= qual->flags.q.read_only;
+ var->data.image_write_only |= qual->flags.q.write_only;
+ var->data.image_coherent |= qual->flags.q.coherent;
+ var->data.image_volatile |= qual->flags.q._volatile;
+ var->data.image_restrict |= qual->flags.q.restrict_flag;
+ var->data.read_only = true;
+
+ if (qual->flags.q.explicit_image_format) {
+ if (var->data.mode == ir_var_function_in) {
+ _mesa_glsl_error(loc, state, "format qualifiers cannot be "
+ "used on image function parameters");
+ }
+
+ if (qual->image_base_type != base_type->sampler_type) {
+ _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
+ "base data type of the image");
+ }
+
+ var->data.image_format = qual->image_format;
+ } else {
+ if (var->data.mode == ir_var_uniform) {
+ if (state->es_shader) {
+ _mesa_glsl_error(loc, state, "all image uniforms "
+ "must have a format layout qualifier");
+
+ } else if (!qual->flags.q.write_only) {
+ _mesa_glsl_error(loc, state, "image uniforms not qualified with "
+ "`writeonly' must have a format layout "
+ "qualifier");
+ }
+ }
+
+ var->data.image_format = GL_NONE;
+ }
+
+ /* From page 70 of the GLSL ES 3.1 specification:
+ *
+ * "Except for image variables qualified with the format qualifiers
+ * r32f, r32i, and r32ui, image variables must specify either memory
+ * qualifier readonly or the memory qualifier writeonly."
+ */
+ if (state->es_shader &&
+ var->data.image_format != GL_R32F &&
+ var->data.image_format != GL_R32I &&
+ var->data.image_format != GL_R32UI &&
+ !var->data.image_read_only &&
+ !var->data.image_write_only) {
+ _mesa_glsl_error(loc, state, "image variables of format other than "
+ "r32f, r32i or r32ui must be qualified `readonly' or "
+ "`writeonly'");
+ }
+
+ } else if (qual->flags.q.read_only ||
+ qual->flags.q.write_only ||
+ qual->flags.q.coherent ||
+ qual->flags.q._volatile ||
+ qual->flags.q.restrict_flag ||
+ qual->flags.q.explicit_image_format) {
+ _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
+ "images");
+ }
+}
+
+static inline const char*
+get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
+{
+ if (origin_upper_left && pixel_center_integer)
+ return "origin_upper_left, pixel_center_integer";
+ else if (origin_upper_left)
+ return "origin_upper_left";
+ else if (pixel_center_integer)
+ return "pixel_center_integer";
+ else
+ return " ";
+}
+
+static inline bool
+is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
+ const struct ast_type_qualifier *qual)
+{
+ /* If gl_FragCoord was previously declared, and the qualifiers were
+ * different in any way, return true.
+ */
+ if (state->fs_redeclares_gl_fragcoord) {
+ return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
+ || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
+ }
+
+ return false;
+}
+
+static inline void
+validate_array_dimensions(const glsl_type *t,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc) {
+ if (t->is_array()) {
+ t = t->fields.array;
+ while (t->is_array()) {
+ if (t->is_unsized_array()) {
+ _mesa_glsl_error(loc, state,
+ "only the outermost array dimension can "
+ "be unsized",
+ t->name);
+ break;
+ }
+ t = t->fields.array;
+ }
+ }
+}
+
+static void
+apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
+ ir_variable *var,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc)
+{
+ if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
+
+ /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
+ *
+ * "Within any shader, the first redeclarations of gl_FragCoord
+ * must appear before any use of gl_FragCoord."
+ *
+ * Generate a compiler error if above condition is not met by the
+ * fragment shader.
+ */
+ ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
+ if (earlier != NULL &&
+ earlier->data.used &&
+ !state->fs_redeclares_gl_fragcoord) {
+ _mesa_glsl_error(loc, state,
+ "gl_FragCoord used before its first redeclaration "
+ "in fragment shader");
+ }
+
+ /* Make sure all gl_FragCoord redeclarations specify the same layout
+ * qualifiers.
+ */
+ if (is_conflicting_fragcoord_redeclaration(state, qual)) {
+ const char *const qual_string =
+ get_layout_qualifier_string(qual->flags.q.origin_upper_left,
+ qual->flags.q.pixel_center_integer);
+
+ const char *const state_string =
+ get_layout_qualifier_string(state->fs_origin_upper_left,
+ state->fs_pixel_center_integer);
+
+ _mesa_glsl_error(loc, state,
+ "gl_FragCoord redeclared with different layout "
+ "qualifiers (%s) and (%s) ",
+ state_string,
+ qual_string);
+ }
+ state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
+ state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
+ state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
+ !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
+ state->fs_redeclares_gl_fragcoord =
+ state->fs_origin_upper_left ||
+ state->fs_pixel_center_integer ||
+ state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
+ }
+
+ var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
+ var->data.origin_upper_left = qual->flags.q.origin_upper_left;
+ if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
+ && (strcmp(var->name, "gl_FragCoord") != 0)) {
+ const char *const qual_string = (qual->flags.q.origin_upper_left)
+ ? "origin_upper_left" : "pixel_center_integer";
+
+ _mesa_glsl_error(loc, state,
+ "layout qualifier `%s' can only be applied to "
+ "fragment shader input `gl_FragCoord'",
+ qual_string);
+ }
+
+ if (qual->flags.q.explicit_location) {
+ apply_explicit_location(qual, var, state, loc);
+ } else if (qual->flags.q.explicit_index) {
+ if (!qual->flags.q.subroutine_def)
+ _mesa_glsl_error(loc, state,
+ "explicit index requires explicit location");
+ }
+
+ if (qual->flags.q.explicit_binding) {
+ apply_explicit_binding(state, loc, var, var->type, qual);
+ }
+
+ if (state->stage == MESA_SHADER_GEOMETRY &&
+ qual->flags.q.out && qual->flags.q.stream) {
+ unsigned qual_stream;
+ if (process_qualifier_constant(state, loc, "stream", qual->stream,
+ &qual_stream) &&
+ validate_stream_qualifier(loc, state, qual_stream)) {
+ var->data.stream = qual_stream;
+ }
+ }
+
+ if (var->type->contains_atomic()) {
+ if (var->data.mode == ir_var_uniform) {
+ if (var->data.explicit_binding) {
+ unsigned *offset =
+ &state->atomic_counter_offsets[var->data.binding];
+
+ if (*offset % ATOMIC_COUNTER_SIZE)
+ _mesa_glsl_error(loc, state,
+ "misaligned atomic counter offset");
+
+ var->data.offset = *offset;
+ *offset += var->type->atomic_size();
+
+ } else {
+ _mesa_glsl_error(loc, state,
+ "atomic counters require explicit binding point");
+ }
+ } else if (var->data.mode != ir_var_function_in) {
+ _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
+ "function parameters or uniform-qualified "
+ "global variables");
+ }
+ }
+
+ /* Is the 'layout' keyword used with parameters that allow relaxed checking.
+ * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
+ * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
+ * allowed the layout qualifier to be used with 'varying' and 'attribute'.
+ * These extensions and all following extensions that add the 'layout'
+ * keyword have been modified to require the use of 'in' or 'out'.
+ *
+ * The following extension do not allow the deprecated keywords:
+ *
+ * GL_AMD_conservative_depth
+ * GL_ARB_conservative_depth
+ * GL_ARB_gpu_shader5
+ * GL_ARB_separate_shader_objects
+ * GL_ARB_tessellation_shader
+ * GL_ARB_transform_feedback3
+ * GL_ARB_uniform_buffer_object
+ *
+ * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
+ * allow layout with the deprecated keywords.
+ */
+ const bool relaxed_layout_qualifier_checking =
+ state->ARB_fragment_coord_conventions_enable;
+
+ const bool uses_deprecated_qualifier = qual->flags.q.attribute
+ || qual->flags.q.varying;
+ if (qual->has_layout() && uses_deprecated_qualifier) {
+ if (relaxed_layout_qualifier_checking) {
+ _mesa_glsl_warning(loc, state,
+ "`layout' qualifier may not be used with "
+ "`attribute' or `varying'");
+ } else {
+ _mesa_glsl_error(loc, state,
+ "`layout' qualifier may not be used with "
+ "`attribute' or `varying'");
+ }
+ }
+
+ /* Layout qualifiers for gl_FragDepth, which are enabled by extension
+ * AMD_conservative_depth.
+ */
+ int depth_layout_count = qual->flags.q.depth_any
+ + qual->flags.q.depth_greater
+ + qual->flags.q.depth_less
+ + qual->flags.q.depth_unchanged;
+ if (depth_layout_count > 0
+ && !state->AMD_conservative_depth_enable
+ && !state->ARB_conservative_depth_enable) {
+ _mesa_glsl_error(loc, state,
+ "extension GL_AMD_conservative_depth or "
+ "GL_ARB_conservative_depth must be enabled "
+ "to use depth layout qualifiers");
+ } else if (depth_layout_count > 0
+ && strcmp(var->name, "gl_FragDepth") != 0) {
+ _mesa_glsl_error(loc, state,
+ "depth layout qualifiers can be applied only to "
+ "gl_FragDepth");
+ } else if (depth_layout_count > 1
+ && strcmp(var->name, "gl_FragDepth") == 0) {
+ _mesa_glsl_error(loc, state,
+ "at most one depth layout qualifier can be applied to "
+ "gl_FragDepth");
+ }
+ if (qual->flags.q.depth_any)
+ var->data.depth_layout = ir_depth_layout_any;
+ else if (qual->flags.q.depth_greater)
+ var->data.depth_layout = ir_depth_layout_greater;
+ else if (qual->flags.q.depth_less)
+ var->data.depth_layout = ir_depth_layout_less;
+ else if (qual->flags.q.depth_unchanged)
+ var->data.depth_layout = ir_depth_layout_unchanged;
+ else
+ var->data.depth_layout = ir_depth_layout_none;
+
+ if (qual->flags.q.std140 ||
+ qual->flags.q.std430 ||
+ qual->flags.q.packed ||
+ qual->flags.q.shared) {
+ _mesa_glsl_error(loc, state,
+ "uniform and shader storage block layout qualifiers "
+ "std140, std430, packed, and shared can only be "
+ "applied to uniform or shader storage blocks, not "
+ "members");
+ }
+
+ if (qual->flags.q.row_major || qual->flags.q.column_major) {
+ validate_matrix_layout_for_type(state, loc, var->type, var);
+ }
+
+ /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
+ * Inputs):
+ *
+ * "Fragment shaders also allow the following layout qualifier on in only
+ * (not with variable declarations)
+ * layout-qualifier-id
+ * early_fragment_tests
+ * [...]"
+ */
+ if (qual->flags.q.early_fragment_tests) {
+ _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
+ "valid in fragment shader input layout declaration.");
+ }
+}
+
+static void
+apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
+ ir_variable *var,
+ struct _mesa_glsl_parse_state *state,
+ YYLTYPE *loc,
+ bool is_parameter)
+{
+ STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
+
+ if (qual->flags.q.invariant) {
+ if (var->data.used) {
+ _mesa_glsl_error(loc, state,
+ "variable `%s' may not be redeclared "
+ "`invariant' after being used",
+ var->name);
+ } else {
+ var->data.invariant = 1;
+ }
+ }
+
+ if (qual->flags.q.precise) {
+ if (var->data.used) {
+ _mesa_glsl_error(loc, state,
+ "variable `%s' may not be redeclared "
+ "`precise' after being used",
+ var->name);
+ } else {
+ var->data.precise = 1;
+ }
+ }
+
+ if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
+ _mesa_glsl_error(loc, state,
+ "`subroutine' may only be applied to uniforms, "
+ "subroutine type declarations, or function definitions");
+ }
+
+ if (qual->flags.q.constant || qual->flags.q.attribute
+ || qual->flags.q.uniform
+ || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
+ var->data.read_only = 1;
+
+ if (qual->flags.q.centroid)
+ var->data.centroid = 1;
+
+ if (qual->flags.q.sample)
+ var->data.sample = 1;
+
+ /* Precision qualifiers do not hold any meaning in Desktop GLSL */
+ if (state->es_shader) {
+ var->data.precision =
+ select_gles_precision(qual->precision, var->type, state, loc);
+ }
+
+ if (qual->flags.q.patch)
+ var->data.patch = 1;
+
+ if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
+ var->type = glsl_type::error_type;
+ _mesa_glsl_error(loc, state,
+ "`attribute' variables may not be declared in the "
+ "%s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+
+ /* Disallow layout qualifiers which may only appear on layout declarations. */
+ if (qual->flags.q.prim_type) {
+ _mesa_glsl_error(loc, state,
+ "Primitive type may only be specified on GS input or output "
+ "layout declaration, not on variables.");
+ }
+
+ /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
+ *
+ * "However, the const qualifier cannot be used with out or inout."
+ *
+ * The same section of the GLSL 4.40 spec further clarifies this saying:
+ *
+ * "The const qualifier cannot be used with out or inout, or a
+ * compile-time error results."
+ */
+ if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
+ _mesa_glsl_error(loc, state,
+ "`const' may not be applied to `out' or `inout' "
+ "function parameters");
+ }
+
+ /* If there is no qualifier that changes the mode of the variable, leave
+ * the setting alone.
+ */
+ assert(var->data.mode != ir_var_temporary);
+ if (qual->flags.q.in && qual->flags.q.out)
+ var->data.mode = ir_var_function_inout;
+ else if (qual->flags.q.in)
+ var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
+ else if (qual->flags.q.attribute
+ || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
+ var->data.mode = ir_var_shader_in;
+ else if (qual->flags.q.out)
+ var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
+ else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
+ var->data.mode = ir_var_shader_out;
+ else if (qual->flags.q.uniform)
+ var->data.mode = ir_var_uniform;
+ else if (qual->flags.q.buffer)
+ var->data.mode = ir_var_shader_storage;
+ else if (qual->flags.q.shared_storage)
+ var->data.mode = ir_var_shader_shared;
+
+ if (!is_parameter && is_varying_var(var, state->stage)) {
+ /* User-defined ins/outs are not permitted in compute shaders. */
+ if (state->stage == MESA_SHADER_COMPUTE) {
+ _mesa_glsl_error(loc, state,
+ "user-defined input and output variables are not "
+ "permitted in compute shaders");
+ }
+
+ /* This variable is being used to link data between shader stages (in
+ * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
+ * that is allowed for such purposes.
+ *
+ * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "The varying qualifier can be used only with the data types
+ * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
+ * these."
+ *
+ * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
+ * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
+ *
+ * "Fragment inputs can only be signed and unsigned integers and
+ * integer vectors, float, floating-point vectors, matrices, or
+ * arrays of these. Structures cannot be input.
+ *
+ * Similar text exists in the section on vertex shader outputs.
+ *
+ * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
+ * 3.00 spec allows structs as well. Varying structs are also allowed
+ * in GLSL 1.50.
+ */
+ switch (var->type->get_scalar_type()->base_type) {
+ case GLSL_TYPE_FLOAT:
+ /* Ok in all GLSL versions */
+ break;
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ if (state->is_version(130, 300))
+ break;
+ _mesa_glsl_error(loc, state,
+ "varying variables must be of base type float in %s",
+ state->get_version_string());
+ break;
+ case GLSL_TYPE_STRUCT:
+ if (state->is_version(150, 300))
+ break;
+ _mesa_glsl_error(loc, state,
+ "varying variables may not be of type struct");
+ break;
+ case GLSL_TYPE_DOUBLE:
+ break;
+ default:
+ _mesa_glsl_error(loc, state, "illegal type for a varying variable");
+ break;
+ }
+ }
+
+ if (state->all_invariant && (state->current_function == NULL)) {
+ switch (state->stage) {
+ case MESA_SHADER_VERTEX:
+ if (var->data.mode == ir_var_shader_out)
+ var->data.invariant = true;
+ break;
+ case MESA_SHADER_TESS_CTRL:
+ case MESA_SHADER_TESS_EVAL:
+ case MESA_SHADER_GEOMETRY:
+ if ((var->data.mode == ir_var_shader_in)
+ || (var->data.mode == ir_var_shader_out))
+ var->data.invariant = true;
+ break;
+ case MESA_SHADER_FRAGMENT:
+ if (var->data.mode == ir_var_shader_in)
+ var->data.invariant = true;
+ break;
+ case MESA_SHADER_COMPUTE:
+ /* Invariance isn't meaningful in compute shaders. */
+ break;
+ }
+ }
+
+ var->data.interpolation =
+ interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
+ state, loc);
+
+ /* Does the declaration use the deprecated 'attribute' or 'varying'
+ * keywords?
+ */
+ const bool uses_deprecated_qualifier = qual->flags.q.attribute
+ || qual->flags.q.varying;
+
+
+ /* Validate auxiliary storage qualifiers */
+
+ /* From section 4.3.4 of the GLSL 1.30 spec:
+ * "It is an error to use centroid in in a vertex shader."
+ *
+ * From section 4.3.4 of the GLSL ES 3.00 spec:
+ * "It is an error to use centroid in or interpolation qualifiers in
+ * a vertex shader input."
+ */
+
+ /* Section 4.3.6 of the GLSL 1.30 specification states:
+ * "It is an error to use centroid out in a fragment shader."
+ *
+ * The GL_ARB_shading_language_420pack extension specification states:
+ * "It is an error to use auxiliary storage qualifiers or interpolation
+ * qualifiers on an output in a fragment shader."
+ */
+ if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
+ _mesa_glsl_error(loc, state,
+ "sample qualifier may only be used on `in` or `out` "
+ "variables between shader stages");
+ }
+ if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
+ _mesa_glsl_error(loc, state,
+ "centroid qualifier may only be used with `in', "
+ "`out' or `varying' variables between shader stages");
+ }
+
+ if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
+ _mesa_glsl_error(loc, state,
+ "the shared storage qualifiers can only be used with "
+ "compute shaders");
+ }
+
+ apply_image_qualifier_to_variable(qual, var, state, loc);
+}
+
+/**
+ * Get the variable that is being redeclared by this declaration
+ *
+ * Semantic checks to verify the validity of the redeclaration are also
+ * performed. If semantic checks fail, compilation error will be emitted via
+ * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
+ *
+ * \returns
+ * A pointer to an existing variable in the current scope if the declaration
+ * is a redeclaration, \c NULL otherwise.
+ */
+static ir_variable *
+get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
+ struct _mesa_glsl_parse_state *state,
+ bool allow_all_redeclarations)
+{
+ /* Check if this declaration is actually a re-declaration, either to
+ * resize an array or add qualifiers to an existing variable.
+ *
+ * This is allowed for variables in the current scope, or when at
+ * global scope (for built-ins in the implicit outer scope).
+ */
+ ir_variable *earlier = state->symbols->get_variable(var->name);
+ if (earlier == NULL ||
+ (state->current_function != NULL &&
+ !state->symbols->name_declared_this_scope(var->name))) {
+ return NULL;
+ }
+
+
+ /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
+ *
+ * "It is legal to declare an array without a size and then
+ * later re-declare the same name as an array of the same
+ * type and specify a size."
+ */
+ if (earlier->type->is_unsized_array() && var->type->is_array()
+ && (var->type->fields.array == earlier->type->fields.array)) {
+ /* FINISHME: This doesn't match the qualifiers on the two
+ * FINISHME: declarations. It's not 100% clear whether this is
+ * FINISHME: required or not.
+ */
+
+ const unsigned size = unsigned(var->type->array_size());
+ check_builtin_array_max_size(var->name, size, loc, state);
+ if ((size > 0) && (size <= earlier->data.max_array_access)) {
+ _mesa_glsl_error(& loc, state, "array size must be > %u due to "
+ "previous access",
+ earlier->data.max_array_access);
+ }
+
+ earlier->type = var->type;
+ delete var;
+ var = NULL;
+ } else if ((state->ARB_fragment_coord_conventions_enable ||
+ state->is_version(150, 0))
+ && strcmp(var->name, "gl_FragCoord") == 0
+ && earlier->type == var->type
+ && var->data.mode == ir_var_shader_in) {
+ /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
+ * qualifiers.
+ */
+ earlier->data.origin_upper_left = var->data.origin_upper_left;
+ earlier->data.pixel_center_integer = var->data.pixel_center_integer;
+
+ /* According to section 4.3.7 of the GLSL 1.30 spec,
+ * the following built-in varaibles can be redeclared with an
+ * interpolation qualifier:
+ * * gl_FrontColor
+ * * gl_BackColor
+ * * gl_FrontSecondaryColor
+ * * gl_BackSecondaryColor
+ * * gl_Color
+ * * gl_SecondaryColor
+ */
+ } else if (state->is_version(130, 0)
+ && (strcmp(var->name, "gl_FrontColor") == 0
+ || strcmp(var->name, "gl_BackColor") == 0
+ || strcmp(var->name, "gl_FrontSecondaryColor") == 0
+ || strcmp(var->name, "gl_BackSecondaryColor") == 0
+ || strcmp(var->name, "gl_Color") == 0
+ || strcmp(var->name, "gl_SecondaryColor") == 0)
+ && earlier->type == var->type
+ && earlier->data.mode == var->data.mode) {
+ earlier->data.interpolation = var->data.interpolation;
+
+ /* Layout qualifiers for gl_FragDepth. */
+ } else if ((state->AMD_conservative_depth_enable ||
+ state->ARB_conservative_depth_enable)
+ && strcmp(var->name, "gl_FragDepth") == 0
+ && earlier->type == var->type
+ && earlier->data.mode == var->data.mode) {
+
+ /** From the AMD_conservative_depth spec:
+ * Within any shader, the first redeclarations of gl_FragDepth
+ * must appear before any use of gl_FragDepth.
+ */
+ if (earlier->data.used) {
+ _mesa_glsl_error(&loc, state,
+ "the first redeclaration of gl_FragDepth "
+ "must appear before any use of gl_FragDepth");
+ }
+
+ /* Prevent inconsistent redeclaration of depth layout qualifier. */
+ if (earlier->data.depth_layout != ir_depth_layout_none
+ && earlier->data.depth_layout != var->data.depth_layout) {
+ _mesa_glsl_error(&loc, state,
+ "gl_FragDepth: depth layout is declared here "
+ "as '%s, but it was previously declared as "
+ "'%s'",
+ depth_layout_string(var->data.depth_layout),
+ depth_layout_string(earlier->data.depth_layout));
+ }
+
+ earlier->data.depth_layout = var->data.depth_layout;
+
+ } else if (allow_all_redeclarations) {
+ if (earlier->data.mode != var->data.mode) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of `%s' with incorrect qualifiers",
+ var->name);
+ } else if (earlier->type != var->type) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of `%s' has incorrect type",
+ var->name);
+ }
+ } else {
+ _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
+ }
+
+ return earlier;
+}
+
+/**
+ * Generate the IR for an initializer in a variable declaration
+ */
+ir_rvalue *
+process_initializer(ir_variable *var, ast_declaration *decl,
+ ast_fully_specified_type *type,
+ exec_list *initializer_instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ ir_rvalue *result = NULL;
+
+ YYLTYPE initializer_loc = decl->initializer->get_location();
+
+ /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "All uniform variables are read-only and are initialized either
+ * directly by an application via API commands, or indirectly by
+ * OpenGL."
+ */
+ if (var->data.mode == ir_var_uniform) {
+ state->check_version(120, 0, &initializer_loc,
+ "cannot initialize uniform %s",
+ var->name);
+ }
+
+ /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
+ *
+ * "Buffer variables cannot have initializers."
+ */
+ if (var->data.mode == ir_var_shader_storage) {
+ _mesa_glsl_error(&initializer_loc, state,
+ "cannot initialize buffer variable %s",
+ var->name);
+ }
+
+ /* From section 4.1.7 of the GLSL 4.40 spec:
+ *
+ * "Opaque variables [...] are initialized only through the
+ * OpenGL API; they cannot be declared with an initializer in a
+ * shader."
+ */
+ if (var->type->contains_opaque()) {
+ _mesa_glsl_error(&initializer_loc, state,
+ "cannot initialize opaque variable %s",
+ var->name);
+ }
+
+ if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
+ _mesa_glsl_error(&initializer_loc, state,
+ "cannot initialize %s shader input / %s %s",
+ _mesa_shader_stage_to_string(state->stage),
+ (state->stage == MESA_SHADER_VERTEX)
+ ? "attribute" : "varying",
+ var->name);
+ }
+
+ if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
+ _mesa_glsl_error(&initializer_loc, state,
+ "cannot initialize %s shader output %s",
+ _mesa_shader_stage_to_string(state->stage),
+ var->name);
+ }
+
+ /* If the initializer is an ast_aggregate_initializer, recursively store
+ * type information from the LHS into it, so that its hir() function can do
+ * type checking.
+ */
+ if (decl->initializer->oper == ast_aggregate)
+ _mesa_ast_set_aggregate_type(var->type, decl->initializer);
+
+ ir_dereference *const lhs = new(state) ir_dereference_variable(var);
+ ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
+
+ /* Calculate the constant value if this is a const or uniform
+ * declaration.
+ *
+ * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
+ *
+ * "Declarations of globals without a storage qualifier, or with
+ * just the const qualifier, may include initializers, in which case
+ * they will be initialized before the first line of main() is
+ * executed. Such initializers must be a constant expression."
+ *
+ * The same section of the GLSL ES 3.00.4 spec has similar language.
+ */
+ if (type->qualifier.flags.q.constant
+ || type->qualifier.flags.q.uniform
+ || (state->es_shader && state->current_function == NULL)) {
+ ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
+ lhs, rhs, true);
+ if (new_rhs != NULL) {
+ rhs = new_rhs;
+
+ /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
+ * says:
+ *
+ * "A constant expression is one of
+ *
+ * ...
+ *
+ * - an expression formed by an operator on operands that are
+ * all constant expressions, including getting an element of
+ * a constant array, or a field of a constant structure, or
+ * components of a constant vector. However, the sequence
+ * operator ( , ) and the assignment operators ( =, +=, ...)
+ * are not included in the operators that can create a
+ * constant expression."
+ *
+ * Section 12.43 (Sequence operator and constant expressions) says:
+ *
+ * "Should the following construct be allowed?
+ *
+ * float a[2,3];
+ *
+ * The expression within the brackets uses the sequence operator
+ * (',') and returns the integer 3 so the construct is declaring
+ * a single-dimensional array of size 3. In some languages, the
+ * construct declares a two-dimensional array. It would be
+ * preferable to make this construct illegal to avoid confusion.
+ *
+ * One possibility is to change the definition of the sequence
+ * operator so that it does not return a constant-expression and
+ * hence cannot be used to declare an array size.
+ *
+ * RESOLUTION: The result of a sequence operator is not a
+ * constant-expression."
+ *
+ * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
+ * contains language almost identical to the section 4.3.3 in the
+ * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
+ * versions.
+ */
+ ir_constant *constant_value = rhs->constant_expression_value();
+ if (!constant_value ||
+ (state->is_version(430, 300) &&
+ decl->initializer->has_sequence_subexpression())) {
+ const char *const variable_mode =
+ (type->qualifier.flags.q.constant)
+ ? "const"
+ : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
+
+ /* If ARB_shading_language_420pack is enabled, initializers of
+ * const-qualified local variables do not have to be constant
+ * expressions. Const-qualified global variables must still be
+ * initialized with constant expressions.
+ */
+ if (!state->has_420pack()
+ || state->current_function == NULL) {
+ _mesa_glsl_error(& initializer_loc, state,
+ "initializer of %s variable `%s' must be a "
+ "constant expression",
+ variable_mode,
+ decl->identifier);
+ if (var->type->is_numeric()) {
+ /* Reduce cascading errors. */
+ var->constant_value = type->qualifier.flags.q.constant
+ ? ir_constant::zero(state, var->type) : NULL;
+ }
+ }
+ } else {
+ rhs = constant_value;
+ var->constant_value = type->qualifier.flags.q.constant
+ ? constant_value : NULL;
+ }
+ } else {
+ if (var->type->is_numeric()) {
+ /* Reduce cascading errors. */
+ var->constant_value = type->qualifier.flags.q.constant
+ ? ir_constant::zero(state, var->type) : NULL;
+ }
+ }
+ }
+
+ if (rhs && !rhs->type->is_error()) {
+ bool temp = var->data.read_only;
+ if (type->qualifier.flags.q.constant)
+ var->data.read_only = false;
+
+ /* Never emit code to initialize a uniform.
+ */
+ const glsl_type *initializer_type;
+ if (!type->qualifier.flags.q.uniform) {
+ do_assignment(initializer_instructions, state,
+ NULL,
+ lhs, rhs,
+ &result, true,
+ true,
+ type->get_location());
+ initializer_type = result->type;
+ } else
+ initializer_type = rhs->type;
+
+ var->constant_initializer = rhs->constant_expression_value();
+ var->data.has_initializer = true;
+
+ /* If the declared variable is an unsized array, it must inherrit
+ * its full type from the initializer. A declaration such as
+ *
+ * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
+ *
+ * becomes
+ *
+ * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
+ *
+ * The assignment generated in the if-statement (below) will also
+ * automatically handle this case for non-uniforms.
+ *
+ * If the declared variable is not an array, the types must
+ * already match exactly. As a result, the type assignment
+ * here can be done unconditionally. For non-uniforms the call
+ * to do_assignment can change the type of the initializer (via
+ * the implicit conversion rules). For uniforms the initializer
+ * must be a constant expression, and the type of that expression
+ * was validated above.
+ */
+ var->type = initializer_type;
+
+ var->data.read_only = temp;
+ }
+
+ return result;
+}
+
+static void
+validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
+ YYLTYPE loc, ir_variable *var,
+ unsigned num_vertices,
+ unsigned *size,
+ const char *var_category)
+{
+ if (var->type->is_unsized_array()) {
+ /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
+ *
+ * All geometry shader input unsized array declarations will be
+ * sized by an earlier input layout qualifier, when present, as per
+ * the following table.
+ *
+ * Followed by a table mapping each allowed input layout qualifier to
+ * the corresponding input length.
+ *
+ * Similarly for tessellation control shader outputs.
+ */
+ if (num_vertices != 0)
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ num_vertices);
+ } else {
+ /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
+ * includes the following examples of compile-time errors:
+ *
+ * // code sequence within one shader...
+ * in vec4 Color1[]; // size unknown
+ * ...Color1.length()...// illegal, length() unknown
+ * in vec4 Color2[2]; // size is 2
+ * ...Color1.length()...// illegal, Color1 still has no size
+ * in vec4 Color3[3]; // illegal, input sizes are inconsistent
+ * layout(lines) in; // legal, input size is 2, matching
+ * in vec4 Color4[3]; // illegal, contradicts layout
+ * ...
+ *
+ * To detect the case illustrated by Color3, we verify that the size of
+ * an explicitly-sized array matches the size of any previously declared
+ * explicitly-sized array. To detect the case illustrated by Color4, we
+ * verify that the size of an explicitly-sized array is consistent with
+ * any previously declared input layout.
+ */
+ if (num_vertices != 0 && var->type->length != num_vertices) {
+ _mesa_glsl_error(&loc, state,
+ "%s size contradicts previously declared layout "
+ "(size is %u, but layout requires a size of %u)",
+ var_category, var->type->length, num_vertices);
+ } else if (*size != 0 && var->type->length != *size) {
+ _mesa_glsl_error(&loc, state,
+ "%s sizes are inconsistent (size is %u, but a "
+ "previous declaration has size %u)",
+ var_category, var->type->length, *size);
+ } else {
+ *size = var->type->length;
+ }
+ }
+}
+
+static void
+handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
+ YYLTYPE loc, ir_variable *var)
+{
+ unsigned num_vertices = 0;
+
+ if (state->tcs_output_vertices_specified) {
+ if (!state->out_qualifier->vertices->
+ process_qualifier_constant(state, "vertices",
+ &num_vertices, false)) {
+ return;
+ }
+
+ if (num_vertices > state->Const.MaxPatchVertices) {
+ _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
+ "GL_MAX_PATCH_VERTICES", num_vertices);
+ return;
+ }
+ }
+
+ if (!var->type->is_array() && !var->data.patch) {
+ _mesa_glsl_error(&loc, state,
+ "tessellation control shader outputs must be arrays");
+
+ /* To avoid cascading failures, short circuit the checks below. */
+ return;
+ }
+
+ if (var->data.patch)
+ return;
+
+ validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
+ &state->tcs_output_size,
+ "tessellation control shader output");
+}
+
+/**
+ * Do additional processing necessary for tessellation control/evaluation shader
+ * input declarations. This covers both interface block arrays and bare input
+ * variables.
+ */
+static void
+handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
+ YYLTYPE loc, ir_variable *var)
+{
+ if (!var->type->is_array() && !var->data.patch) {
+ _mesa_glsl_error(&loc, state,
+ "per-vertex tessellation shader inputs must be arrays");
+ /* Avoid cascading failures. */
+ return;
+ }
+
+ if (var->data.patch)
+ return;
+
+ /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
+ if (var->type->is_unsized_array()) {
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ state->Const.MaxPatchVertices);
+ }
+}
+
+
+/**
+ * Do additional processing necessary for geometry shader input declarations
+ * (this covers both interface blocks arrays and bare input variables).
+ */
+static void
+handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
+ YYLTYPE loc, ir_variable *var)
+{
+ unsigned num_vertices = 0;
+
+ if (state->gs_input_prim_type_specified) {
+ num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
+ }
+
+ /* Geometry shader input variables must be arrays. Caller should have
+ * reported an error for this.
+ */
+ if (!var->type->is_array()) {
+ assert(state->error);
+
+ /* To avoid cascading failures, short circuit the checks below. */
+ return;
+ }
+
+ validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
+ &state->gs_input_size,
+ "geometry shader input");
+}
+
+void
+validate_identifier(const char *identifier, YYLTYPE loc,
+ struct _mesa_glsl_parse_state *state)
+{
+ /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
+ *
+ * "Identifiers starting with "gl_" are reserved for use by
+ * OpenGL, and may not be declared in a shader as either a
+ * variable or a function."
+ */
+ if (is_gl_identifier(identifier)) {
+ _mesa_glsl_error(&loc, state,
+ "identifier `%s' uses reserved `gl_' prefix",
+ identifier);
+ } else if (strstr(identifier, "__")) {
+ /* From page 14 (page 20 of the PDF) of the GLSL 1.10
+ * spec:
+ *
+ * "In addition, all identifiers containing two
+ * consecutive underscores (__) are reserved as
+ * possible future keywords."
+ *
+ * The intention is that names containing __ are reserved for internal
+ * use by the implementation, and names prefixed with GL_ are reserved
+ * for use by Khronos. Names simply containing __ are dangerous to use,
+ * but should be allowed.
+ *
+ * A future version of the GLSL specification will clarify this.
+ */
+ _mesa_glsl_warning(&loc, state,
+ "identifier `%s' uses reserved `__' string",
+ identifier);
+ }
+}
+
+ir_rvalue *
+ast_declarator_list::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ const struct glsl_type *decl_type;
+ const char *type_name = NULL;
+ ir_rvalue *result = NULL;
+ YYLTYPE loc = this->get_location();
+
+ /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "To ensure that a particular output variable is invariant, it is
+ * necessary to use the invariant qualifier. It can either be used to
+ * qualify a previously declared variable as being invariant
+ *
+ * invariant gl_Position; // make existing gl_Position be invariant"
+ *
+ * In these cases the parser will set the 'invariant' flag in the declarator
+ * list, and the type will be NULL.
+ */
+ if (this->invariant) {
+ assert(this->type == NULL);
+
+ if (state->current_function != NULL) {
+ _mesa_glsl_error(& loc, state,
+ "all uses of `invariant' keyword must be at global "
+ "scope");
+ }
+
+ foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
+ assert(decl->array_specifier == NULL);
+ assert(decl->initializer == NULL);
+
+ ir_variable *const earlier =
+ state->symbols->get_variable(decl->identifier);
+ if (earlier == NULL) {
+ _mesa_glsl_error(& loc, state,
+ "undeclared variable `%s' cannot be marked "
+ "invariant", decl->identifier);
+ } else if (!is_varying_var(earlier, state->stage)) {
+ _mesa_glsl_error(&loc, state,
+ "`%s' cannot be marked invariant; interfaces between "
+ "shader stages only.", decl->identifier);
+ } else if (earlier->data.used) {
+ _mesa_glsl_error(& loc, state,
+ "variable `%s' may not be redeclared "
+ "`invariant' after being used",
+ earlier->name);
+ } else {
+ earlier->data.invariant = true;
+ }
+ }
+
+ /* Invariant redeclarations do not have r-values.
+ */
+ return NULL;
+ }
+
+ if (this->precise) {
+ assert(this->type == NULL);
+
+ foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
+ assert(decl->array_specifier == NULL);
+ assert(decl->initializer == NULL);
+
+ ir_variable *const earlier =
+ state->symbols->get_variable(decl->identifier);
+ if (earlier == NULL) {
+ _mesa_glsl_error(& loc, state,
+ "undeclared variable `%s' cannot be marked "
+ "precise", decl->identifier);
+ } else if (state->current_function != NULL &&
+ !state->symbols->name_declared_this_scope(decl->identifier)) {
+ /* Note: we have to check if we're in a function, since
+ * builtins are treated as having come from another scope.
+ */
+ _mesa_glsl_error(& loc, state,
+ "variable `%s' from an outer scope may not be "
+ "redeclared `precise' in this scope",
+ earlier->name);
+ } else if (earlier->data.used) {
+ _mesa_glsl_error(& loc, state,
+ "variable `%s' may not be redeclared "
+ "`precise' after being used",
+ earlier->name);
+ } else {
+ earlier->data.precise = true;
+ }
+ }
+
+ /* Precise redeclarations do not have r-values either. */
+ return NULL;
+ }
+
+ assert(this->type != NULL);
+ assert(!this->invariant);
+ assert(!this->precise);
+
+ /* The type specifier may contain a structure definition. Process that
+ * before any of the variable declarations.
+ */
+ (void) this->type->specifier->hir(instructions, state);
+
+ decl_type = this->type->glsl_type(& type_name, state);
+
+ /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
+ * "Buffer variables may only be declared inside interface blocks
+ * (section 4.3.9 “Interface Blocks”), which are then referred to as
+ * shader storage blocks. It is a compile-time error to declare buffer
+ * variables at global scope (outside a block)."
+ */
+ if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
+ _mesa_glsl_error(&loc, state,
+ "buffer variables cannot be declared outside "
+ "interface blocks");
+ }
+
+ /* An offset-qualified atomic counter declaration sets the default
+ * offset for the next declaration within the same atomic counter
+ * buffer.
+ */
+ if (decl_type && decl_type->contains_atomic()) {
+ if (type->qualifier.flags.q.explicit_binding &&
+ type->qualifier.flags.q.explicit_offset) {
+ unsigned qual_binding;
+ unsigned qual_offset;
+ if (process_qualifier_constant(state, &loc, "binding",
+ type->qualifier.binding,
+ &qual_binding)
+ && process_qualifier_constant(state, &loc, "offset",
+ type->qualifier.offset,
+ &qual_offset)) {
+ state->atomic_counter_offsets[qual_binding] = qual_offset;
+ }
+ }
+ }
+
+ if (this->declarations.is_empty()) {
+ /* If there is no structure involved in the program text, there are two
+ * possible scenarios:
+ *
+ * - The program text contained something like 'vec4;'. This is an
+ * empty declaration. It is valid but weird. Emit a warning.
+ *
+ * - The program text contained something like 'S;' and 'S' is not the
+ * name of a known structure type. This is both invalid and weird.
+ * Emit an error.
+ *
+ * - The program text contained something like 'mediump float;'
+ * when the programmer probably meant 'precision mediump
+ * float;' Emit a warning with a description of what they
+ * probably meant to do.
+ *
+ * Note that if decl_type is NULL and there is a structure involved,
+ * there must have been some sort of error with the structure. In this
+ * case we assume that an error was already generated on this line of
+ * code for the structure. There is no need to generate an additional,
+ * confusing error.
+ */
+ assert(this->type->specifier->structure == NULL || decl_type != NULL
+ || state->error);
+
+ if (decl_type == NULL) {
+ _mesa_glsl_error(&loc, state,
+ "invalid type `%s' in empty declaration",
+ type_name);
+ } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
+ /* Empty atomic counter declarations are allowed and useful
+ * to set the default offset qualifier.
+ */
+ return NULL;
+ } else if (this->type->qualifier.precision != ast_precision_none) {
+ if (this->type->specifier->structure != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "precision qualifiers can't be applied "
+ "to structures");
+ } else {
+ static const char *const precision_names[] = {
+ "highp",
+ "highp",
+ "mediump",
+ "lowp"
+ };
+
+ _mesa_glsl_warning(&loc, state,
+ "empty declaration with precision qualifier, "
+ "to set the default precision, use "
+ "`precision %s %s;'",
+ precision_names[this->type->qualifier.precision],
+ type_name);
+ }
+ } else if (this->type->specifier->structure == NULL) {
+ _mesa_glsl_warning(&loc, state, "empty declaration");
+ }
+ }
+
+ foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
+ const struct glsl_type *var_type;
+ ir_variable *var;
+ const char *identifier = decl->identifier;
+ /* FINISHME: Emit a warning if a variable declaration shadows a
+ * FINISHME: declaration at a higher scope.
+ */
+
+ if ((decl_type == NULL) || decl_type->is_void()) {
+ if (type_name != NULL) {
+ _mesa_glsl_error(& loc, state,
+ "invalid type `%s' in declaration of `%s'",
+ type_name, decl->identifier);
+ } else {
+ _mesa_glsl_error(& loc, state,
+ "invalid type in declaration of `%s'",
+ decl->identifier);
+ }
+ continue;
+ }
+
+ if (this->type->qualifier.flags.q.subroutine) {
+ const glsl_type *t;
+ const char *name;
+
+ t = state->symbols->get_type(this->type->specifier->type_name);
+ if (!t)
+ _mesa_glsl_error(& loc, state,
+ "invalid type in declaration of `%s'",
+ decl->identifier);
+ name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
+
+ identifier = name;
+
+ }
+ var_type = process_array_type(&loc, decl_type, decl->array_specifier,
+ state);
+
+ var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
+
+ /* The 'varying in' and 'varying out' qualifiers can only be used with
+ * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
+ * yet.
+ */
+ if (this->type->qualifier.flags.q.varying) {
+ if (this->type->qualifier.flags.q.in) {
+ _mesa_glsl_error(& loc, state,
+ "`varying in' qualifier in declaration of "
+ "`%s' only valid for geometry shaders using "
+ "ARB_geometry_shader4 or EXT_geometry_shader4",
+ decl->identifier);
+ } else if (this->type->qualifier.flags.q.out) {
+ _mesa_glsl_error(& loc, state,
+ "`varying out' qualifier in declaration of "
+ "`%s' only valid for geometry shaders using "
+ "ARB_geometry_shader4 or EXT_geometry_shader4",
+ decl->identifier);
+ }
+ }
+
+ /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
+ *
+ * "Global variables can only use the qualifiers const,
+ * attribute, uniform, or varying. Only one may be
+ * specified.
+ *
+ * Local variables can only use the qualifier const."
+ *
+ * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
+ * any extension that adds the 'layout' keyword.
+ */
+ if (!state->is_version(130, 300)
+ && !state->has_explicit_attrib_location()
+ && !state->has_separate_shader_objects()
+ && !state->ARB_fragment_coord_conventions_enable) {
+ if (this->type->qualifier.flags.q.out) {
+ _mesa_glsl_error(& loc, state,
+ "`out' qualifier in declaration of `%s' "
+ "only valid for function parameters in %s",
+ decl->identifier, state->get_version_string());
+ }
+ if (this->type->qualifier.flags.q.in) {
+ _mesa_glsl_error(& loc, state,
+ "`in' qualifier in declaration of `%s' "
+ "only valid for function parameters in %s",
+ decl->identifier, state->get_version_string());
+ }
+ /* FINISHME: Test for other invalid qualifiers. */
+ }
+
+ apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
+ & loc, false);
+ apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
+ &loc);
+
+ if (this->type->qualifier.flags.q.invariant) {
+ if (!is_varying_var(var, state->stage)) {
+ _mesa_glsl_error(&loc, state,
+ "`%s' cannot be marked invariant; interfaces between "
+ "shader stages only", var->name);
+ }
+ }
+
+ if (state->current_function != NULL) {
+ const char *mode = NULL;
+ const char *extra = "";
+
+ /* There is no need to check for 'inout' here because the parser will
+ * only allow that in function parameter lists.
+ */
+ if (this->type->qualifier.flags.q.attribute) {
+ mode = "attribute";
+ } else if (this->type->qualifier.flags.q.subroutine) {
+ mode = "subroutine uniform";
+ } else if (this->type->qualifier.flags.q.uniform) {
+ mode = "uniform";
+ } else if (this->type->qualifier.flags.q.varying) {
+ mode = "varying";
+ } else if (this->type->qualifier.flags.q.in) {
+ mode = "in";
+ extra = " or in function parameter list";
+ } else if (this->type->qualifier.flags.q.out) {
+ mode = "out";
+ extra = " or in function parameter list";
+ }
+
+ if (mode) {
+ _mesa_glsl_error(& loc, state,
+ "%s variable `%s' must be declared at "
+ "global scope%s",
+ mode, var->name, extra);
+ }
+ } else if (var->data.mode == ir_var_shader_in) {
+ var->data.read_only = true;
+
+ if (state->stage == MESA_SHADER_VERTEX) {
+ bool error_emitted = false;
+
+ /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "Vertex shader inputs can only be float, floating-point
+ * vectors, matrices, signed and unsigned integers and integer
+ * vectors. Vertex shader inputs can also form arrays of these
+ * types, but not structures."
+ *
+ * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
+ *
+ * "Vertex shader inputs can only be float, floating-point
+ * vectors, matrices, signed and unsigned integers and integer
+ * vectors. They cannot be arrays or structures."
+ *
+ * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
+ *
+ * "The attribute qualifier can be used only with float,
+ * floating-point vectors, and matrices. Attribute variables
+ * cannot be declared as arrays or structures."
+ *
+ * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
+ *
+ * "Vertex shader inputs can only be float, floating-point
+ * vectors, matrices, signed and unsigned integers and integer
+ * vectors. Vertex shader inputs cannot be arrays or
+ * structures."
+ */
+ const glsl_type *check_type = var->type->without_array();
+
+ switch (check_type->base_type) {
+ case GLSL_TYPE_FLOAT:
+ break;
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ if (state->is_version(120, 300))
+ break;
+ case GLSL_TYPE_DOUBLE:
+ if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
+ break;
+ /* FALLTHROUGH */
+ default:
+ _mesa_glsl_error(& loc, state,
+ "vertex shader input / attribute cannot have "
+ "type %s`%s'",
+ var->type->is_array() ? "array of " : "",
+ check_type->name);
+ error_emitted = true;
+ }
+
+ if (!error_emitted && var->type->is_array() &&
+ !state->check_version(150, 0, &loc,
+ "vertex shader input / attribute "
+ "cannot have array type")) {
+ error_emitted = true;
+ }
+ } else if (state->stage == MESA_SHADER_GEOMETRY) {
+ /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
+ *
+ * Geometry shader input variables get the per-vertex values
+ * written out by vertex shader output variables of the same
+ * names. Since a geometry shader operates on a set of
+ * vertices, each input varying variable (or input block, see
+ * interface blocks below) needs to be declared as an array.
+ */
+ if (!var->type->is_array()) {
+ _mesa_glsl_error(&loc, state,
+ "geometry shader inputs must be arrays");
+ }
+
+ handle_geometry_shader_input_decl(state, loc, var);
+ } else if (state->stage == MESA_SHADER_FRAGMENT) {
+ /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
+ *
+ * It is a compile-time error to declare a fragment shader
+ * input with, or that contains, any of the following types:
+ *
+ * * A boolean type
+ * * An opaque type
+ * * An array of arrays
+ * * An array of structures
+ * * A structure containing an array
+ * * A structure containing a structure
+ */
+ if (state->es_shader) {
+ const glsl_type *check_type = var->type->without_array();
+ if (check_type->is_boolean() ||
+ check_type->contains_opaque()) {
+ _mesa_glsl_error(&loc, state,
+ "fragment shader input cannot have type %s",
+ check_type->name);
+ }
+ if (var->type->is_array() &&
+ var->type->fields.array->is_array()) {
+ _mesa_glsl_error(&loc, state,
+ "%s shader output "
+ "cannot have an array of arrays",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+ if (var->type->is_array() &&
+ var->type->fields.array->is_record()) {
+ _mesa_glsl_error(&loc, state,
+ "fragment shader input "
+ "cannot have an array of structs");
+ }
+ if (var->type->is_record()) {
+ for (unsigned i = 0; i < var->type->length; i++) {
+ if (var->type->fields.structure[i].type->is_array() ||
+ var->type->fields.structure[i].type->is_record())
+ _mesa_glsl_error(&loc, state,
+ "fragement shader input cannot have "
+ "a struct that contains an "
+ "array or struct");
+ }
+ }
+ }
+ } else if (state->stage == MESA_SHADER_TESS_CTRL ||
+ state->stage == MESA_SHADER_TESS_EVAL) {
+ handle_tess_shader_input_decl(state, loc, var);
+ }
+ } else if (var->data.mode == ir_var_shader_out) {
+ const glsl_type *check_type = var->type->without_array();
+
+ /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
+ *
+ * It is a compile-time error to declare a vertex, tessellation
+ * evaluation, tessellation control, or geometry shader output
+ * that contains any of the following:
+ *
+ * * A Boolean type (bool, bvec2 ...)
+ * * An opaque type
+ */
+ if (check_type->is_boolean() || check_type->contains_opaque())
+ _mesa_glsl_error(&loc, state,
+ "%s shader output cannot have type %s",
+ _mesa_shader_stage_to_string(state->stage),
+ check_type->name);
+
+ /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
+ *
+ * It is a compile-time error to declare a fragment shader output
+ * that contains any of the following:
+ *
+ * * A Boolean type (bool, bvec2 ...)
+ * * A double-precision scalar or vector (double, dvec2 ...)
+ * * An opaque type
+ * * Any matrix type
+ * * A structure
+ */
+ if (state->stage == MESA_SHADER_FRAGMENT) {
+ if (check_type->is_record() || check_type->is_matrix())
+ _mesa_glsl_error(&loc, state,
+ "fragment shader output "
+ "cannot have struct or matrix type");
+ switch (check_type->base_type) {
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_FLOAT:
+ break;
+ default:
+ _mesa_glsl_error(&loc, state,
+ "fragment shader output cannot have "
+ "type %s", check_type->name);
+ }
+ }
+
+ /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
+ *
+ * It is a compile-time error to declare a vertex shader output
+ * with, or that contains, any of the following types:
+ *
+ * * A boolean type
+ * * An opaque type
+ * * An array of arrays
+ * * An array of structures
+ * * A structure containing an array
+ * * A structure containing a structure
+ *
+ * It is a compile-time error to declare a fragment shader output
+ * with, or that contains, any of the following types:
+ *
+ * * A boolean type
+ * * An opaque type
+ * * A matrix
+ * * A structure
+ * * An array of array
+ */
+ if (state->es_shader) {
+ if (var->type->is_array() &&
+ var->type->fields.array->is_array()) {
+ _mesa_glsl_error(&loc, state,
+ "%s shader output "
+ "cannot have an array of arrays",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+ if (state->stage == MESA_SHADER_VERTEX) {
+ if (var->type->is_array() &&
+ var->type->fields.array->is_record()) {
+ _mesa_glsl_error(&loc, state,
+ "vertex shader output "
+ "cannot have an array of structs");
+ }
+ if (var->type->is_record()) {
+ for (unsigned i = 0; i < var->type->length; i++) {
+ if (var->type->fields.structure[i].type->is_array() ||
+ var->type->fields.structure[i].type->is_record())
+ _mesa_glsl_error(&loc, state,
+ "vertex shader output cannot have a "
+ "struct that contains an "
+ "array or struct");
+ }
+ }
+ }
+ }
+
+ if (state->stage == MESA_SHADER_TESS_CTRL) {
+ handle_tess_ctrl_shader_output_decl(state, loc, var);
+ }
+ } else if (var->type->contains_subroutine()) {
+ /* declare subroutine uniforms as hidden */
+ var->data.how_declared = ir_var_hidden;
+ }
+
+ /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
+ * so must integer vertex outputs.
+ *
+ * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
+ * "Fragment shader inputs that are signed or unsigned integers or
+ * integer vectors must be qualified with the interpolation qualifier
+ * flat."
+ *
+ * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
+ * "Fragment shader inputs that are, or contain, signed or unsigned
+ * integers or integer vectors must be qualified with the
+ * interpolation qualifier flat."
+ *
+ * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
+ * "Vertex shader outputs that are, or contain, signed or unsigned
+ * integers or integer vectors must be qualified with the
+ * interpolation qualifier flat."
+ *
+ * Note that prior to GLSL 1.50, this requirement applied to vertex
+ * outputs rather than fragment inputs. That creates problems in the
+ * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
+ * desktop GL shaders. For GLSL ES shaders, we follow the spec and
+ * apply the restriction to both vertex outputs and fragment inputs.
+ *
+ * Note also that the desktop GLSL specs are missing the text "or
+ * contain"; this is presumably an oversight, since there is no
+ * reasonable way to interpolate a fragment shader input that contains
+ * an integer.
+ */
+ if (state->is_version(130, 300) &&
+ var->type->contains_integer() &&
+ var->data.interpolation != INTERP_QUALIFIER_FLAT &&
+ ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
+ || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
+ && state->es_shader))) {
+ const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
+ "vertex output" : "fragment input";
+ _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
+ "an integer, then it must be qualified with 'flat'",
+ var_type);
+ }
+
+ /* Double fragment inputs must be qualified with 'flat'. */
+ if (var->type->contains_double() &&
+ var->data.interpolation != INTERP_QUALIFIER_FLAT &&
+ state->stage == MESA_SHADER_FRAGMENT &&
+ var->data.mode == ir_var_shader_in) {
+ _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
+ "a double, then it must be qualified with 'flat'",
+ var_type);
+ }
+
+ /* Interpolation qualifiers cannot be applied to 'centroid' and
+ * 'centroid varying'.
+ *
+ * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
+ * "interpolation qualifiers may only precede the qualifiers in,
+ * centroid in, out, or centroid out in a declaration. They do not apply
+ * to the deprecated storage qualifiers varying or centroid varying."
+ *
+ * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
+ */
+ if (state->is_version(130, 0)
+ && this->type->qualifier.has_interpolation()
+ && this->type->qualifier.flags.q.varying) {
+
+ const char *i = this->type->qualifier.interpolation_string();
+ assert(i != NULL);
+ const char *s;
+ if (this->type->qualifier.flags.q.centroid)
+ s = "centroid varying";
+ else
+ s = "varying";
+
+ _mesa_glsl_error(&loc, state,
+ "qualifier '%s' cannot be applied to the "
+ "deprecated storage qualifier '%s'", i, s);
+ }
+
+
+ /* Interpolation qualifiers can only apply to vertex shader outputs and
+ * fragment shader inputs.
+ *
+ * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
+ * "Outputs from a vertex shader (out) and inputs to a fragment
+ * shader (in) can be further qualified with one or more of these
+ * interpolation qualifiers"
+ *
+ * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
+ * "These interpolation qualifiers may only precede the qualifiers
+ * in, centroid in, out, or centroid out in a declaration. They do
+ * not apply to inputs into a vertex shader or outputs from a
+ * fragment shader."
+ */
+ if (state->is_version(130, 300)
+ && this->type->qualifier.has_interpolation()) {
+
+ const char *i = this->type->qualifier.interpolation_string();
+ assert(i != NULL);
+
+ switch (state->stage) {
+ case MESA_SHADER_VERTEX:
+ if (this->type->qualifier.flags.q.in) {
+ _mesa_glsl_error(&loc, state,
+ "qualifier '%s' cannot be applied to vertex "
+ "shader inputs", i);
+ }
+ break;
+ case MESA_SHADER_FRAGMENT:
+ if (this->type->qualifier.flags.q.out) {
+ _mesa_glsl_error(&loc, state,
+ "qualifier '%s' cannot be applied to fragment "
+ "shader outputs", i);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+
+ /* From section 4.3.4 of the GLSL 4.00 spec:
+ * "Input variables may not be declared using the patch in qualifier
+ * in tessellation control or geometry shaders."
+ *
+ * From section 4.3.6 of the GLSL 4.00 spec:
+ * "It is an error to use patch out in a vertex, tessellation
+ * evaluation, or geometry shader."
+ *
+ * This doesn't explicitly forbid using them in a fragment shader, but
+ * that's probably just an oversight.
+ */
+ if (state->stage != MESA_SHADER_TESS_EVAL
+ && this->type->qualifier.flags.q.patch
+ && this->type->qualifier.flags.q.in) {
+
+ _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
+ "tessellation evaluation shader");
+ }
+
+ if (state->stage != MESA_SHADER_TESS_CTRL
+ && this->type->qualifier.flags.q.patch
+ && this->type->qualifier.flags.q.out) {
+
+ _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
+ "tessellation control shader");
+ }
+
+ /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
+ */
+ if (this->type->qualifier.precision != ast_precision_none) {
+ state->check_precision_qualifiers_allowed(&loc);
+ }
+
+
+ /* If a precision qualifier is allowed on a type, it is allowed on
+ * an array of that type.
+ */
+ if (!(this->type->qualifier.precision == ast_precision_none
+ || precision_qualifier_allowed(var->type->without_array()))) {
+
+ _mesa_glsl_error(&loc, state,
+ "precision qualifiers apply only to floating point"
+ ", integer and opaque types");
+ }
+
+ /* From section 4.1.7 of the GLSL 4.40 spec:
+ *
+ * "[Opaque types] can only be declared as function
+ * parameters or uniform-qualified variables."
+ */
+ if (var_type->contains_opaque() &&
+ !this->type->qualifier.flags.q.uniform) {
+ _mesa_glsl_error(&loc, state,
+ "opaque variables must be declared uniform");
+ }
+
+ /* Process the initializer and add its instructions to a temporary
+ * list. This list will be added to the instruction stream (below) after
+ * the declaration is added. This is done because in some cases (such as
+ * redeclarations) the declaration may not actually be added to the
+ * instruction stream.
+ */
+ exec_list initializer_instructions;
+
+ /* Examine var name here since var may get deleted in the next call */
+ bool var_is_gl_id = is_gl_identifier(var->name);
+
+ ir_variable *earlier =
+ get_variable_being_redeclared(var, decl->get_location(), state,
+ false /* allow_all_redeclarations */);
+ if (earlier != NULL) {
+ if (var_is_gl_id &&
+ earlier->data.how_declared == ir_var_declared_in_block) {
+ _mesa_glsl_error(&loc, state,
+ "`%s' has already been redeclared using "
+ "gl_PerVertex", earlier->name);
+ }
+ earlier->data.how_declared = ir_var_declared_normally;
+ }
+
+ if (decl->initializer != NULL) {
+ result = process_initializer((earlier == NULL) ? var : earlier,
+ decl, this->type,
+ &initializer_instructions, state);
+ } else {
+ validate_array_dimensions(var_type, state, &loc);
+ }
+
+ /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "It is an error to write to a const variable outside of
+ * its declaration, so they must be initialized when
+ * declared."
+ */
+ if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
+ _mesa_glsl_error(& loc, state,
+ "const declaration of `%s' must be initialized",
+ decl->identifier);
+ }
+
+ if (state->es_shader) {
+ const glsl_type *const t = (earlier == NULL)
+ ? var->type : earlier->type;
+
+ if (t->is_unsized_array())
+ /* Section 10.17 of the GLSL ES 1.00 specification states that
+ * unsized array declarations have been removed from the language.
+ * Arrays that are sized using an initializer are still explicitly
+ * sized. However, GLSL ES 1.00 does not allow array
+ * initializers. That is only allowed in GLSL ES 3.00.
+ *
+ * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
+ *
+ * "An array type can also be formed without specifying a size
+ * if the definition includes an initializer:
+ *
+ * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
+ * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
+ *
+ * float a[5];
+ * float b[] = a;"
+ */
+ _mesa_glsl_error(& loc, state,
+ "unsized array declarations are not allowed in "
+ "GLSL ES");
+ }
+
+ /* If the declaration is not a redeclaration, there are a few additional
+ * semantic checks that must be applied. In addition, variable that was
+ * created for the declaration should be added to the IR stream.
+ */
+ if (earlier == NULL) {
+ validate_identifier(decl->identifier, loc, state);
+
+ /* Add the variable to the symbol table. Note that the initializer's
+ * IR was already processed earlier (though it hasn't been emitted
+ * yet), without the variable in scope.
+ *
+ * This differs from most C-like languages, but it follows the GLSL
+ * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
+ * spec:
+ *
+ * "Within a declaration, the scope of a name starts immediately
+ * after the initializer if present or immediately after the name
+ * being declared if not."
+ */
+ if (!state->symbols->add_variable(var)) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
+ "current scope", decl->identifier);
+ continue;
+ }
+
+ /* Push the variable declaration to the top. It means that all the
+ * variable declarations will appear in a funny last-to-first order,
+ * but otherwise we run into trouble if a function is prototyped, a
+ * global var is decled, then the function is defined with usage of
+ * the global var. See glslparsertest's CorrectModule.frag.
+ */
+ instructions->push_head(var);
+ }
+
+ instructions->append_list(&initializer_instructions);
+ }
+
+
+ /* Generally, variable declarations do not have r-values. However,
+ * one is used for the declaration in
+ *
+ * while (bool b = some_condition()) {
+ * ...
+ * }
+ *
+ * so we return the rvalue from the last seen declaration here.
+ */
+ return result;
+}
+
+
+ir_rvalue *
+ast_parameter_declarator::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ const struct glsl_type *type;
+ const char *name = NULL;
+ YYLTYPE loc = this->get_location();
+
+ type = this->type->glsl_type(& name, state);
+
+ if (type == NULL) {
+ if (name != NULL) {
+ _mesa_glsl_error(& loc, state,
+ "invalid type `%s' in declaration of `%s'",
+ name, this->identifier);
+ } else {
+ _mesa_glsl_error(& loc, state,
+ "invalid type in declaration of `%s'",
+ this->identifier);
+ }
+
+ type = glsl_type::error_type;
+ }
+
+ /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "Functions that accept no input arguments need not use void in the
+ * argument list because prototypes (or definitions) are required and
+ * therefore there is no ambiguity when an empty argument list "( )" is
+ * declared. The idiom "(void)" as a parameter list is provided for
+ * convenience."
+ *
+ * Placing this check here prevents a void parameter being set up
+ * for a function, which avoids tripping up checks for main taking
+ * parameters and lookups of an unnamed symbol.
+ */
+ if (type->is_void()) {
+ if (this->identifier != NULL)
+ _mesa_glsl_error(& loc, state,
+ "named parameter cannot have type `void'");
+
+ is_void = true;
+ return NULL;
+ }
+
+ if (formal_parameter && (this->identifier == NULL)) {
+ _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
+ return NULL;
+ }
+
+ /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
+ * call already handled the "vec4[..] foo" case.
+ */
+ type = process_array_type(&loc, type, this->array_specifier, state);
+
+ if (!type->is_error() && type->is_unsized_array()) {
+ _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
+ "a declared size");
+ type = glsl_type::error_type;
+ }
+
+ is_void = false;
+ ir_variable *var = new(ctx)
+ ir_variable(type, this->identifier, ir_var_function_in);
+
+ /* Apply any specified qualifiers to the parameter declaration. Note that
+ * for function parameters the default mode is 'in'.
+ */
+ apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
+ true);
+
+ /* From section 4.1.7 of the GLSL 4.40 spec:
+ *
+ * "Opaque variables cannot be treated as l-values; hence cannot
+ * be used as out or inout function parameters, nor can they be
+ * assigned into."
+ */
+ if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
+ && type->contains_opaque()) {
+ _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
+ "contain opaque variables");
+ type = glsl_type::error_type;
+ }
+
+ /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "When calling a function, expressions that do not evaluate to
+ * l-values cannot be passed to parameters declared as out or inout."
+ *
+ * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "Other binary or unary expressions, non-dereferenced arrays,
+ * function names, swizzles with repeated fields, and constants
+ * cannot be l-values."
+ *
+ * So for GLSL 1.10, passing an array as an out or inout parameter is not
+ * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
+ */
+ if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
+ && type->is_array()
+ && !state->check_version(120, 100, &loc,
+ "arrays cannot be out or inout parameters")) {
+ type = glsl_type::error_type;
+ }
+
+ instructions->push_tail(var);
+
+ /* Parameter declarations do not have r-values.
+ */
+ return NULL;
+}
+
+
+void
+ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
+ bool formal,
+ exec_list *ir_parameters,
+ _mesa_glsl_parse_state *state)
+{
+ ast_parameter_declarator *void_param = NULL;
+ unsigned count = 0;
+
+ foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
+ param->formal_parameter = formal;
+ param->hir(ir_parameters, state);
+
+ if (param->is_void)
+ void_param = param;
+
+ count++;
+ }
+
+ if ((void_param != NULL) && (count > 1)) {
+ YYLTYPE loc = void_param->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "`void' parameter must be only parameter");
+ }
+}
+
+
+void
+emit_function(_mesa_glsl_parse_state *state, ir_function *f)
+{
+ /* IR invariants disallow function declarations or definitions
+ * nested within other function definitions. But there is no
+ * requirement about the relative order of function declarations
+ * and definitions with respect to one another. So simply insert
+ * the new ir_function block at the end of the toplevel instruction
+ * list.
+ */
+ state->toplevel_ir->push_tail(f);
+}
+
+
+ir_rvalue *
+ast_function::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ ir_function *f = NULL;
+ ir_function_signature *sig = NULL;
+ exec_list hir_parameters;
+ YYLTYPE loc = this->get_location();
+
+ const char *const name = identifier;
+
+ /* New functions are always added to the top-level IR instruction stream,
+ * so this instruction list pointer is ignored. See also emit_function
+ * (called below).
+ */
+ (void) instructions;
+
+ /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
+ *
+ * "Function declarations (prototypes) cannot occur inside of functions;
+ * they must be at global scope, or for the built-in functions, outside
+ * the global scope."
+ *
+ * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
+ *
+ * "User defined functions may only be defined within the global scope."
+ *
+ * Note that this language does not appear in GLSL 1.10.
+ */
+ if ((state->current_function != NULL) &&
+ state->is_version(120, 100)) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state,
+ "declaration of function `%s' not allowed within "
+ "function body", name);
+ }
+
+ validate_identifier(name, this->get_location(), state);
+
+ /* Convert the list of function parameters to HIR now so that they can be
+ * used below to compare this function's signature with previously seen
+ * signatures for functions with the same name.
+ */
+ ast_parameter_declarator::parameters_to_hir(& this->parameters,
+ is_definition,
+ & hir_parameters, state);
+
+ const char *return_type_name;
+ const glsl_type *return_type =
+ this->return_type->glsl_type(& return_type_name, state);
+
+ if (!return_type) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state,
+ "function `%s' has undeclared return type `%s'",
+ name, return_type_name);
+ return_type = glsl_type::error_type;
+ }
+
+ /* ARB_shader_subroutine states:
+ * "Subroutine declarations cannot be prototyped. It is an error to prepend
+ * subroutine(...) to a function declaration."
+ */
+ if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state,
+ "function declaration `%s' cannot have subroutine prepended",
+ name);
+ }
+
+ /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
+ * "No qualifier is allowed on the return type of a function."
+ */
+ if (this->return_type->has_qualifiers(state)) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state,
+ "function `%s' return type has qualifiers", name);
+ }
+
+ /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
+ *
+ * "Arrays are allowed as arguments and as the return type. In both
+ * cases, the array must be explicitly sized."
+ */
+ if (return_type->is_unsized_array()) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state,
+ "function `%s' return type array must be explicitly "
+ "sized", name);
+ }
+
+ /* From section 4.1.7 of the GLSL 4.40 spec:
+ *
+ * "[Opaque types] can only be declared as function parameters
+ * or uniform-qualified variables."
+ */
+ if (return_type->contains_opaque()) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state,
+ "function `%s' return type can't contain an opaque type",
+ name);
+ }
+
+ /* Create an ir_function if one doesn't already exist. */
+ f = state->symbols->get_function(name);
+ if (f == NULL) {
+ f = new(ctx) ir_function(name);
+ if (!this->return_type->qualifier.flags.q.subroutine) {
+ if (!state->symbols->add_function(f)) {
+ /* This function name shadows a non-function use of the same name. */
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
+ "non-function", name);
+ return NULL;
+ }
+ }
+ emit_function(state, f);
+ }
+
+ /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
+ *
+ * "A shader cannot redefine or overload built-in functions."
+ *
+ * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
+ *
+ * "User code can overload the built-in functions but cannot redefine
+ * them."
+ */
+ if (state->es_shader && state->language_version >= 300) {
+ /* Local shader has no exact candidates; check the built-ins. */
+ _mesa_glsl_initialize_builtin_functions();
+ if (_mesa_glsl_find_builtin_function_by_name(name)) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state,
+ "A shader cannot redefine or overload built-in "
+ "function `%s' in GLSL ES 3.00", name);
+ return NULL;
+ }
+ }
+
+ /* Verify that this function's signature either doesn't match a previously
+ * seen signature for a function with the same name, or, if a match is found,
+ * that the previously seen signature does not have an associated definition.
+ */
+ if (state->es_shader || f->has_user_signature()) {
+ sig = f->exact_matching_signature(state, &hir_parameters);
+ if (sig != NULL) {
+ const char *badvar = sig->qualifiers_match(&hir_parameters);
+ if (badvar != NULL) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
+ "qualifiers don't match prototype", name, badvar);
+ }
+
+ if (sig->return_type != return_type) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
+ "match prototype", name);
+ }
+
+ if (sig->is_defined) {
+ if (is_definition) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
+ } else {
+ /* We just encountered a prototype that exactly matches a
+ * function that's already been defined. This is redundant,
+ * and we should ignore it.
+ */
+ return NULL;
+ }
+ }
+ }
+ }
+
+ /* Verify the return type of main() */
+ if (strcmp(name, "main") == 0) {
+ if (! return_type->is_void()) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state, "main() must return void");
+ }
+
+ if (!hir_parameters.is_empty()) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state, "main() must not take any parameters");
+ }
+ }
+
+ /* Finish storing the information about this new function in its signature.
+ */
+ if (sig == NULL) {
+ sig = new(ctx) ir_function_signature(return_type);
+ f->add_signature(sig);
+ }
+
+ sig->replace_parameters(&hir_parameters);
+ signature = sig;
+
+ if (this->return_type->qualifier.flags.q.subroutine_def) {
+ int idx;
+
+ if (this->return_type->qualifier.flags.q.explicit_index) {
+ unsigned qual_index;
+ if (process_qualifier_constant(state, &loc, "index",
+ this->return_type->qualifier.index,
+ &qual_index)) {
+ if (!state->has_explicit_uniform_location()) {
+ _mesa_glsl_error(&loc, state, "subroutine index requires "
+ "GL_ARB_explicit_uniform_location or "
+ "GLSL 4.30");
+ } else if (qual_index >= MAX_SUBROUTINES) {
+ _mesa_glsl_error(&loc, state,
+ "invalid subroutine index (%d) index must "
+ "be a number between 0 and "
+ "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
+ MAX_SUBROUTINES - 1);
+ } else {
+ f->subroutine_index = qual_index;
+ }
+ }
+ }
+
+ f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
+ f->subroutine_types = ralloc_array(state, const struct glsl_type *,
+ f->num_subroutine_types);
+ idx = 0;
+ foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
+ const struct glsl_type *type;
+ /* the subroutine type must be already declared */
+ type = state->symbols->get_type(decl->identifier);
+ if (!type) {
+ _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
+ }
+ f->subroutine_types[idx++] = type;
+ }
+ state->subroutines = (ir_function **)reralloc(state, state->subroutines,
+ ir_function *,
+ state->num_subroutines + 1);
+ state->subroutines[state->num_subroutines] = f;
+ state->num_subroutines++;
+
+ }
+
+ if (this->return_type->qualifier.flags.q.subroutine) {
+ if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
+ _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
+ return NULL;
+ }
+ state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
+ ir_function *,
+ state->num_subroutine_types + 1);
+ state->subroutine_types[state->num_subroutine_types] = f;
+ state->num_subroutine_types++;
+
+ f->is_subroutine = true;
+ }
+
+ /* Function declarations (prototypes) do not have r-values.
+ */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_function_definition::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ prototype->is_definition = true;
+ prototype->hir(instructions, state);
+
+ ir_function_signature *signature = prototype->signature;
+ if (signature == NULL)
+ return NULL;
+
+ assert(state->current_function == NULL);
+ state->current_function = signature;
+ state->found_return = false;
+
+ /* Duplicate parameters declared in the prototype as concrete variables.
+ * Add these to the symbol table.
+ */
+ state->symbols->push_scope();
+ foreach_in_list(ir_variable, var, &signature->parameters) {
+ assert(var->as_variable() != NULL);
+
+ /* The only way a parameter would "exist" is if two parameters have
+ * the same name.
+ */
+ if (state->symbols->name_declared_this_scope(var->name)) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
+ } else {
+ state->symbols->add_variable(var);
+ }
+ }
+
+ /* Convert the body of the function to HIR. */
+ this->body->hir(&signature->body, state);
+ signature->is_defined = true;
+
+ state->symbols->pop_scope();
+
+ assert(state->current_function == signature);
+ state->current_function = NULL;
+
+ if (!signature->return_type->is_void() && !state->found_return) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
+ "%s, but no return statement",
+ signature->function_name(),
+ signature->return_type->name);
+ }
+
+ /* Function definitions do not have r-values.
+ */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_jump_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ switch (mode) {
+ case ast_return: {
+ ir_return *inst;
+ assert(state->current_function);
+
+ if (opt_return_value) {
+ ir_rvalue *ret = opt_return_value->hir(instructions, state);
+
+ /* The value of the return type can be NULL if the shader says
+ * 'return foo();' and foo() is a function that returns void.
+ *
+ * NOTE: The GLSL spec doesn't say that this is an error. The type
+ * of the return value is void. If the return type of the function is
+ * also void, then this should compile without error. Seriously.
+ */
+ const glsl_type *const ret_type =
+ (ret == NULL) ? glsl_type::void_type : ret->type;
+
+ /* Implicit conversions are not allowed for return values prior to
+ * ARB_shading_language_420pack.
+ */
+ if (state->current_function->return_type != ret_type) {
+ YYLTYPE loc = this->get_location();
+
+ if (state->has_420pack()) {
+ if (!apply_implicit_conversion(state->current_function->return_type,
+ ret, state)) {
+ _mesa_glsl_error(& loc, state,
+ "could not implicitly convert return value "
+ "to %s, in function `%s'",
+ state->current_function->return_type->name,
+ state->current_function->function_name());
+ }
+ } else {
+ _mesa_glsl_error(& loc, state,
+ "`return' with wrong type %s, in function `%s' "
+ "returning %s",
+ ret_type->name,
+ state->current_function->function_name(),
+ state->current_function->return_type->name);
+ }
+ } else if (state->current_function->return_type->base_type ==
+ GLSL_TYPE_VOID) {
+ YYLTYPE loc = this->get_location();
+
+ /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
+ * specs add a clarification:
+ *
+ * "A void function can only use return without a return argument, even if
+ * the return argument has void type. Return statements only accept values:
+ *
+ * void func1() { }
+ * void func2() { return func1(); } // illegal return statement"
+ */
+ _mesa_glsl_error(& loc, state,
+ "void functions can only use `return' without a "
+ "return argument");
+ }
+
+ inst = new(ctx) ir_return(ret);
+ } else {
+ if (state->current_function->return_type->base_type !=
+ GLSL_TYPE_VOID) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "`return' with no value, in function %s returning "
+ "non-void",
+ state->current_function->function_name());
+ }
+ inst = new(ctx) ir_return;
+ }
+
+ state->found_return = true;
+ instructions->push_tail(inst);
+ break;
+ }
+
+ case ast_discard:
+ if (state->stage != MESA_SHADER_FRAGMENT) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "`discard' may only appear in a fragment shader");
+ }
+ instructions->push_tail(new(ctx) ir_discard);
+ break;
+
+ case ast_break:
+ case ast_continue:
+ if (mode == ast_continue &&
+ state->loop_nesting_ast == NULL) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
+ } else if (mode == ast_break &&
+ state->loop_nesting_ast == NULL &&
+ state->switch_state.switch_nesting_ast == NULL) {
+ YYLTYPE loc = this->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "break may only appear in a loop or a switch");
+ } else {
+ /* For a loop, inline the for loop expression again, since we don't
+ * know where near the end of the loop body the normal copy of it is
+ * going to be placed. Same goes for the condition for a do-while
+ * loop.
+ */
+ if (state->loop_nesting_ast != NULL &&
+ mode == ast_continue && !state->switch_state.is_switch_innermost) {
+ if (state->loop_nesting_ast->rest_expression) {
+ state->loop_nesting_ast->rest_expression->hir(instructions,
+ state);
+ }
+ if (state->loop_nesting_ast->mode ==
+ ast_iteration_statement::ast_do_while) {
+ state->loop_nesting_ast->condition_to_hir(instructions, state);
+ }
+ }
+
+ if (state->switch_state.is_switch_innermost &&
+ mode == ast_continue) {
+ /* Set 'continue_inside' to true. */
+ ir_rvalue *const true_val = new (ctx) ir_constant(true);
+ ir_dereference_variable *deref_continue_inside_var =
+ new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
+ instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
+ true_val));
+
+ /* Break out from the switch, continue for the loop will
+ * be called right after switch. */
+ ir_loop_jump *const jump =
+ new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
+ instructions->push_tail(jump);
+
+ } else if (state->switch_state.is_switch_innermost &&
+ mode == ast_break) {
+ /* Force break out of switch by inserting a break. */
+ ir_loop_jump *const jump =
+ new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
+ instructions->push_tail(jump);
+ } else {
+ ir_loop_jump *const jump =
+ new(ctx) ir_loop_jump((mode == ast_break)
+ ? ir_loop_jump::jump_break
+ : ir_loop_jump::jump_continue);
+ instructions->push_tail(jump);
+ }
+ }
+
+ break;
+ }
+
+ /* Jump instructions do not have r-values.
+ */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_selection_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ ir_rvalue *const condition = this->condition->hir(instructions, state);
+
+ /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "Any expression whose type evaluates to a Boolean can be used as the
+ * conditional expression bool-expression. Vector types are not accepted
+ * as the expression to if."
+ *
+ * The checks are separated so that higher quality diagnostics can be
+ * generated for cases where both rules are violated.
+ */
+ if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
+ YYLTYPE loc = this->condition->get_location();
+
+ _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
+ "boolean");
+ }
+
+ ir_if *const stmt = new(ctx) ir_if(condition);
+
+ if (then_statement != NULL) {
+ state->symbols->push_scope();
+ then_statement->hir(& stmt->then_instructions, state);
+ state->symbols->pop_scope();
+ }
+
+ if (else_statement != NULL) {
+ state->symbols->push_scope();
+ else_statement->hir(& stmt->else_instructions, state);
+ state->symbols->pop_scope();
+ }
+
+ instructions->push_tail(stmt);
+
+ /* if-statements do not have r-values.
+ */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_switch_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ ir_rvalue *const test_expression =
+ this->test_expression->hir(instructions, state);
+
+ /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "The type of init-expression in a switch statement must be a
+ * scalar integer."
+ */
+ if (!test_expression->type->is_scalar() ||
+ !test_expression->type->is_integer()) {
+ YYLTYPE loc = this->test_expression->get_location();
+
+ _mesa_glsl_error(& loc,
+ state,
+ "switch-statement expression must be scalar "
+ "integer");
+ }
+
+ /* Track the switch-statement nesting in a stack-like manner.
+ */
+ struct glsl_switch_state saved = state->switch_state;
+
+ state->switch_state.is_switch_innermost = true;
+ state->switch_state.switch_nesting_ast = this;
+ state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+ state->switch_state.previous_default = NULL;
+
+ /* Initalize is_fallthru state to false.
+ */
+ ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
+ state->switch_state.is_fallthru_var =
+ new(ctx) ir_variable(glsl_type::bool_type,
+ "switch_is_fallthru_tmp",
+ ir_var_temporary);
+ instructions->push_tail(state->switch_state.is_fallthru_var);
+
+ ir_dereference_variable *deref_is_fallthru_var =
+ new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
+ instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
+ is_fallthru_val));
+
+ /* Initialize continue_inside state to false.
+ */
+ state->switch_state.continue_inside =
+ new(ctx) ir_variable(glsl_type::bool_type,
+ "continue_inside_tmp",
+ ir_var_temporary);
+ instructions->push_tail(state->switch_state.continue_inside);
+
+ ir_rvalue *const false_val = new (ctx) ir_constant(false);
+ ir_dereference_variable *deref_continue_inside_var =
+ new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
+ instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
+ false_val));
+
+ state->switch_state.run_default =
+ new(ctx) ir_variable(glsl_type::bool_type,
+ "run_default_tmp",
+ ir_var_temporary);
+ instructions->push_tail(state->switch_state.run_default);
+
+ /* Loop around the switch is used for flow control. */
+ ir_loop * loop = new(ctx) ir_loop();
+ instructions->push_tail(loop);
+
+ /* Cache test expression.
+ */
+ test_to_hir(&loop->body_instructions, state);
+
+ /* Emit code for body of switch stmt.
+ */
+ body->hir(&loop->body_instructions, state);
+
+ /* Insert a break at the end to exit loop. */
+ ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
+ loop->body_instructions.push_tail(jump);
+
+ /* If we are inside loop, check if continue got called inside switch. */
+ if (state->loop_nesting_ast != NULL) {
+ ir_dereference_variable *deref_continue_inside =
+ new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
+ ir_if *irif = new(ctx) ir_if(deref_continue_inside);
+ ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
+
+ if (state->loop_nesting_ast != NULL) {
+ if (state->loop_nesting_ast->rest_expression) {
+ state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
+ state);
+ }
+ if (state->loop_nesting_ast->mode ==
+ ast_iteration_statement::ast_do_while) {
+ state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
+ }
+ }
+ irif->then_instructions.push_tail(jump);
+ instructions->push_tail(irif);
+ }
+
+ hash_table_dtor(state->switch_state.labels_ht);
+
+ state->switch_state = saved;
+
+ /* Switch statements do not have r-values. */
+ return NULL;
+}
+
+
+void
+ast_switch_statement::test_to_hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ /* Cache value of test expression. */
+ ir_rvalue *const test_val =
+ test_expression->hir(instructions,
+ state);
+
+ state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
+ "switch_test_tmp",
+ ir_var_temporary);
+ ir_dereference_variable *deref_test_var =
+ new(ctx) ir_dereference_variable(state->switch_state.test_var);
+
+ instructions->push_tail(state->switch_state.test_var);
+ instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
+}
+
+
+ir_rvalue *
+ast_switch_body::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ if (stmts != NULL)
+ stmts->hir(instructions, state);
+
+ /* Switch bodies do not have r-values. */
+ return NULL;
+}
+
+ir_rvalue *
+ast_case_statement_list::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ exec_list default_case, after_default, tmp;
+
+ foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
+ case_stmt->hir(&tmp, state);
+
+ /* Default case. */
+ if (state->switch_state.previous_default && default_case.is_empty()) {
+ default_case.append_list(&tmp);
+ continue;
+ }
+
+ /* If default case found, append 'after_default' list. */
+ if (!default_case.is_empty())
+ after_default.append_list(&tmp);
+ else
+ instructions->append_list(&tmp);
+ }
+
+ /* Handle the default case. This is done here because default might not be
+ * the last case. We need to add checks against following cases first to see
+ * if default should be chosen or not.
+ */
+ if (!default_case.is_empty()) {
+
+ ir_rvalue *const true_val = new (state) ir_constant(true);
+ ir_dereference_variable *deref_run_default_var =
+ new(state) ir_dereference_variable(state->switch_state.run_default);
+
+ /* Choose to run default case initially, following conditional
+ * assignments might change this.
+ */
+ ir_assignment *const init_var =
+ new(state) ir_assignment(deref_run_default_var, true_val);
+ instructions->push_tail(init_var);
+
+ /* Default case was the last one, no checks required. */
+ if (after_default.is_empty()) {
+ instructions->append_list(&default_case);
+ return NULL;
+ }
+
+ foreach_in_list(ir_instruction, ir, &after_default) {
+ ir_assignment *assign = ir->as_assignment();
+
+ if (!assign)
+ continue;
+
+ /* Clone the check between case label and init expression. */
+ ir_expression *exp = (ir_expression*) assign->condition;
+ ir_expression *clone = exp->clone(state, NULL);
+
+ ir_dereference_variable *deref_var =
+ new(state) ir_dereference_variable(state->switch_state.run_default);
+ ir_rvalue *const false_val = new (state) ir_constant(false);
+
+ ir_assignment *const set_false =
+ new(state) ir_assignment(deref_var, false_val, clone);
+
+ instructions->push_tail(set_false);
+ }
+
+ /* Append default case and all cases after it. */
+ instructions->append_list(&default_case);
+ instructions->append_list(&after_default);
+ }
+
+ /* Case statements do not have r-values. */
+ return NULL;
+}
+
+ir_rvalue *
+ast_case_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ labels->hir(instructions, state);
+
+ /* Guard case statements depending on fallthru state. */
+ ir_dereference_variable *const deref_fallthru_guard =
+ new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
+ ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
+
+ foreach_list_typed (ast_node, stmt, link, & this->stmts)
+ stmt->hir(& test_fallthru->then_instructions, state);
+
+ instructions->push_tail(test_fallthru);
+
+ /* Case statements do not have r-values. */
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_case_label_list::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ foreach_list_typed (ast_case_label, label, link, & this->labels)
+ label->hir(instructions, state);
+
+ /* Case labels do not have r-values. */
+ return NULL;
+}
+
+ir_rvalue *
+ast_case_label::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ ir_dereference_variable *deref_fallthru_var =
+ new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
+
+ ir_rvalue *const true_val = new(ctx) ir_constant(true);
+
+ /* If not default case, ... */
+ if (this->test_value != NULL) {
+ /* Conditionally set fallthru state based on
+ * comparison of cached test expression value to case label.
+ */
+ ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
+ ir_constant *label_const = label_rval->constant_expression_value();
+
+ if (!label_const) {
+ YYLTYPE loc = this->test_value->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "switch statement case label must be a "
+ "constant expression");
+
+ /* Stuff a dummy value in to allow processing to continue. */
+ label_const = new(ctx) ir_constant(0);
+ } else {
+ ast_expression *previous_label = (ast_expression *)
+ hash_table_find(state->switch_state.labels_ht,
+ (void *)(uintptr_t)label_const->value.u[0]);
+
+ if (previous_label) {
+ YYLTYPE loc = this->test_value->get_location();
+ _mesa_glsl_error(& loc, state, "duplicate case value");
+
+ loc = previous_label->get_location();
+ _mesa_glsl_error(& loc, state, "this is the previous case label");
+ } else {
+ hash_table_insert(state->switch_state.labels_ht,
+ this->test_value,
+ (void *)(uintptr_t)label_const->value.u[0]);
+ }
+ }
+
+ ir_dereference_variable *deref_test_var =
+ new(ctx) ir_dereference_variable(state->switch_state.test_var);
+
+ ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
+ label_const,
+ deref_test_var);
+
+ /*
+ * From GLSL 4.40 specification section 6.2 ("Selection"):
+ *
+ * "The type of the init-expression value in a switch statement must
+ * be a scalar int or uint. The type of the constant-expression value
+ * in a case label also must be a scalar int or uint. When any pair
+ * of these values is tested for "equal value" and the types do not
+ * match, an implicit conversion will be done to convert the int to a
+ * uint (see section 4.1.10 “Implicit Conversions”) before the compare
+ * is done."
+ */
+ if (label_const->type != state->switch_state.test_var->type) {
+ YYLTYPE loc = this->test_value->get_location();
+
+ const glsl_type *type_a = label_const->type;
+ const glsl_type *type_b = state->switch_state.test_var->type;
+
+ /* Check if int->uint implicit conversion is supported. */
+ bool integer_conversion_supported =
+ glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
+ state);
+
+ if ((!type_a->is_integer() || !type_b->is_integer()) ||
+ !integer_conversion_supported) {
+ _mesa_glsl_error(&loc, state, "type mismatch with switch "
+ "init-expression and case label (%s != %s)",
+ type_a->name, type_b->name);
+ } else {
+ /* Conversion of the case label. */
+ if (type_a->base_type == GLSL_TYPE_INT) {
+ if (!apply_implicit_conversion(glsl_type::uint_type,
+ test_cond->operands[0], state))
+ _mesa_glsl_error(&loc, state, "implicit type conversion error");
+ } else {
+ /* Conversion of the init-expression value. */
+ if (!apply_implicit_conversion(glsl_type::uint_type,
+ test_cond->operands[1], state))
+ _mesa_glsl_error(&loc, state, "implicit type conversion error");
+ }
+ }
+ }
+
+ ir_assignment *set_fallthru_on_test =
+ new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
+
+ instructions->push_tail(set_fallthru_on_test);
+ } else { /* default case */
+ if (state->switch_state.previous_default) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(& loc, state,
+ "multiple default labels in one switch");
+
+ loc = state->switch_state.previous_default->get_location();
+ _mesa_glsl_error(& loc, state, "this is the first default label");
+ }
+ state->switch_state.previous_default = this;
+
+ /* Set fallthru condition on 'run_default' bool. */
+ ir_dereference_variable *deref_run_default =
+ new(ctx) ir_dereference_variable(state->switch_state.run_default);
+ ir_rvalue *const cond_true = new(ctx) ir_constant(true);
+ ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
+ cond_true,
+ deref_run_default);
+
+ /* Set falltrhu state. */
+ ir_assignment *set_fallthru =
+ new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
+
+ instructions->push_tail(set_fallthru);
+ }
+
+ /* Case statements do not have r-values. */
+ return NULL;
+}
+
+void
+ast_iteration_statement::condition_to_hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ if (condition != NULL) {
+ ir_rvalue *const cond =
+ condition->hir(instructions, state);
+
+ if ((cond == NULL)
+ || !cond->type->is_boolean() || !cond->type->is_scalar()) {
+ YYLTYPE loc = condition->get_location();
+
+ _mesa_glsl_error(& loc, state,
+ "loop condition must be scalar boolean");
+ } else {
+ /* As the first code in the loop body, generate a block that looks
+ * like 'if (!condition) break;' as the loop termination condition.
+ */
+ ir_rvalue *const not_cond =
+ new(ctx) ir_expression(ir_unop_logic_not, cond);
+
+ ir_if *const if_stmt = new(ctx) ir_if(not_cond);
+
+ ir_jump *const break_stmt =
+ new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
+
+ if_stmt->then_instructions.push_tail(break_stmt);
+ instructions->push_tail(if_stmt);
+ }
+ }
+}
+
+
+ir_rvalue *
+ast_iteration_statement::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ /* For-loops and while-loops start a new scope, but do-while loops do not.
+ */
+ if (mode != ast_do_while)
+ state->symbols->push_scope();
+
+ if (init_statement != NULL)
+ init_statement->hir(instructions, state);
+
+ ir_loop *const stmt = new(ctx) ir_loop();
+ instructions->push_tail(stmt);
+
+ /* Track the current loop nesting. */
+ ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
+
+ state->loop_nesting_ast = this;
+
+ /* Likewise, indicate that following code is closest to a loop,
+ * NOT closest to a switch.
+ */
+ bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
+ state->switch_state.is_switch_innermost = false;
+
+ if (mode != ast_do_while)
+ condition_to_hir(&stmt->body_instructions, state);
+
+ if (body != NULL)
+ body->hir(& stmt->body_instructions, state);
+
+ if (rest_expression != NULL)
+ rest_expression->hir(& stmt->body_instructions, state);
+
+ if (mode == ast_do_while)
+ condition_to_hir(&stmt->body_instructions, state);
+
+ if (mode != ast_do_while)
+ state->symbols->pop_scope();
+
+ /* Restore previous nesting before returning. */
+ state->loop_nesting_ast = nesting_ast;
+ state->switch_state.is_switch_innermost = saved_is_switch_innermost;
+
+ /* Loops do not have r-values.
+ */
+ return NULL;
+}
+
+
+/**
+ * Determine if the given type is valid for establishing a default precision
+ * qualifier.
+ *
+ * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
+ *
+ * "The precision statement
+ *
+ * precision precision-qualifier type;
+ *
+ * can be used to establish a default precision qualifier. The type field
+ * can be either int or float or any of the sampler types, and the
+ * precision-qualifier can be lowp, mediump, or highp."
+ *
+ * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
+ * qualifiers on sampler types, but this seems like an oversight (since the
+ * intention of including these in GLSL 1.30 is to allow compatibility with ES
+ * shaders). So we allow int, float, and all sampler types regardless of GLSL
+ * version.
+ */
+static bool
+is_valid_default_precision_type(const struct glsl_type *const type)
+{
+ if (type == NULL)
+ return false;
+
+ switch (type->base_type) {
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_FLOAT:
+ /* "int" and "float" are valid, but vectors and matrices are not. */
+ return type->vector_elements == 1 && type->matrix_columns == 1;
+ case GLSL_TYPE_SAMPLER:
+ case GLSL_TYPE_IMAGE:
+ case GLSL_TYPE_ATOMIC_UINT:
+ return true;
+ default:
+ return false;
+ }
+}
+
+
+ir_rvalue *
+ast_type_specifier::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ if (this->default_precision == ast_precision_none && this->structure == NULL)
+ return NULL;
+
+ YYLTYPE loc = this->get_location();
+
+ /* If this is a precision statement, check that the type to which it is
+ * applied is either float or int.
+ *
+ * From section 4.5.3 of the GLSL 1.30 spec:
+ * "The precision statement
+ * precision precision-qualifier type;
+ * can be used to establish a default precision qualifier. The type
+ * field can be either int or float [...]. Any other types or
+ * qualifiers will result in an error.
+ */
+ if (this->default_precision != ast_precision_none) {
+ if (!state->check_precision_qualifiers_allowed(&loc))
+ return NULL;
+
+ if (this->structure != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "precision qualifiers do not apply to structures");
+ return NULL;
+ }
+
+ if (this->array_specifier != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "default precision statements do not apply to "
+ "arrays");
+ return NULL;
+ }
+
+ const struct glsl_type *const type =
+ state->symbols->get_type(this->type_name);
+ if (!is_valid_default_precision_type(type)) {
+ _mesa_glsl_error(&loc, state,
+ "default precision statements apply only to "
+ "float, int, and opaque types");
+ return NULL;
+ }
+
+ if (state->es_shader) {
+ /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
+ * spec says:
+ *
+ * "Non-precision qualified declarations will use the precision
+ * qualifier specified in the most recent precision statement
+ * that is still in scope. The precision statement has the same
+ * scoping rules as variable declarations. If it is declared
+ * inside a compound statement, its effect stops at the end of
+ * the innermost statement it was declared in. Precision
+ * statements in nested scopes override precision statements in
+ * outer scopes. Multiple precision statements for the same basic
+ * type can appear inside the same scope, with later statements
+ * overriding earlier statements within that scope."
+ *
+ * Default precision specifications follow the same scope rules as
+ * variables. So, we can track the state of the default precision
+ * qualifiers in the symbol table, and the rules will just work. This
+ * is a slight abuse of the symbol table, but it has the semantics
+ * that we want.
+ */
+ state->symbols->add_default_precision_qualifier(this->type_name,
+ this->default_precision);
+ }
+
+ /* FINISHME: Translate precision statements into IR. */
+ return NULL;
+ }
+
+ /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
+ * process_record_constructor() can do type-checking on C-style initializer
+ * expressions of structs, but ast_struct_specifier should only be translated
+ * to HIR if it is declaring the type of a structure.
+ *
+ * The ->is_declaration field is false for initializers of variables
+ * declared separately from the struct's type definition.
+ *
+ * struct S { ... }; (is_declaration = true)
+ * struct T { ... } t = { ... }; (is_declaration = true)
+ * S s = { ... }; (is_declaration = false)
+ */
+ if (this->structure != NULL && this->structure->is_declaration)
+ return this->structure->hir(instructions, state);
+
+ return NULL;
+}
+
+
+/**
+ * Process a structure or interface block tree into an array of structure fields
+ *
+ * After parsing, where there are some syntax differnces, structures and
+ * interface blocks are almost identical. They are similar enough that the
+ * AST for each can be processed the same way into a set of
+ * \c glsl_struct_field to describe the members.
+ *
+ * If we're processing an interface block, var_mode should be the type of the
+ * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
+ * ir_var_shader_storage). If we're processing a structure, var_mode should be
+ * ir_var_auto.
+ *
+ * \return
+ * The number of fields processed. A pointer to the array structure fields is
+ * stored in \c *fields_ret.
+ */
+static unsigned
+ast_process_struct_or_iface_block_members(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state,
+ exec_list *declarations,
+ glsl_struct_field **fields_ret,
+ bool is_interface,
+ enum glsl_matrix_layout matrix_layout,
+ bool allow_reserved_names,
+ ir_variable_mode var_mode,
+ ast_type_qualifier *layout,
+ unsigned block_stream,
+ unsigned expl_location)
+{
+ unsigned decl_count = 0;
+
+ /* Make an initial pass over the list of fields to determine how
+ * many there are. Each element in this list is an ast_declarator_list.
+ * This means that we actually need to count the number of elements in the
+ * 'declarations' list in each of the elements.
+ */
+ foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
+ decl_count += decl_list->declarations.length();
+ }
+
+ /* Allocate storage for the fields and process the field
+ * declarations. As the declarations are processed, try to also convert
+ * the types to HIR. This ensures that structure definitions embedded in
+ * other structure definitions or in interface blocks are processed.
+ */
+ glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
+ decl_count);
+
+ bool first_member = true;
+ bool first_member_has_explicit_location;
+
+ unsigned i = 0;
+ foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
+ const char *type_name;
+ YYLTYPE loc = decl_list->get_location();
+
+ decl_list->type->specifier->hir(instructions, state);
+
+ /* Section 10.9 of the GLSL ES 1.00 specification states that
+ * embedded structure definitions have been removed from the language.
+ */
+ if (state->es_shader && decl_list->type->specifier->structure != NULL) {
+ _mesa_glsl_error(&loc, state, "embedded structure definitions are "
+ "not allowed in GLSL ES 1.00");
+ }
+
+ const glsl_type *decl_type =
+ decl_list->type->glsl_type(& type_name, state);
+
+ const struct ast_type_qualifier *const qual =
+ &decl_list->type->qualifier;
+
+ /* From section 4.3.9 of the GLSL 4.40 spec:
+ *
+ * "[In interface blocks] opaque types are not allowed."
+ *
+ * It should be impossible for decl_type to be NULL here. Cases that
+ * might naturally lead to decl_type being NULL, especially for the
+ * is_interface case, will have resulted in compilation having
+ * already halted due to a syntax error.
+ */
+ assert(decl_type);
+
+ if (is_interface && decl_type->contains_opaque()) {
+ _mesa_glsl_error(&loc, state,
+ "uniform/buffer in non-default interface block contains "
+ "opaque variable");
+ }
+
+ if (decl_type->contains_atomic()) {
+ /* From section 4.1.7.3 of the GLSL 4.40 spec:
+ *
+ * "Members of structures cannot be declared as atomic counter
+ * types."
+ */
+ _mesa_glsl_error(&loc, state, "atomic counter in structure, "
+ "shader storage block or uniform block");
+ }
+
+ if (decl_type->contains_image()) {
+ /* FINISHME: Same problem as with atomic counters.
+ * FINISHME: Request clarification from Khronos and add
+ * FINISHME: spec quotation here.
+ */
+ _mesa_glsl_error(&loc, state,
+ "image in structure, shader storage block or "
+ "uniform block");
+ }
+
+ if (qual->flags.q.explicit_binding) {
+ _mesa_glsl_error(&loc, state,
+ "binding layout qualifier cannot be applied "
+ "to struct or interface block members");
+ }
+
+ if (is_interface) {
+ if (!first_member) {
+ if (!layout->flags.q.explicit_location &&
+ ((first_member_has_explicit_location &&
+ !qual->flags.q.explicit_location) ||
+ (!first_member_has_explicit_location &&
+ qual->flags.q.explicit_location))) {
+ _mesa_glsl_error(&loc, state,
+ "when block-level location layout qualifier "
+ "is not supplied either all members must "
+ "have a location layout qualifier or all "
+ "members must not have a location layout "
+ "qualifier");
+ }
+ } else {
+ first_member = false;
+ first_member_has_explicit_location =
+ qual->flags.q.explicit_location;
+ }
+ }
+
+ if (qual->flags.q.std140 ||
+ qual->flags.q.std430 ||
+ qual->flags.q.packed ||
+ qual->flags.q.shared) {
+ _mesa_glsl_error(&loc, state,
+ "uniform/shader storage block layout qualifiers "
+ "std140, std430, packed, and shared can only be "
+ "applied to uniform/shader storage blocks, not "
+ "members");
+ }
+
+ if (qual->flags.q.constant) {
+ _mesa_glsl_error(&loc, state,
+ "const storage qualifier cannot be applied "
+ "to struct or interface block members");
+ }
+
+ /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
+ *
+ * "A block member may be declared with a stream identifier, but
+ * the specified stream must match the stream associated with the
+ * containing block."
+ */
+ if (qual->flags.q.explicit_stream) {
+ unsigned qual_stream;
+ if (process_qualifier_constant(state, &loc, "stream",
+ qual->stream, &qual_stream) &&
+ qual_stream != block_stream) {
+ _mesa_glsl_error(&loc, state, "stream layout qualifier on "
+ "interface block member does not match "
+ "the interface block (%u vs %u)", qual_stream,
+ block_stream);
+ }
+ }
+
+ if (qual->flags.q.uniform && qual->has_interpolation()) {
+ _mesa_glsl_error(&loc, state,
+ "interpolation qualifiers cannot be used "
+ "with uniform interface blocks");
+ }
+
+ if ((qual->flags.q.uniform || !is_interface) &&
+ qual->has_auxiliary_storage()) {
+ _mesa_glsl_error(&loc, state,
+ "auxiliary storage qualifiers cannot be used "
+ "in uniform blocks or structures.");
+ }
+
+ if (qual->flags.q.row_major || qual->flags.q.column_major) {
+ if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
+ _mesa_glsl_error(&loc, state,
+ "row_major and column_major can only be "
+ "applied to interface blocks");
+ } else
+ validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
+ }
+
+ if (qual->flags.q.read_only && qual->flags.q.write_only) {
+ _mesa_glsl_error(&loc, state, "buffer variable can't be both "
+ "readonly and writeonly.");
+ }
+
+ foreach_list_typed (ast_declaration, decl, link,
+ &decl_list->declarations) {
+ YYLTYPE loc = decl->get_location();
+
+ if (!allow_reserved_names)
+ validate_identifier(decl->identifier, loc, state);
+
+ const struct glsl_type *field_type =
+ process_array_type(&loc, decl_type, decl->array_specifier, state);
+ validate_array_dimensions(field_type, state, &loc);
+ fields[i].type = field_type;
+ fields[i].name = decl->identifier;
+ fields[i].interpolation =
+ interpret_interpolation_qualifier(qual, var_mode, state, &loc);
+ fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
+ fields[i].sample = qual->flags.q.sample ? 1 : 0;
+ fields[i].patch = qual->flags.q.patch ? 1 : 0;
+ fields[i].precision = qual->precision;
+
+ if (qual->flags.q.explicit_location) {
+ unsigned qual_location;
+ if (process_qualifier_constant(state, &loc, "location",
+ qual->location, &qual_location)) {
+ fields[i].location = VARYING_SLOT_VAR0 + qual_location;
+ expl_location = fields[i].location +
+ fields[i].type->count_attribute_slots(false);
+ }
+ } else {
+ if (layout && layout->flags.q.explicit_location) {
+ fields[i].location = expl_location;
+ expl_location += fields[i].type->count_attribute_slots(false);
+ } else {
+ fields[i].location = -1;
+ }
+ }
+
+ /* Propogate row- / column-major information down the fields of the
+ * structure or interface block. Structures need this data because
+ * the structure may contain a structure that contains ... a matrix
+ * that need the proper layout.
+ */
+ if (field_type->without_array()->is_matrix()
+ || field_type->without_array()->is_record()) {
+ /* If no layout is specified for the field, inherit the layout
+ * from the block.
+ */
+ fields[i].matrix_layout = matrix_layout;
+
+ if (qual->flags.q.row_major)
+ fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
+ else if (qual->flags.q.column_major)
+ fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
+
+ /* If we're processing an interface block, the matrix layout must
+ * be decided by this point.
+ */
+ assert(!is_interface
+ || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
+ || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
+ }
+
+ /* Image qualifiers are allowed on buffer variables, which can only
+ * be defined inside shader storage buffer objects
+ */
+ if (layout && var_mode == ir_var_shader_storage) {
+ /* For readonly and writeonly qualifiers the field definition,
+ * if set, overwrites the layout qualifier.
+ */
+ if (qual->flags.q.read_only) {
+ fields[i].image_read_only = true;
+ fields[i].image_write_only = false;
+ } else if (qual->flags.q.write_only) {
+ fields[i].image_read_only = false;
+ fields[i].image_write_only = true;
+ } else {
+ fields[i].image_read_only = layout->flags.q.read_only;
+ fields[i].image_write_only = layout->flags.q.write_only;
+ }
+
+ /* For other qualifiers, we set the flag if either the layout
+ * qualifier or the field qualifier are set
+ */
+ fields[i].image_coherent = qual->flags.q.coherent ||
+ layout->flags.q.coherent;
+ fields[i].image_volatile = qual->flags.q._volatile ||
+ layout->flags.q._volatile;
+ fields[i].image_restrict = qual->flags.q.restrict_flag ||
+ layout->flags.q.restrict_flag;
+ }
+
+ i++;
+ }
+ }
+
+ assert(i == decl_count);
+
+ *fields_ret = fields;
+ return decl_count;
+}
+
+
+ir_rvalue *
+ast_struct_specifier::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ YYLTYPE loc = this->get_location();
+
+ /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
+ *
+ * "Anonymous structures are not supported; so embedded structures must
+ * have a declarator. A name given to an embedded struct is scoped at
+ * the same level as the struct it is embedded in."
+ *
+ * The same section of the GLSL 1.20 spec says:
+ *
+ * "Anonymous structures are not supported. Embedded structures are not
+ * supported.
+ *
+ * struct S { float f; };
+ * struct T {
+ * S; // Error: anonymous structures disallowed
+ * struct { ... }; // Error: embedded structures disallowed
+ * S s; // Okay: nested structures with name are allowed
+ * };"
+ *
+ * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
+ * we allow embedded structures in 1.10 only.
+ */
+ if (state->language_version != 110 && state->struct_specifier_depth != 0)
+ _mesa_glsl_error(&loc, state,
+ "embedded structure declarations are not allowed");
+
+ state->struct_specifier_depth++;
+
+ unsigned expl_location = 0;
+ if (layout && layout->flags.q.explicit_location) {
+ if (!process_qualifier_constant(state, &loc, "location",
+ layout->location, &expl_location)) {
+ return NULL;
+ } else {
+ expl_location = VARYING_SLOT_VAR0 + expl_location;
+ }
+ }
+
+ glsl_struct_field *fields;
+ unsigned decl_count =
+ ast_process_struct_or_iface_block_members(instructions,
+ state,
+ &this->declarations,
+ &fields,
+ false,
+ GLSL_MATRIX_LAYOUT_INHERITED,
+ false /* allow_reserved_names */,
+ ir_var_auto,
+ layout,
+ 0, /* for interface only */
+ expl_location);
+
+ validate_identifier(this->name, loc, state);
+
+ const glsl_type *t =
+ glsl_type::get_record_instance(fields, decl_count, this->name);
+
+ if (!state->symbols->add_type(name, t)) {
+ _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
+ } else {
+ const glsl_type **s = reralloc(state, state->user_structures,
+ const glsl_type *,
+ state->num_user_structures + 1);
+ if (s != NULL) {
+ s[state->num_user_structures] = t;
+ state->user_structures = s;
+ state->num_user_structures++;
+ }
+ }
+
+ state->struct_specifier_depth--;
+
+ /* Structure type definitions do not have r-values.
+ */
+ return NULL;
+}
+
+
+/**
+ * Visitor class which detects whether a given interface block has been used.
+ */
+class interface_block_usage_visitor : public ir_hierarchical_visitor
+{
+public:
+ interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
+ : mode(mode), block(block), found(false)
+ {
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
+ found = true;
+ return visit_stop;
+ }
+ return visit_continue;
+ }
+
+ bool usage_found() const
+ {
+ return this->found;
+ }
+
+private:
+ ir_variable_mode mode;
+ const glsl_type *block;
+ bool found;
+};
+
+static bool
+is_unsized_array_last_element(ir_variable *v)
+{
+ const glsl_type *interface_type = v->get_interface_type();
+ int length = interface_type->length;
+
+ assert(v->type->is_unsized_array());
+
+ /* Check if it is the last element of the interface */
+ if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
+ return true;
+ return false;
+}
+
+ir_rvalue *
+ast_interface_block::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ YYLTYPE loc = this->get_location();
+
+ /* Interface blocks must be declared at global scope */
+ if (state->current_function != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "Interface block `%s' must be declared "
+ "at global scope",
+ this->block_name);
+ }
+
+ if (!this->layout.flags.q.buffer &&
+ this->layout.flags.q.std430) {
+ _mesa_glsl_error(&loc, state,
+ "std430 storage block layout qualifier is supported "
+ "only for shader storage blocks");
+ }
+
+ /* The ast_interface_block has a list of ast_declarator_lists. We
+ * need to turn those into ir_variables with an association
+ * with this uniform block.
+ */
+ enum glsl_interface_packing packing;
+ if (this->layout.flags.q.shared) {
+ packing = GLSL_INTERFACE_PACKING_SHARED;
+ } else if (this->layout.flags.q.packed) {
+ packing = GLSL_INTERFACE_PACKING_PACKED;
+ } else if (this->layout.flags.q.std430) {
+ packing = GLSL_INTERFACE_PACKING_STD430;
+ } else {
+ /* The default layout is std140.
+ */
+ packing = GLSL_INTERFACE_PACKING_STD140;
+ }
+
+ ir_variable_mode var_mode;
+ const char *iface_type_name;
+ if (this->layout.flags.q.in) {
+ var_mode = ir_var_shader_in;
+ iface_type_name = "in";
+ } else if (this->layout.flags.q.out) {
+ var_mode = ir_var_shader_out;
+ iface_type_name = "out";
+ } else if (this->layout.flags.q.uniform) {
+ var_mode = ir_var_uniform;
+ iface_type_name = "uniform";
+ } else if (this->layout.flags.q.buffer) {
+ var_mode = ir_var_shader_storage;
+ iface_type_name = "buffer";
+ } else {
+ var_mode = ir_var_auto;
+ iface_type_name = "UNKNOWN";
+ assert(!"interface block layout qualifier not found!");
+ }
+
+ enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
+ if (this->layout.flags.q.row_major)
+ matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
+ else if (this->layout.flags.q.column_major)
+ matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
+
+ bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
+ exec_list declared_variables;
+ glsl_struct_field *fields;
+
+ /* Treat an interface block as one level of nesting, so that embedded struct
+ * specifiers will be disallowed.
+ */
+ state->struct_specifier_depth++;
+
+ /* For blocks that accept memory qualifiers (i.e. shader storage), verify
+ * that we don't have incompatible qualifiers
+ */
+ if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
+ _mesa_glsl_error(&loc, state,
+ "Interface block sets both readonly and writeonly");
+ }
+
+ unsigned qual_stream;
+ if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
+ &qual_stream) ||
+ !validate_stream_qualifier(&loc, state, qual_stream)) {
+ /* If the stream qualifier is invalid it doesn't make sense to continue
+ * on and try to compare stream layouts on member variables against it
+ * so just return early.
+ */
+ return NULL;
+ }
+
+ unsigned expl_location = 0;
+ if (layout.flags.q.explicit_location) {
+ if (!process_qualifier_constant(state, &loc, "location",
+ layout.location, &expl_location)) {
+ return NULL;
+ } else {
+ expl_location = VARYING_SLOT_VAR0 + expl_location;
+ }
+ }
+
+ unsigned int num_variables =
+ ast_process_struct_or_iface_block_members(&declared_variables,
+ state,
+ &this->declarations,
+ &fields,
+ true,
+ matrix_layout,
+ redeclaring_per_vertex,
+ var_mode,
+ &this->layout,
+ qual_stream,
+ expl_location);
+
+ state->struct_specifier_depth--;
+
+ if (!redeclaring_per_vertex) {
+ validate_identifier(this->block_name, loc, state);
+
+ /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
+ *
+ * "Block names have no other use within a shader beyond interface
+ * matching; it is a compile-time error to use a block name at global
+ * scope for anything other than as a block name."
+ */
+ ir_variable *var = state->symbols->get_variable(this->block_name);
+ if (var && !var->type->is_interface()) {
+ _mesa_glsl_error(&loc, state, "Block name `%s' is "
+ "already used in the scope.",
+ this->block_name);
+ }
+ }
+
+ const glsl_type *earlier_per_vertex = NULL;
+ if (redeclaring_per_vertex) {
+ /* Find the previous declaration of gl_PerVertex. If we're redeclaring
+ * the named interface block gl_in, we can find it by looking at the
+ * previous declaration of gl_in. Otherwise we can find it by looking
+ * at the previous decalartion of any of the built-in outputs,
+ * e.g. gl_Position.
+ *
+ * Also check that the instance name and array-ness of the redeclaration
+ * are correct.
+ */
+ switch (var_mode) {
+ case ir_var_shader_in:
+ if (ir_variable *earlier_gl_in =
+ state->symbols->get_variable("gl_in")) {
+ earlier_per_vertex = earlier_gl_in->get_interface_type();
+ } else {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of gl_PerVertex input not allowed "
+ "in the %s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+ if (this->instance_name == NULL ||
+ strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
+ !this->array_specifier->is_single_dimension()) {
+ _mesa_glsl_error(&loc, state,
+ "gl_PerVertex input must be redeclared as "
+ "gl_in[]");
+ }
+ break;
+ case ir_var_shader_out:
+ if (ir_variable *earlier_gl_Position =
+ state->symbols->get_variable("gl_Position")) {
+ earlier_per_vertex = earlier_gl_Position->get_interface_type();
+ } else if (ir_variable *earlier_gl_out =
+ state->symbols->get_variable("gl_out")) {
+ earlier_per_vertex = earlier_gl_out->get_interface_type();
+ } else {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of gl_PerVertex output not "
+ "allowed in the %s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+ if (state->stage == MESA_SHADER_TESS_CTRL) {
+ if (this->instance_name == NULL ||
+ strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
+ _mesa_glsl_error(&loc, state,
+ "gl_PerVertex output must be redeclared as "
+ "gl_out[]");
+ }
+ } else {
+ if (this->instance_name != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "gl_PerVertex output may not be redeclared with "
+ "an instance name");
+ }
+ }
+ break;
+ default:
+ _mesa_glsl_error(&loc, state,
+ "gl_PerVertex must be declared as an input or an "
+ "output");
+ break;
+ }
+
+ if (earlier_per_vertex == NULL) {
+ /* An error has already been reported. Bail out to avoid null
+ * dereferences later in this function.
+ */
+ return NULL;
+ }
+
+ /* Copy locations from the old gl_PerVertex interface block. */
+ for (unsigned i = 0; i < num_variables; i++) {
+ int j = earlier_per_vertex->field_index(fields[i].name);
+ if (j == -1) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of gl_PerVertex must be a subset "
+ "of the built-in members of gl_PerVertex");
+ } else {
+ fields[i].location =
+ earlier_per_vertex->fields.structure[j].location;
+ fields[i].interpolation =
+ earlier_per_vertex->fields.structure[j].interpolation;
+ fields[i].centroid =
+ earlier_per_vertex->fields.structure[j].centroid;
+ fields[i].sample =
+ earlier_per_vertex->fields.structure[j].sample;
+ fields[i].patch =
+ earlier_per_vertex->fields.structure[j].patch;
+ fields[i].precision =
+ earlier_per_vertex->fields.structure[j].precision;
+ }
+ }
+
+ /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
+ * spec:
+ *
+ * If a built-in interface block is redeclared, it must appear in
+ * the shader before any use of any member included in the built-in
+ * declaration, or a compilation error will result.
+ *
+ * This appears to be a clarification to the behaviour established for
+ * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
+ * regardless of GLSL version.
+ */
+ interface_block_usage_visitor v(var_mode, earlier_per_vertex);
+ v.run(instructions);
+ if (v.usage_found()) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of a built-in interface block must "
+ "appear before any use of any member of the "
+ "interface block");
+ }
+ }
+
+ const glsl_type *block_type =
+ glsl_type::get_interface_instance(fields,
+ num_variables,
+ packing,
+ this->block_name);
+
+ if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
+ YYLTYPE loc = this->get_location();
+ _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
+ "already taken in the current scope",
+ this->block_name, iface_type_name);
+ }
+
+ /* Since interface blocks cannot contain statements, it should be
+ * impossible for the block to generate any instructions.
+ */
+ assert(declared_variables.is_empty());
+
+ /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
+ *
+ * Geometry shader input variables get the per-vertex values written
+ * out by vertex shader output variables of the same names. Since a
+ * geometry shader operates on a set of vertices, each input varying
+ * variable (or input block, see interface blocks below) needs to be
+ * declared as an array.
+ */
+ if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
+ var_mode == ir_var_shader_in) {
+ _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
+ } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
+ state->stage == MESA_SHADER_TESS_EVAL) &&
+ this->array_specifier == NULL &&
+ var_mode == ir_var_shader_in) {
+ _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
+ } else if (state->stage == MESA_SHADER_TESS_CTRL &&
+ this->array_specifier == NULL &&
+ var_mode == ir_var_shader_out) {
+ _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
+ }
+
+
+ /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
+ * says:
+ *
+ * "If an instance name (instance-name) is used, then it puts all the
+ * members inside a scope within its own name space, accessed with the
+ * field selector ( . ) operator (analogously to structures)."
+ */
+ if (this->instance_name) {
+ if (redeclaring_per_vertex) {
+ /* When a built-in in an unnamed interface block is redeclared,
+ * get_variable_being_redeclared() calls
+ * check_builtin_array_max_size() to make sure that built-in array
+ * variables aren't redeclared to illegal sizes. But we're looking
+ * at a redeclaration of a named built-in interface block. So we
+ * have to manually call check_builtin_array_max_size() for all parts
+ * of the interface that are arrays.
+ */
+ for (unsigned i = 0; i < num_variables; i++) {
+ if (fields[i].type->is_array()) {
+ const unsigned size = fields[i].type->array_size();
+ check_builtin_array_max_size(fields[i].name, size, loc, state);
+ }
+ }
+ } else {
+ validate_identifier(this->instance_name, loc, state);
+ }
+
+ ir_variable *var;
+
+ if (this->array_specifier != NULL) {
+ const glsl_type *block_array_type =
+ process_array_type(&loc, block_type, this->array_specifier, state);
+
+ /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
+ *
+ * For uniform blocks declared an array, each individual array
+ * element corresponds to a separate buffer object backing one
+ * instance of the block. As the array size indicates the number
+ * of buffer objects needed, uniform block array declarations
+ * must specify an array size.
+ *
+ * And a few paragraphs later:
+ *
+ * Geometry shader input blocks must be declared as arrays and
+ * follow the array declaration and linking rules for all
+ * geometry shader inputs. All other input and output block
+ * arrays must specify an array size.
+ *
+ * The same applies to tessellation shaders.
+ *
+ * The upshot of this is that the only circumstance where an
+ * interface array size *doesn't* need to be specified is on a
+ * geometry shader input, tessellation control shader input,
+ * tessellation control shader output, and tessellation evaluation
+ * shader input.
+ */
+ if (block_array_type->is_unsized_array()) {
+ bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
+ state->stage == MESA_SHADER_TESS_CTRL ||
+ state->stage == MESA_SHADER_TESS_EVAL;
+ bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
+
+ if (this->layout.flags.q.in) {
+ if (!allow_inputs)
+ _mesa_glsl_error(&loc, state,
+ "unsized input block arrays not allowed in "
+ "%s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ } else if (this->layout.flags.q.out) {
+ if (!allow_outputs)
+ _mesa_glsl_error(&loc, state,
+ "unsized output block arrays not allowed in "
+ "%s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ } else {
+ /* by elimination, this is a uniform block array */
+ _mesa_glsl_error(&loc, state,
+ "unsized uniform block arrays not allowed in "
+ "%s shader",
+ _mesa_shader_stage_to_string(state->stage));
+ }
+ }
+
+ /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
+ *
+ * * Arrays of arrays of blocks are not allowed
+ */
+ if (state->es_shader && block_array_type->is_array() &&
+ block_array_type->fields.array->is_array()) {
+ _mesa_glsl_error(&loc, state,
+ "arrays of arrays interface blocks are "
+ "not allowed");
+ }
+
+ var = new(state) ir_variable(block_array_type,
+ this->instance_name,
+ var_mode);
+ } else {
+ var = new(state) ir_variable(block_type,
+ this->instance_name,
+ var_mode);
+ }
+
+ var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
+ ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
+
+ if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
+ var->data.read_only = true;
+
+ if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
+ handle_geometry_shader_input_decl(state, loc, var);
+ else if ((state->stage == MESA_SHADER_TESS_CTRL ||
+ state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
+ handle_tess_shader_input_decl(state, loc, var);
+ else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
+ handle_tess_ctrl_shader_output_decl(state, loc, var);
+
+ for (unsigned i = 0; i < num_variables; i++) {
+ if (fields[i].type->is_unsized_array()) {
+ if (var_mode == ir_var_shader_storage) {
+ if (i != (num_variables - 1)) {
+ _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
+ "only last member of a shader storage block "
+ "can be defined as unsized array",
+ fields[i].name);
+ }
+ } else {
+ /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
+ *
+ * "If an array is declared as the last member of a shader storage
+ * block and the size is not specified at compile-time, it is
+ * sized at run-time. In all other cases, arrays are sized only
+ * at compile-time."
+ */
+ if (state->es_shader) {
+ _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
+ "only last member of a shader storage block "
+ "can be defined as unsized array",
+ fields[i].name);
+ }
+ }
+ }
+ }
+
+ if (ir_variable *earlier =
+ state->symbols->get_variable(this->instance_name)) {
+ if (!redeclaring_per_vertex) {
+ _mesa_glsl_error(&loc, state, "`%s' redeclared",
+ this->instance_name);
+ }
+ earlier->data.how_declared = ir_var_declared_normally;
+ earlier->type = var->type;
+ earlier->reinit_interface_type(block_type);
+ delete var;
+ } else {
+ if (this->layout.flags.q.explicit_binding) {
+ apply_explicit_binding(state, &loc, var, var->type,
+ &this->layout);
+ }
+
+ var->data.stream = qual_stream;
+ if (layout.flags.q.explicit_location) {
+ var->data.location = expl_location;
+ var->data.explicit_location = true;
+ }
+
+ state->symbols->add_variable(var);
+ instructions->push_tail(var);
+ }
+ } else {
+ /* In order to have an array size, the block must also be declared with
+ * an instance name.
+ */
+ assert(this->array_specifier == NULL);
+
+ for (unsigned i = 0; i < num_variables; i++) {
+ ir_variable *var =
+ new(state) ir_variable(fields[i].type,
+ ralloc_strdup(state, fields[i].name),
+ var_mode);
+ var->data.interpolation = fields[i].interpolation;
+ var->data.centroid = fields[i].centroid;
+ var->data.sample = fields[i].sample;
+ var->data.patch = fields[i].patch;
+ var->data.stream = qual_stream;
+ var->data.location = fields[i].location;
+ if (fields[i].location != -1)
+ var->data.explicit_location = true;
+ var->init_interface_type(block_type);
+
+ if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
+ var->data.read_only = true;
+
+ /* Precision qualifiers do not have any meaning in Desktop GLSL */
+ if (state->es_shader) {
+ var->data.precision =
+ select_gles_precision(fields[i].precision, fields[i].type,
+ state, &loc);
+ }
+
+ if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
+ var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
+ ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
+ } else {
+ var->data.matrix_layout = fields[i].matrix_layout;
+ }
+
+ if (var->data.mode == ir_var_shader_storage) {
+ var->data.image_read_only = fields[i].image_read_only;
+ var->data.image_write_only = fields[i].image_write_only;
+ var->data.image_coherent = fields[i].image_coherent;
+ var->data.image_volatile = fields[i].image_volatile;
+ var->data.image_restrict = fields[i].image_restrict;
+ }
+
+ /* Examine var name here since var may get deleted in the next call */
+ bool var_is_gl_id = is_gl_identifier(var->name);
+
+ if (redeclaring_per_vertex) {
+ ir_variable *earlier =
+ get_variable_being_redeclared(var, loc, state,
+ true /* allow_all_redeclarations */);
+ if (!var_is_gl_id || earlier == NULL) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of gl_PerVertex can only "
+ "include built-in variables");
+ } else if (earlier->data.how_declared == ir_var_declared_normally) {
+ _mesa_glsl_error(&loc, state,
+ "`%s' has already been redeclared",
+ earlier->name);
+ } else {
+ earlier->data.how_declared = ir_var_declared_in_block;
+ earlier->reinit_interface_type(block_type);
+ }
+ continue;
+ }
+
+ if (state->symbols->get_variable(var->name) != NULL)
+ _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
+
+ /* Propagate the "binding" keyword into this UBO/SSBO's fields.
+ * The UBO declaration itself doesn't get an ir_variable unless it
+ * has an instance name. This is ugly.
+ */
+ if (this->layout.flags.q.explicit_binding) {
+ apply_explicit_binding(state, &loc, var,
+ var->get_interface_type(), &this->layout);
+ }
+
+ if (var->type->is_unsized_array()) {
+ if (var->is_in_shader_storage_block()) {
+ if (!is_unsized_array_last_element(var)) {
+ _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
+ "only last member of a shader storage block "
+ "can be defined as unsized array",
+ var->name);
+ }
+ var->data.from_ssbo_unsized_array = true;
+ } else {
+ /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
+ *
+ * "If an array is declared as the last member of a shader storage
+ * block and the size is not specified at compile-time, it is
+ * sized at run-time. In all other cases, arrays are sized only
+ * at compile-time."
+ */
+ if (state->es_shader) {
+ _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
+ "only last member of a shader storage block "
+ "can be defined as unsized array",
+ var->name);
+ }
+ }
+ }
+
+ state->symbols->add_variable(var);
+ instructions->push_tail(var);
+ }
+
+ if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
+ /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
+ *
+ * It is also a compilation error ... to redeclare a built-in
+ * block and then use a member from that built-in block that was
+ * not included in the redeclaration.
+ *
+ * This appears to be a clarification to the behaviour established
+ * for gl_PerVertex by GLSL 1.50, therefore we implement this
+ * behaviour regardless of GLSL version.
+ *
+ * To prevent the shader from using a member that was not included in
+ * the redeclaration, we disable any ir_variables that are still
+ * associated with the old declaration of gl_PerVertex (since we've
+ * already updated all of the variables contained in the new
+ * gl_PerVertex to point to it).
+ *
+ * As a side effect this will prevent
+ * validate_intrastage_interface_blocks() from getting confused and
+ * thinking there are conflicting definitions of gl_PerVertex in the
+ * shader.
+ */
+ foreach_in_list_safe(ir_instruction, node, instructions) {
+ ir_variable *const var = node->as_variable();
+ if (var != NULL &&
+ var->get_interface_type() == earlier_per_vertex &&
+ var->data.mode == var_mode) {
+ if (var->data.how_declared == ir_var_declared_normally) {
+ _mesa_glsl_error(&loc, state,
+ "redeclaration of gl_PerVertex cannot "
+ "follow a redeclaration of `%s'",
+ var->name);
+ }
+ state->symbols->disable_variable(var->name);
+ var->remove();
+ }
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_tcs_output_layout::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ YYLTYPE loc = this->get_location();
+
+ unsigned num_vertices;
+ if (!state->out_qualifier->vertices->
+ process_qualifier_constant(state, "vertices", &num_vertices,
+ false)) {
+ /* return here to stop cascading incorrect error messages */
+ return NULL;
+ }
+
+ /* If any shader outputs occurred before this declaration and specified an
+ * array size, make sure the size they specified is consistent with the
+ * primitive type.
+ */
+ if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
+ _mesa_glsl_error(&loc, state,
+ "this tessellation control shader output layout "
+ "specifies %u vertices, but a previous output "
+ "is declared with size %u",
+ num_vertices, state->tcs_output_size);
+ return NULL;
+ }
+
+ state->tcs_output_vertices_specified = true;
+
+ /* If any shader outputs occurred before this declaration and did not
+ * specify an array size, their size is determined now.
+ */
+ foreach_in_list (ir_instruction, node, instructions) {
+ ir_variable *var = node->as_variable();
+ if (var == NULL || var->data.mode != ir_var_shader_out)
+ continue;
+
+ /* Note: Not all tessellation control shader output are arrays. */
+ if (!var->type->is_unsized_array() || var->data.patch)
+ continue;
+
+ if (var->data.max_array_access >= num_vertices) {
+ _mesa_glsl_error(&loc, state,
+ "this tessellation control shader output layout "
+ "specifies %u vertices, but an access to element "
+ "%u of output `%s' already exists", num_vertices,
+ var->data.max_array_access, var->name);
+ } else {
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ num_vertices);
+ }
+ }
+
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_gs_input_layout::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ YYLTYPE loc = this->get_location();
+
+ /* If any geometry input layout declaration preceded this one, make sure it
+ * was consistent with this one.
+ */
+ if (state->gs_input_prim_type_specified &&
+ state->in_qualifier->prim_type != this->prim_type) {
+ _mesa_glsl_error(&loc, state,
+ "geometry shader input layout does not match"
+ " previous declaration");
+ return NULL;
+ }
+
+ /* If any shader inputs occurred before this declaration and specified an
+ * array size, make sure the size they specified is consistent with the
+ * primitive type.
+ */
+ unsigned num_vertices = vertices_per_prim(this->prim_type);
+ if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
+ _mesa_glsl_error(&loc, state,
+ "this geometry shader input layout implies %u vertices"
+ " per primitive, but a previous input is declared"
+ " with size %u", num_vertices, state->gs_input_size);
+ return NULL;
+ }
+
+ state->gs_input_prim_type_specified = true;
+
+ /* If any shader inputs occurred before this declaration and did not
+ * specify an array size, their size is determined now.
+ */
+ foreach_in_list(ir_instruction, node, instructions) {
+ ir_variable *var = node->as_variable();
+ if (var == NULL || var->data.mode != ir_var_shader_in)
+ continue;
+
+ /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
+ * array; skip it.
+ */
+
+ if (var->type->is_unsized_array()) {
+ if (var->data.max_array_access >= num_vertices) {
+ _mesa_glsl_error(&loc, state,
+ "this geometry shader input layout implies %u"
+ " vertices, but an access to element %u of input"
+ " `%s' already exists", num_vertices,
+ var->data.max_array_access, var->name);
+ } else {
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ num_vertices);
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+ir_rvalue *
+ast_cs_input_layout::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ YYLTYPE loc = this->get_location();
+
+ /* From the ARB_compute_shader specification:
+ *
+ * If the local size of the shader in any dimension is greater
+ * than the maximum size supported by the implementation for that
+ * dimension, a compile-time error results.
+ *
+ * It is not clear from the spec how the error should be reported if
+ * the total size of the work group exceeds
+ * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
+ * report it at compile time as well.
+ */
+ GLuint64 total_invocations = 1;
+ unsigned qual_local_size[3];
+ for (int i = 0; i < 3; i++) {
+
+ char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
+ 'x' + i);
+ /* Infer a local_size of 1 for unspecified dimensions */
+ if (this->local_size[i] == NULL) {
+ qual_local_size[i] = 1;
+ } else if (!this->local_size[i]->
+ process_qualifier_constant(state, local_size_str,
+ &qual_local_size[i], false)) {
+ ralloc_free(local_size_str);
+ return NULL;
+ }
+ ralloc_free(local_size_str);
+
+ if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
+ _mesa_glsl_error(&loc, state,
+ "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
+ " (%d)", 'x' + i,
+ state->ctx->Const.MaxComputeWorkGroupSize[i]);
+ break;
+ }
+ total_invocations *= qual_local_size[i];
+ if (total_invocations >
+ state->ctx->Const.MaxComputeWorkGroupInvocations) {
+ _mesa_glsl_error(&loc, state,
+ "product of local_sizes exceeds "
+ "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
+ state->ctx->Const.MaxComputeWorkGroupInvocations);
+ break;
+ }
+ }
+
+ /* If any compute input layout declaration preceded this one, make sure it
+ * was consistent with this one.
+ */
+ if (state->cs_input_local_size_specified) {
+ for (int i = 0; i < 3; i++) {
+ if (state->cs_input_local_size[i] != qual_local_size[i]) {
+ _mesa_glsl_error(&loc, state,
+ "compute shader input layout does not match"
+ " previous declaration");
+ return NULL;
+ }
+ }
+ }
+
+ state->cs_input_local_size_specified = true;
+ for (int i = 0; i < 3; i++)
+ state->cs_input_local_size[i] = qual_local_size[i];
+
+ /* We may now declare the built-in constant gl_WorkGroupSize (see
+ * builtin_variable_generator::generate_constants() for why we didn't
+ * declare it earlier).
+ */
+ ir_variable *var = new(state->symbols)
+ ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
+ var->data.how_declared = ir_var_declared_implicitly;
+ var->data.read_only = true;
+ instructions->push_tail(var);
+ state->symbols->add_variable(var);
+ ir_constant_data data;
+ memset(&data, 0, sizeof(data));
+ for (int i = 0; i < 3; i++)
+ data.u[i] = qual_local_size[i];
+ var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
+ var->constant_initializer =
+ new(var) ir_constant(glsl_type::uvec3_type, &data);
+ var->data.has_initializer = true;
+
+ return NULL;
+}
+
+
+static void
+detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
+ exec_list *instructions)
+{
+ bool gl_FragColor_assigned = false;
+ bool gl_FragData_assigned = false;
+ bool gl_FragSecondaryColor_assigned = false;
+ bool gl_FragSecondaryData_assigned = false;
+ bool user_defined_fs_output_assigned = false;
+ ir_variable *user_defined_fs_output = NULL;
+
+ /* It would be nice to have proper location information. */
+ YYLTYPE loc;
+ memset(&loc, 0, sizeof(loc));
+
+ foreach_in_list(ir_instruction, node, instructions) {
+ ir_variable *var = node->as_variable();
+
+ if (!var || !var->data.assigned)
+ continue;
+
+ if (strcmp(var->name, "gl_FragColor") == 0)
+ gl_FragColor_assigned = true;
+ else if (strcmp(var->name, "gl_FragData") == 0)
+ gl_FragData_assigned = true;
+ else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
+ gl_FragSecondaryColor_assigned = true;
+ else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
+ gl_FragSecondaryData_assigned = true;
+ else if (!is_gl_identifier(var->name)) {
+ if (state->stage == MESA_SHADER_FRAGMENT &&
+ var->data.mode == ir_var_shader_out) {
+ user_defined_fs_output_assigned = true;
+ user_defined_fs_output = var;
+ }
+ }
+ }
+
+ /* From the GLSL 1.30 spec:
+ *
+ * "If a shader statically assigns a value to gl_FragColor, it
+ * may not assign a value to any element of gl_FragData. If a
+ * shader statically writes a value to any element of
+ * gl_FragData, it may not assign a value to
+ * gl_FragColor. That is, a shader may assign values to either
+ * gl_FragColor or gl_FragData, but not both. Multiple shaders
+ * linked together must also consistently write just one of
+ * these variables. Similarly, if user declared output
+ * variables are in use (statically assigned to), then the
+ * built-in variables gl_FragColor and gl_FragData may not be
+ * assigned to. These incorrect usages all generate compile
+ * time errors."
+ */
+ if (gl_FragColor_assigned && gl_FragData_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragColor' and `gl_FragData'");
+ } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragColor' and `%s'",
+ user_defined_fs_output->name);
+ } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragSecondaryColorEXT' and"
+ " `gl_FragSecondaryDataEXT'");
+ } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragColor' and"
+ " `gl_FragSecondaryDataEXT'");
+ } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragData' and"
+ " `gl_FragSecondaryColorEXT'");
+ } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
+ _mesa_glsl_error(&loc, state, "fragment shader writes to both "
+ "`gl_FragData' and `%s'",
+ user_defined_fs_output->name);
+ }
+
+ if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
+ !state->EXT_blend_func_extended_enable) {
+ _mesa_glsl_error(&loc, state,
+ "Dual source blending requires EXT_blend_func_extended");
+ }
+}
+
+
+static void
+remove_per_vertex_blocks(exec_list *instructions,
+ _mesa_glsl_parse_state *state, ir_variable_mode mode)
+{
+ /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
+ * if it exists in this shader type.
+ */
+ const glsl_type *per_vertex = NULL;
+ switch (mode) {
+ case ir_var_shader_in:
+ if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
+ per_vertex = gl_in->get_interface_type();
+ break;
+ case ir_var_shader_out:
+ if (ir_variable *gl_Position =
+ state->symbols->get_variable("gl_Position")) {
+ per_vertex = gl_Position->get_interface_type();
+ }
+ break;
+ default:
+ assert(!"Unexpected mode");
+ break;
+ }
+
+ /* If we didn't find a built-in gl_PerVertex interface block, then we don't
+ * need to do anything.
+ */
+ if (per_vertex == NULL)
+ return;
+
+ /* If the interface block is used by the shader, then we don't need to do
+ * anything.
+ */
+ interface_block_usage_visitor v(mode, per_vertex);
+ v.run(instructions);
+ if (v.usage_found())
+ return;
+
+ /* Remove any ir_variable declarations that refer to the interface block
+ * we're removing.
+ */
+ foreach_in_list_safe(ir_instruction, node, instructions) {
+ ir_variable *const var = node->as_variable();
+ if (var != NULL && var->get_interface_type() == per_vertex &&
+ var->data.mode == mode) {
+ state->symbols->disable_variable(var->name);
+ var->remove();
+ }
+ }
+}