diff options
author | Eric Anholt <[email protected]> | 2010-05-21 09:32:38 -0700 |
---|---|---|
committer | Eric Anholt <[email protected]> | 2010-05-21 12:20:39 -0700 |
commit | 68fc4b415e322f6744299e39864fbc377c6eff74 (patch) | |
tree | 4bafffd8b0105174f3c5c0ae327a005be9145990 /progs/util/trackball.c | |
parent | e4f4489e3fc0b36d72821b55794fb843b2b7fa5f (diff) |
Remove demos that have moved to git+ssh://git.freedesktop.org/git/mesa/demos.
The remaining programs are ones I've had difficulty finding a build
environment for to make the build system or are unit tests that should
probably live next to their code instead. Hopefully people can bring
over the build for remaining pieces they care about.
Diffstat (limited to 'progs/util/trackball.c')
-rw-r--r-- | progs/util/trackball.c | 338 |
1 files changed, 0 insertions, 338 deletions
diff --git a/progs/util/trackball.c b/progs/util/trackball.c deleted file mode 100644 index a6c4c60d06b..00000000000 --- a/progs/util/trackball.c +++ /dev/null @@ -1,338 +0,0 @@ -#include <stdio.h> -/* - * (c) Copyright 1993, 1994, Silicon Graphics, Inc. - * ALL RIGHTS RESERVED - * Permission to use, copy, modify, and distribute this software for - * any purpose and without fee is hereby granted, provided that the above - * copyright notice appear in all copies and that both the copyright notice - * and this permission notice appear in supporting documentation, and that - * the name of Silicon Graphics, Inc. not be used in advertising - * or publicity pertaining to distribution of the software without specific, - * written prior permission. - * - * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS" - * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, - * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR - * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON - * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT, - * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY - * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, - * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF - * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN - * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON - * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE - * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE. - * - * US Government Users Restricted Rights - * Use, duplication, or disclosure by the Government is subject to - * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph - * (c)(1)(ii) of the Rights in Technical Data and Computer Software - * clause at DFARS 252.227-7013 and/or in similar or successor - * clauses in the FAR or the DOD or NASA FAR Supplement. - * Unpublished-- rights reserved under the copyright laws of the - * United States. Contractor/manufacturer is Silicon Graphics, - * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. - * - * OpenGL(TM) is a trademark of Silicon Graphics, Inc. - */ -/* - * Trackball code: - * - * Implementation of a virtual trackball. - * Implemented by Gavin Bell, lots of ideas from Thant Tessman and - * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129. - * - * Vector manip code: - * - * Original code from: - * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli - * - * Much mucking with by: - * Gavin Bell - */ -#if defined(_WIN32) -#pragma warning (disable:4244) /* disable bogus conversion warnings */ -#endif -#include <math.h> -#include "trackball.h" - -/* - * This size should really be based on the distance from the center of - * rotation to the point on the object underneath the mouse. That - * point would then track the mouse as closely as possible. This is a - * simple example, though, so that is left as an Exercise for the - * Programmer. - */ -#define TRACKBALLSIZE (0.8f) - -/* - * Local function prototypes (not defined in trackball.h) - */ -static float tb_project_to_sphere(float, float, float); -static void normalize_quat(float [4]); - -static void -vzero(float v[3]) -{ - v[0] = 0.0; - v[1] = 0.0; - v[2] = 0.0; -} - -static void -vset(float v[3], float x, float y, float z) -{ - v[0] = x; - v[1] = y; - v[2] = z; -} - -static void -vsub(const float src1[3], const float src2[3], float dst[3]) -{ - dst[0] = src1[0] - src2[0]; - dst[1] = src1[1] - src2[1]; - dst[2] = src1[2] - src2[2]; -} - -static void -vcopy(const float v1[3], float v2[3]) -{ - register int i; - for (i = 0 ; i < 3 ; i++) - v2[i] = v1[i]; -} - -static void -vcross(const float v1[3], const float v2[3], float cross[3]) -{ - float temp[3]; - - temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]); - temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]); - temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]); - vcopy(temp, cross); -} - -static float -vlength(const float v[3]) -{ - return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); -} - -static void -vscale(float v[3], float div) -{ - v[0] *= div; - v[1] *= div; - v[2] *= div; -} - -static void -vnormal(float v[3]) -{ - vscale(v,1.0/vlength(v)); -} - -static float -vdot(const float v1[3], const float v2[3]) -{ - return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; -} - -static void -vadd(const float src1[3], const float src2[3], float dst[3]) -{ - dst[0] = src1[0] + src2[0]; - dst[1] = src1[1] + src2[1]; - dst[2] = src1[2] + src2[2]; -} - -/* - * Ok, simulate a track-ball. Project the points onto the virtual - * trackball, then figure out the axis of rotation, which is the cross - * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) - * Note: This is a deformed trackball-- is a trackball in the center, - * but is deformed into a hyperbolic sheet of rotation away from the - * center. This particular function was chosen after trying out - * several variations. - * - * It is assumed that the arguments to this routine are in the range - * (-1.0 ... 1.0) - */ -void -trackball(float q[4], float p1x, float p1y, float p2x, float p2y) -{ - float a[3]; /* Axis of rotation */ - float phi; /* how much to rotate about axis */ - float p1[3], p2[3], d[3]; - float t; - - if (p1x == p2x && p1y == p2y) { - /* Zero rotation */ - vzero(q); - q[3] = 1.0; - return; - } - - /* - * First, figure out z-coordinates for projection of P1 and P2 to - * deformed sphere - */ - vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y)); - vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y)); - - /* - * Now, we want the cross product of P1 and P2 - */ - vcross(p2,p1,a); - - /* - * Figure out how much to rotate around that axis. - */ - vsub(p1,p2,d); - t = vlength(d) / (2.0*TRACKBALLSIZE); - - /* - * Avoid problems with out-of-control values... - */ - if (t > 1.0) t = 1.0; - if (t < -1.0) t = -1.0; - phi = 2.0 * asin(t); - - axis_to_quat(a,phi,q); -} - -/* - * Given an axis and angle, compute quaternion. - */ -void -axis_to_quat(const float a[3], float phi, float q[4]) -{ - vcopy(a,q); - vnormal(q); - vscale(q, sin(phi/2.0)); - q[3] = cos(phi/2.0); -} - -/* - * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet - * if we are away from the center of the sphere. - */ -static float -tb_project_to_sphere(float r, float x, float y) -{ - float d, t, z; - - d = sqrt(x*x + y*y); - if (d < r * 0.70710678118654752440) { /* Inside sphere */ - z = sqrt(r*r - d*d); - } else { /* On hyperbola */ - t = r / 1.41421356237309504880; - z = t*t / d; - } - return z; -} - -/* - * Given two rotations, e1 and e2, expressed as quaternion rotations, - * figure out the equivalent single rotation and stuff it into dest. - * - * This routine also normalizes the result every RENORMCOUNT times it is - * called, to keep error from creeping in. - * - * NOTE: This routine is written so that q1 or q2 may be the same - * as dest (or each other). - */ - -#define RENORMCOUNT 97 - -void -add_quats(const float q1[4], const float q2[4], float dest[4]) -{ - static int count=0; - float t1[4], t2[4], t3[4]; - float tf[4]; - -#if 0 -printf("q1 = %f %f %f %f\n", q1[0], q1[1], q1[2], q1[3]); -printf("q2 = %f %f %f %f\n", q2[0], q2[1], q2[2], q2[3]); -#endif - - vcopy(q1,t1); - vscale(t1,q2[3]); - - vcopy(q2,t2); - vscale(t2,q1[3]); - - vcross(q2,q1,t3); - vadd(t1,t2,tf); - vadd(t3,tf,tf); - tf[3] = q1[3] * q2[3] - vdot(q1,q2); - -#if 0 -printf("tf = %f %f %f %f\n", tf[0], tf[1], tf[2], tf[3]); -#endif - - dest[0] = tf[0]; - dest[1] = tf[1]; - dest[2] = tf[2]; - dest[3] = tf[3]; - - if (++count > RENORMCOUNT) { - count = 0; - normalize_quat(dest); - } -} - -/* - * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0 - * If they don't add up to 1.0, dividing by their magnitued will - * renormalize them. - * - * Note: See the following for more information on quaternions: - * - * - Shoemake, K., Animating rotation with quaternion curves, Computer - * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985. - * - Pletinckx, D., Quaternion calculus as a basic tool in computer - * graphics, The Visual Computer 5, 2-13, 1989. - */ -static void -normalize_quat(float q[4]) -{ - int i; - float mag; - - mag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); - for (i = 0; i < 4; i++) - q[i] /= mag; -} - -/* - * Build a rotation matrix, given a quaternion rotation. - * - */ -void -build_rotmatrix(float m[4][4], const float q[4]) -{ - m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]); - m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]); - m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]); - m[0][3] = 0.0; - - m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]); - m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]); - m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]); - m[1][3] = 0.0; - - m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]); - m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]); - m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]); - m[2][3] = 0.0; - - m[3][0] = 0.0; - m[3][1] = 0.0; - m[3][2] = 0.0; - m[3][3] = 1.0; -} - |