diff options
author | Brian Paul <[email protected]> | 2001-03-08 17:17:28 +0000 |
---|---|---|
committer | Brian Paul <[email protected]> | 2001-03-08 17:17:28 +0000 |
commit | 896e8bd2d7eb1385ca89e71b7eac146577320e00 (patch) | |
tree | 6687e353985dc9ddbfabe31836616b42ce4aa4ff | |
parent | 417ed16a88bd6c695e9792c2023e3f1737ee1e64 (diff) |
processed by indent to improve readability
-rw-r--r-- | src/mesa/math/m_eval.c | 361 |
1 files changed, 161 insertions, 200 deletions
diff --git a/src/mesa/math/m_eval.c b/src/mesa/math/m_eval.c index adf5b19fec8..9316625d976 100644 --- a/src/mesa/math/m_eval.c +++ b/src/mesa/math/m_eval.c @@ -1,4 +1,4 @@ -/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */ +/* $Id: m_eval.c,v 1.4 2001/03/08 17:17:28 brianp Exp $ */ /* * Mesa 3-D graphics library @@ -72,32 +72,31 @@ static GLfloat inv_tab[MAX_EVAL_ORDER]; void -_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, +_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t, GLuint dim, GLuint order) { GLfloat s, powert, bincoeff; GLuint i, k; - if(order >= 2) - { + if (order >= 2) { bincoeff = (GLfloat) (order - 1); - s = 1.0-t; + s = 1.0 - t; - for(k=0; k<dim; k++) - out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; + for (k = 0; k < dim; k++) + out[k] = s * cp[k] + bincoeff * t * cp[dim + k]; - for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) - { + for (i = 2, cp += 2 * dim, powert = t * t; i < order; + i++, powert *= t, cp += dim) { bincoeff *= (GLfloat) (order - i); bincoeff *= inv_tab[i]; - for(k=0; k<dim; k++) - out[k] = s*out[k] + bincoeff*powert*cp[k]; + for (k = 0; k < dim; k++) + out[k] = s * out[k] + bincoeff * powert * cp[k]; } } - else /* order=1 -> constant curve */ - { - for(k=0; k<dim; k++) + else { /* order=1 -> constant curve */ + + for (k = 0; k < dim; k++) out[k] = cp[k]; } } @@ -117,69 +116,64 @@ _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, */ void -_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, +_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { - GLfloat *cp = cn + uorder*vorder*dim; - GLuint i, uinc = vorder*dim; + GLfloat *cp = cn + uorder * vorder * dim; + GLuint i, uinc = vorder * dim; - if(vorder > uorder) - { - if(uorder >= 2) - { + if (vorder > uorder) { + if (uorder >= 2) { GLfloat s, poweru, bincoeff; GLuint j, k; /* Compute the control polygon for the surface-curve in u-direction */ - for(j=0; j<vorder; j++) - { - GLfloat *ucp = &cn[j*dim]; + for (j = 0; j < vorder; j++) { + GLfloat *ucp = &cn[j * dim]; /* Each control point is the point for parameter u on a */ /* curve defined by the control polygons in u-direction */ bincoeff = (GLfloat) (uorder - 1); - s = 1.0-u; + s = 1.0 - u; - for(k=0; k<dim; k++) - cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; + for (k = 0; k < dim; k++) + cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k]; - for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; - i++, poweru*=u, ucp +=uinc) - { + for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder; + i++, poweru *= u, ucp += uinc) { bincoeff *= (GLfloat) (uorder - i); bincoeff *= inv_tab[i]; - for(k=0; k<dim; k++) - cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; + for (k = 0; k < dim; k++) + cp[j * dim + k] = + s * cp[j * dim + k] + bincoeff * poweru * ucp[k]; } } /* Evaluate curve point in v */ _math_horner_bezier_curve(cp, out, v, dim, vorder); } - else /* uorder=1 -> cn defines a curve in v */ + else /* uorder=1 -> cn defines a curve in v */ _math_horner_bezier_curve(cn, out, v, dim, vorder); } - else /* vorder <= uorder */ - { - if(vorder > 1) - { + else { /* vorder <= uorder */ + + if (vorder > 1) { GLuint i; /* Compute the control polygon for the surface-curve in u-direction */ - for(i=0; i<uorder; i++, cn += uinc) - { + for (i = 0; i < uorder; i++, cn += uinc) { /* For constant i all cn[i][j] (j=0..vorder) are located */ /* on consecutive memory locations, so we can use */ /* horner_bezier_curve to compute the control points */ - _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); + _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder); } /* Evaluate curve point in u */ _math_horner_bezier_curve(cp, out, u, dim, uorder); } - else /* vorder=1 -> cn defines a curve in u */ + else /* vorder=1 -> cn defines a curve in u */ _math_horner_bezier_curve(cn, out, u, dim, uorder); } } @@ -199,15 +193,15 @@ _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, */ void -_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, - GLfloat u, GLfloat v, GLuint dim, +_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du, + GLfloat * dv, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { - GLfloat *dcn = cn + uorder*vorder*dim; - GLfloat us = 1.0-u, vs = 1.0-v; + GLfloat *dcn = cn + uorder * vorder * dim; + GLfloat us = 1.0 - u, vs = 1.0 - v; GLuint h, i, j, k; GLuint minorder = uorder < vorder ? uorder : vorder; - GLuint uinc = vorder*dim; + GLuint uinc = vorder * dim; GLuint dcuinc = vorder; /* Each component is evaluated separately to save buffer space */ @@ -218,267 +212,234 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] #define DCN(I, J) dcn[(I)*dcuinc+(J)] - if(minorder < 3) - { - if(uorder==vorder) - { - for(k=0; k<dim; k++) - { + if (minorder < 3) { + if (uorder == vorder) { + for (k = 0; k < dim; k++) { /* Derivative direction in u */ - du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + - v*(CN(1,1,k) - CN(0,1,k)); + du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) + + v * (CN(1, 1, k) - CN(0, 1, k)); /* Derivative direction in v */ - dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + - u*(CN(1,1,k) - CN(1,0,k)); + dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) + + u * (CN(1, 1, k) - CN(1, 0, k)); /* bilinear de Casteljau step */ - out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) + - u*(vs*CN(1,0,k) + v*CN(1,1,k)); + out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) + + u * (vs * CN(1, 0, k) + v * CN(1, 1, k)); } } - else if(minorder == uorder) - { - for(k=0; k<dim; k++) - { + else if (minorder == uorder) { + for (k = 0; k < dim; k++) { /* bilinear de Casteljau step */ - DCN(1,0) = CN(1,0,k) - CN(0,0,k); - DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); + DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k); + DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k); - for(j=0; j<vorder-1; j++) - { + for (j = 0; j < vorder - 1; j++) { /* for the derivative in u */ - DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k); - DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); + DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k); + DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); /* for the `point' */ - DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); - DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); + DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k); + DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* remaining linear de Casteljau steps until the second last step */ - for(h=minorder; h<vorder-1; h++) - for(j=0; j<vorder-h; j++) - { + for (h = minorder; h < vorder - 1; h++) + for (j = 0; j < vorder - h; j++) { /* for the derivative in u */ - DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); + DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); /* for the `point' */ - DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); + DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* derivative direction in v */ - dv[k] = DCN(0,1) - DCN(0,0); + dv[k] = DCN(0, 1) - DCN(0, 0); /* derivative direction in u */ - du[k] = vs*DCN(1,0) + v*DCN(1,1); + du[k] = vs * DCN(1, 0) + v * DCN(1, 1); /* last linear de Casteljau step */ - out[k] = vs*DCN(0,0) + v*DCN(0,1); + out[k] = vs * DCN(0, 0) + v * DCN(0, 1); } } - else /* minorder == vorder */ - { - for(k=0; k<dim; k++) - { + else { /* minorder == vorder */ + + for (k = 0; k < dim; k++) { /* bilinear de Casteljau step */ - DCN(0,1) = CN(0,1,k) - CN(0,0,k); - DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); - for(i=0; i<uorder-1; i++) - { + DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k); + DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k); + for (i = 0; i < uorder - 1; i++) { /* for the derivative in v */ - DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k); - DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); + DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k); + DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); /* for the `point' */ - DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); + DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k); + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* remaining linear de Casteljau steps until the second last step */ - for(h=minorder; h<uorder-1; h++) - for(i=0; i<uorder-h; i++) - { + for (h = minorder; h < uorder - 1; h++) + for (i = 0; i < uorder - h; i++) { /* for the derivative in v */ - DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); + DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); /* for the `point' */ - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* derivative direction in u */ - du[k] = DCN(1,0) - DCN(0,0); + du[k] = DCN(1, 0) - DCN(0, 0); /* derivative direction in v */ - dv[k] = us*DCN(0,1) + u*DCN(1,1); + dv[k] = us * DCN(0, 1) + u * DCN(1, 1); /* last linear de Casteljau step */ - out[k] = us*DCN(0,0) + u*DCN(1,0); + out[k] = us * DCN(0, 0) + u * DCN(1, 0); } } } - else if(uorder == vorder) - { - for(k=0; k<dim; k++) - { + else if (uorder == vorder) { + for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ - for(i=0; i<uorder-1; i++) - { - DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); - for(j=0; j<vorder-1; j++) - { - DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (i = 0; i < uorder - 1; i++) { + DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); + for (j = 0; j < vorder - 1; j++) { + DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ - for(h=2; h<minorder-1; h++) - for(i=0; i<uorder-h; i++) - { - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); - for(j=0; j<vorder-h; j++) - { - DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (h = 2; h < minorder - 1; h++) + for (i = 0; i < uorder - h; i++) { + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); + for (j = 0; j < vorder - h; j++) { + DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* derivative direction in u */ - du[k] = vs*(DCN(1,0) - DCN(0,0)) + - v*(DCN(1,1) - DCN(0,1)); + du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1)); /* derivative direction in v */ - dv[k] = us*(DCN(0,1) - DCN(0,0)) + - u*(DCN(1,1) - DCN(1,0)); + dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0)); /* last bilinear de Casteljau step */ - out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) + - u*(vs*DCN(1,0) + v*DCN(1,1)); + out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) + + u * (vs * DCN(1, 0) + v * DCN(1, 1)); } } - else if(minorder == uorder) - { - for(k=0; k<dim; k++) - { + else if (minorder == uorder) { + for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ - for(i=0; i<uorder-1; i++) - { - DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); - for(j=0; j<vorder-1; j++) - { - DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (i = 0; i < uorder - 1; i++) { + DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); + for (j = 0; j < vorder - 1; j++) { + DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ - for(h=2; h<minorder-1; h++) - for(i=0; i<uorder-h; i++) - { - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); - for(j=0; j<vorder-h; j++) - { - DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (h = 2; h < minorder - 1; h++) + for (i = 0; i < uorder - h; i++) { + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); + for (j = 0; j < vorder - h; j++) { + DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* last bilinear de Casteljau step */ - DCN(2,0) = DCN(1,0) - DCN(0,0); - DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); - for(j=0; j<vorder-1; j++) - { + DCN(2, 0) = DCN(1, 0) - DCN(0, 0); + DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0); + for (j = 0; j < vorder - 1; j++) { /* for the derivative in u */ - DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1); - DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); - + DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1); + DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); + /* for the `point' */ - DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); - DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); + DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1); + DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* remaining linear de Casteljau steps until the second last step */ - for(h=minorder; h<vorder-1; h++) - for(j=0; j<vorder-h; j++) - { + for (h = minorder; h < vorder - 1; h++) + for (j = 0; j < vorder - h; j++) { /* for the derivative in u */ - DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); - + DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); + /* for the `point' */ - DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); + DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* derivative direction in v */ - dv[k] = DCN(0,1) - DCN(0,0); + dv[k] = DCN(0, 1) - DCN(0, 0); /* derivative direction in u */ - du[k] = vs*DCN(2,0) + v*DCN(2,1); + du[k] = vs * DCN(2, 0) + v * DCN(2, 1); /* last linear de Casteljau step */ - out[k] = vs*DCN(0,0) + v*DCN(0,1); + out[k] = vs * DCN(0, 0) + v * DCN(0, 1); } } - else /* minorder == vorder */ - { - for(k=0; k<dim; k++) - { + else { /* minorder == vorder */ + + for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ - for(i=0; i<uorder-1; i++) - { - DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); - for(j=0; j<vorder-1; j++) - { - DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (i = 0; i < uorder - 1; i++) { + DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); + for (j = 0; j < vorder - 1; j++) { + DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ - for(h=2; h<minorder-1; h++) - for(i=0; i<uorder-h; i++) - { - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); - for(j=0; j<vorder-h; j++) - { - DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); - DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); + for (h = 2; h < minorder - 1; h++) + for (i = 0; i < uorder - h; i++) { + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); + for (j = 0; j < vorder - h; j++) { + DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); + DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* last bilinear de Casteljau step */ - DCN(0,2) = DCN(0,1) - DCN(0,0); - DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); - for(i=0; i<uorder-1; i++) - { + DCN(0, 2) = DCN(0, 1) - DCN(0, 0); + DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1); + for (i = 0; i < uorder - 1; i++) { /* for the derivative in v */ - DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0); - DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); - + DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0); + DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); + /* for the `point' */ - DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1); - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); + DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1); + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* remaining linear de Casteljau steps until the second last step */ - for(h=minorder; h<uorder-1; h++) - for(i=0; i<uorder-h; i++) - { + for (h = minorder; h < uorder - 1; h++) + for (i = 0; i < uorder - h; i++) { /* for the derivative in v */ - DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); - + DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); + /* for the `point' */ - DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); + DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* derivative direction in u */ - du[k] = DCN(1,0) - DCN(0,0); + du[k] = DCN(1, 0) - DCN(0, 0); /* derivative direction in v */ - dv[k] = us*DCN(0,2) + u*DCN(1,2); + dv[k] = us * DCN(0, 2) + u * DCN(1, 2); /* last linear de Casteljau step */ - out[k] = us*DCN(0,0) + u*DCN(1,0); + out[k] = us * DCN(0, 0) + u * DCN(1, 0); } } #undef DCN @@ -489,13 +450,13 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, /* * Do one-time initialization for evaluators. */ -void _math_init_eval( void ) +void +_math_init_eval(void) { GLuint i; /* KW: precompute 1/x for useful x. */ - for (i = 1 ; i < MAX_EVAL_ORDER ; i++) + for (i = 1; i < MAX_EVAL_ORDER; i++) inv_tab[i] = 1.0 / i; } - |