aboutsummaryrefslogtreecommitdiffstats
path: root/utils/makemhr/makemhr.cpp
blob: e480277e0e77146593f768f36fb16c791fa3a559 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
/*
 * HRTF utility for producing and demonstrating the process of creating an
 * OpenAL Soft compatible HRIR data set.
 *
 * Copyright (C) 2011-2019  Christopher Fitzgerald
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Or visit:  http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 *
 * --------------------------------------------------------------------------
 *
 * A big thanks goes out to all those whose work done in the field of
 * binaural sound synthesis using measured HRTFs makes this utility and the
 * OpenAL Soft implementation possible.
 *
 * The algorithm for diffuse-field equalization was adapted from the work
 * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
 * MIT Media Laboratory.  It operates as follows:
 *
 *  1.  Take the FFT of each HRIR and only keep the magnitude responses.
 *  2.  Calculate the diffuse-field power-average of all HRIRs weighted by
 *      their contribution to the total surface area covered by their
 *      measurement. This has since been modified to use coverage volume for
 *      multi-field HRIR data sets.
 *  3.  Take the diffuse-field average and limit its magnitude range.
 *  4.  Equalize the responses by using the inverse of the diffuse-field
 *      average.
 *  5.  Reconstruct the minimum-phase responses.
 *  5.  Zero the DC component.
 *  6.  IFFT the result and truncate to the desired-length minimum-phase FIR.
 *
 * The spherical head algorithm for calculating propagation delay was adapted
 * from the paper:
 *
 *  Modeling Interaural Time Difference Assuming a Spherical Head
 *  Joel David Miller
 *  Music 150, Musical Acoustics, Stanford University
 *  December 2, 2001
 *
 * The formulae for calculating the Kaiser window metrics are from the
 * the textbook:
 *
 *  Discrete-Time Signal Processing
 *  Alan V. Oppenheim and Ronald W. Schafer
 *  Prentice-Hall Signal Processing Series
 *  1999
 */

#define _UNICODE
#include "config.h"

#include "makemhr.h"

#include <algorithm>
#include <atomic>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <limits>
#include <memory>
#include <numeric>
#include <thread>
#include <utility>
#include <vector>

#ifdef HAVE_GETOPT
#include <unistd.h>
#else
#include "../getopt.h"
#endif

#include "loaddef.h"
#include "loadsofa.h"

#include "win_main_utf8.h"


namespace {

using namespace std::placeholders;

} // namespace

#ifndef M_PI
#define M_PI                         (3.14159265358979323846)
#endif


// Head model used for calculating the impulse delays.
enum HeadModelT {
    HM_NONE,
    HM_DATASET, // Measure the onset from the dataset.
    HM_SPHERE   // Calculate the onset using a spherical head model.
};


// The epsilon used to maintain signal stability.
#define EPSILON                      (1e-9)

// The limits to the FFT window size override on the command line.
#define MIN_FFTSIZE                  (65536)
#define MAX_FFTSIZE                  (131072)

// The limits to the equalization range limit on the command line.
#define MIN_LIMIT                    (2.0)
#define MAX_LIMIT                    (120.0)

// The limits to the truncation window size on the command line.
#define MIN_TRUNCSIZE                (16)
#define MAX_TRUNCSIZE                (512)

// The limits to the custom head radius on the command line.
#define MIN_CUSTOM_RADIUS            (0.05)
#define MAX_CUSTOM_RADIUS            (0.15)

// The truncation window size must be a multiple of the below value to allow
// for vectorized convolution.
#define MOD_TRUNCSIZE                (8)

// The defaults for the command line options.
#define DEFAULT_FFTSIZE              (65536)
#define DEFAULT_EQUALIZE             (1)
#define DEFAULT_SURFACE              (1)
#define DEFAULT_LIMIT                (24.0)
#define DEFAULT_TRUNCSIZE            (32)
#define DEFAULT_HEAD_MODEL           (HM_DATASET)
#define DEFAULT_CUSTOM_RADIUS        (0.0)

// The maximum propagation delay value supported by OpenAL Soft.
#define MAX_HRTD                     (63.0)

// The OpenAL Soft HRTF format marker.  It stands for minimum-phase head
// response protocol 02.
#define MHR_FORMAT                   ("MinPHR02")

/* Channel index enums. Mono uses LeftChannel only. */
enum ChannelIndex : uint {
    LeftChannel = 0u,
    RightChannel = 1u
};


/* Performs a string substitution.  Any case-insensitive occurrences of the
 * pattern string are replaced with the replacement string.  The result is
 * truncated if necessary.
 */
static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
{
    size_t inLen, patLen, repLen;
    size_t si, di;
    int truncated;

    inLen = strlen(in);
    patLen = strlen(pat);
    repLen = strlen(rep);
    si = 0;
    di = 0;
    truncated = 0;
    while(si < inLen && di < maxLen)
    {
        if(patLen <= inLen-si)
        {
            if(strncasecmp(&in[si], pat, patLen) == 0)
            {
                if(repLen > maxLen-di)
                {
                    repLen = maxLen - di;
                    truncated = 1;
                }
                strncpy(&out[di], rep, repLen);
                si += patLen;
                di += repLen;
            }
        }
        out[di] = in[si];
        si++;
        di++;
    }
    if(si < inLen)
        truncated = 1;
    out[di] = '\0';
    return !truncated;
}


/*********************
 *** Math routines ***
 *********************/

// Simple clamp routine.
static double Clamp(const double val, const double lower, const double upper)
{
    return std::min(std::max(val, lower), upper);
}

static inline uint dither_rng(uint *seed)
{
    *seed = *seed * 96314165 + 907633515;
    return *seed;
}

// Performs a triangular probability density function dither. The input samples
// should be normalized (-1 to +1).
static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
                       const int count, const int step, uint *seed)
{
    static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();

    for(int i{0};i < count;i++)
    {
        uint prn0{dither_rng(seed)};
        uint prn1{dither_rng(seed)};
        out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
    }
}

/* Fast Fourier transform routines. The number of points must be a power of
 * two.
 */

// Performs bit-reversal ordering.
static void FftArrange(const uint n, complex_d *inout)
{
    // Handle in-place arrangement.
    uint rk{0u};
    for(uint k{0u};k < n;k++)
    {
        if(rk > k)
            std::swap(inout[rk], inout[k]);

        uint m{n};
        while(rk&(m >>= 1))
            rk &= ~m;
        rk |= m;
    }
}

// Performs the summation.
static void FftSummation(const int n, const double s, complex_d *cplx)
{
    double pi;
    int m, m2;
    int i, k, mk;

    pi = s * M_PI;
    for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
    {
        // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
        double sm = sin(0.5 * pi / m);
        auto v = complex_d{-2.0*sm*sm, -sin(pi / m)};
        auto w = complex_d{1.0, 0.0};
        for(i = 0;i < m;i++)
        {
            for(k = i;k < n;k += m2)
            {
                mk = k + m;
                auto t = w * cplx[mk];
                cplx[mk] = cplx[k] - t;
                cplx[k] = cplx[k] + t;
            }
            w += v*w;
        }
    }
}

// Performs a forward FFT.
void FftForward(const uint n, complex_d *inout)
{
    FftArrange(n, inout);
    FftSummation(n, 1.0, inout);
}

// Performs an inverse FFT.
void FftInverse(const uint n, complex_d *inout)
{
    FftArrange(n, inout);
    FftSummation(n, -1.0, inout);
    double f{1.0 / n};
    for(uint i{0};i < n;i++)
        inout[i] *= f;
}

/* Calculate the complex helical sequence (or discrete-time analytical signal)
 * of the given input using the Hilbert transform. Given the natural logarithm
 * of a signal's magnitude response, the imaginary components can be used as
 * the angles for minimum-phase reconstruction.
 */
static void Hilbert(const uint n, complex_d *inout)
{
    uint i;

    // Handle in-place operation.
    for(i = 0;i < n;i++)
        inout[i].imag(0.0);

    FftInverse(n, inout);
    for(i = 1;i < (n+1)/2;i++)
        inout[i] *= 2.0;
    /* Increment i if n is even. */
    i += (n&1)^1;
    for(;i < n;i++)
        inout[i] = complex_d{0.0, 0.0};
    FftForward(n, inout);
}

/* Calculate the magnitude response of the given input.  This is used in
 * place of phase decomposition, since the phase residuals are discarded for
 * minimum phase reconstruction.  The mirrored half of the response is also
 * discarded.
 */
void MagnitudeResponse(const uint n, const complex_d *in, double *out)
{
    const uint m = 1 + (n / 2);
    uint i;
    for(i = 0;i < m;i++)
        out[i] = std::max(std::abs(in[i]), EPSILON);
}

/* Apply a range limit (in dB) to the given magnitude response.  This is used
 * to adjust the effects of the diffuse-field average on the equalization
 * process.
 */
static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
{
    double halfLim;
    uint i, lower, upper;
    double ave;

    halfLim = limit / 2.0;
    // Convert the response to dB.
    for(i = 0;i < m;i++)
        out[i] = 20.0 * std::log10(in[i]);
    // Use six octaves to calculate the average magnitude of the signal.
    lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
    upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
    ave = 0.0;
    for(i = lower;i <= upper;i++)
        ave += out[i];
    ave /= upper - lower + 1;
    // Keep the response within range of the average magnitude.
    for(i = 0;i < m;i++)
        out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
    // Convert the response back to linear magnitude.
    for(i = 0;i < m;i++)
        out[i] = std::pow(10.0, out[i] / 20.0);
}

/* Reconstructs the minimum-phase component for the given magnitude response
 * of a signal.  This is equivalent to phase recomposition, sans the missing
 * residuals (which were discarded).  The mirrored half of the response is
 * reconstructed.
 */
static void MinimumPhase(const uint n, const double *in, complex_d *out)
{
    const uint m = 1 + (n / 2);
    std::vector<double> mags(n);

    uint i;
    for(i = 0;i < m;i++)
    {
        mags[i] = std::max(EPSILON, in[i]);
        out[i] = complex_d{std::log(mags[i]), 0.0};
    }
    for(;i < n;i++)
    {
        mags[i] = mags[n - i];
        out[i] = out[n - i];
    }
    Hilbert(n, out);
    // Remove any DC offset the filter has.
    mags[0] = EPSILON;
    for(i = 0;i < n;i++)
    {
        auto a = std::exp(complex_d{0.0, out[i].imag()});
        out[i] = complex_d{mags[i], 0.0} * a;
    }
}


/***************************
 *** Resampler functions ***
 ***************************/

/* This is the normalized cardinal sine (sinc) function.
 *
 *   sinc(x) = { 1,                   x = 0
 *             { sin(pi x) / (pi x),  otherwise.
 */
static double Sinc(const double x)
{
    if(std::abs(x) < EPSILON)
        return 1.0;
    return std::sin(M_PI * x) / (M_PI * x);
}

/* The zero-order modified Bessel function of the first kind, used for the
 * Kaiser window.
 *
 *   I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
 *          = sum_{k=0}^inf ((x / 2)^k / k!)^2
 */
static double BesselI_0(const double x)
{
    double term, sum, x2, y, last_sum;
    int k;

    // Start at k=1 since k=0 is trivial.
    term = 1.0;
    sum = 1.0;
    x2 = x/2.0;
    k = 1;

    // Let the integration converge until the term of the sum is no longer
    // significant.
    do {
        y = x2 / k;
        k++;
        last_sum = sum;
        term *= y * y;
        sum += term;
    } while(sum != last_sum);
    return sum;
}

/* Calculate a Kaiser window from the given beta value and a normalized k
 * [-1, 1].
 *
 *   w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B),  -1 <= k <= 1
 *          { 0,                              elsewhere.
 *
 * Where k can be calculated as:
 *
 *   k = i / l,         where -l <= i <= l.
 *
 * or:
 *
 *   k = 2 i / M - 1,   where 0 <= i <= M.
 */
static double Kaiser(const double b, const double k)
{
    if(!(k >= -1.0 && k <= 1.0))
        return 0.0;
    return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
}

// Calculates the greatest common divisor of a and b.
static uint Gcd(uint x, uint y)
{
    while(y > 0)
    {
        uint z{y};
        y = x % y;
        x = z;
    }
    return x;
}

/* Calculates the size (order) of the Kaiser window.  Rejection is in dB and
 * the transition width is normalized frequency (0.5 is nyquist).
 *
 *   M = { ceil((r - 7.95) / (2.285 2 pi f_t)),  r > 21
 *       { ceil(5.79 / 2 pi f_t),                r <= 21.
 *
 */
static uint CalcKaiserOrder(const double rejection, const double transition)
{
    double w_t = 2.0 * M_PI * transition;
    if(rejection > 21.0)
        return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
    return static_cast<uint>(std::ceil(5.79 / w_t));
}

// Calculates the beta value of the Kaiser window.  Rejection is in dB.
static double CalcKaiserBeta(const double rejection)
{
    if(rejection > 50.0)
        return 0.1102 * (rejection - 8.7);
    if(rejection >= 21.0)
        return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
               (0.07886 * (rejection - 21.0));
    return 0.0;
}

/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
 * width, beta, gain, and cutoff.  The point is specified in non-normalized
 * samples, from 0 to M, where M = (2 l + 1).
 *
 *   w(k) 2 p f_t sinc(2 f_t x)
 *
 *   x    -- centered sample index (i - l)
 *   k    -- normalized and centered window index (x / l)
 *   w(k) -- window function (Kaiser)
 *   p    -- gain compensation factor when sampling
 *   f_t  -- normalized center frequency (or cutoff; 0.5 is nyquist)
 */
static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
{
    return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
}

/* This is a polyphase sinc-filtered resampler.
 *
 *              Upsample                      Downsample
 *
 *              p/q = 3/2                     p/q = 3/5
 *
 *          M-+-+-+->                     M-+-+-+->
 *         -------------------+          ---------------------+
 *   p  s * f f f f|f|        |    p  s * f f f f f           |
 *   |  0 *   0 0 0|0|0       |    |  0 *   0 0 0 0|0|        |
 *   v  0 *     0 0|0|0 0     |    v  0 *     0 0 0|0|0       |
 *      s *       f|f|f f f   |       s *       f f|f|f f     |
 *      0 *        |0|0 0 0 0 |       0 *         0|0|0 0 0   |
 *         --------+=+--------+       0 *          |0|0 0 0 0 |
 *          d . d .|d|. d . d            ----------+=+--------+
 *                                        d . . . .|d|. . . .
 *          q->
 *                                        q-+-+-+->
 *
 *   P_f(i,j) = q i mod p + pj
 *   P_s(i,j) = floor(q i / p) - j
 *   d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
 *                   { f[P_f(i,j)] s[P_s(i,j)],  P_f(i,j) < M
 *                   { 0,                        P_f(i,j) >= M. }
 */

// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
// that's used to cut frequencies above the destination nyquist.
void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
{
    double cutoff, width, beta;
    uint gcd, l;
    int i;

    gcd = Gcd(srcRate, dstRate);
    rs->mP = dstRate / gcd;
    rs->mQ = srcRate / gcd;
    /* The cutoff is adjusted by half the transition width, so the transition
     * ends before the nyquist (0.5).  Both are scaled by the downsampling
     * factor.
     */
    if(rs->mP > rs->mQ)
    {
        cutoff = 0.475 / rs->mP;
        width = 0.05 / rs->mP;
    }
    else
    {
        cutoff = 0.475 / rs->mQ;
        width = 0.05 / rs->mQ;
    }
    // A rejection of -180 dB is used for the stop band. Round up when
    // calculating the left offset to avoid increasing the transition width.
    l = (CalcKaiserOrder(180.0, width)+1) / 2;
    beta = CalcKaiserBeta(180.0);
    rs->mM = l*2 + 1;
    rs->mL = l;
    rs->mF.resize(rs->mM);
    for(i = 0;i < (static_cast<int>(rs->mM));i++)
        rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i);
}

// Perform the upsample-filter-downsample resampling operation using a
// polyphase filter implementation.
void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
{
    const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
    std::vector<double> workspace;
    const double *f = rs->mF.data();
    uint j_f, j_s;
    double *work;
    uint i;

    if(outN == 0)
        return;

    // Handle in-place operation.
    if(in == out)
    {
        workspace.resize(outN);
        work = workspace.data();
    }
    else
        work = out;
    // Resample the input.
    for(i = 0;i < outN;i++)
    {
        double r = 0.0;
        // Input starts at l to compensate for the filter delay.  This will
        // drop any build-up from the first half of the filter.
        j_f = (l + (q * i)) % p;
        j_s = (l + (q * i)) / p;
        while(j_f < m)
        {
            // Only take input when 0 <= j_s < inN.  This single unsigned
            // comparison catches both cases.
            if(j_s < inN)
                r += f[j_f] * in[j_s];
            j_f += p;
            j_s--;
        }
        work[i] = r;
    }
    // Clean up after in-place operation.
    if(work != out)
    {
        for(i = 0;i < outN;i++)
            out[i] = work[i];
    }
}


/***************************
 *** File storage output ***
 ***************************/

// Write an ASCII string to a file.
static int WriteAscii(const char *out, FILE *fp, const char *filename)
{
    size_t len;

    len = strlen(out);
    if(fwrite(out, 1, len, fp) != len)
    {
        fclose(fp);
        fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
        return 0;
    }
    return 1;
}

// Write a binary value of the given byte order and byte size to a file,
// loading it from a 32-bit unsigned integer.
static int WriteBin4(const uint bytes, const uint32_t in, FILE *fp, const char *filename)
{
    uint8_t out[4];
    uint i;

    for(i = 0;i < bytes;i++)
        out[i] = (in>>(i*8)) & 0x000000FF;

    if(fwrite(out, 1, bytes, fp) != bytes)
    {
        fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
        return 0;
    }
    return 1;
}

// Store the OpenAL Soft HRTF data set.
static int StoreMhr(const HrirDataT *hData, const char *filename)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    uint n = hData->mIrPoints;
    FILE *fp;
    uint fi, ei, ai, i;
    uint dither_seed = 22222;

    if((fp=fopen(filename, "wb")) == nullptr)
    {
        fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename);
        return 0;
    }
    if(!WriteAscii(MHR_FORMAT, fp, filename))
        return 0;
    if(!WriteBin4(4, hData->mIrRate, fp, filename))
        return 0;
    if(!WriteBin4(1, static_cast<uint32_t>(hData->mSampleType), fp, filename))
        return 0;
    if(!WriteBin4(1, static_cast<uint32_t>(hData->mChannelType), fp, filename))
        return 0;
    if(!WriteBin4(1, hData->mIrPoints, fp, filename))
        return 0;
    if(!WriteBin4(1, hData->mFdCount, fp, filename))
        return 0;
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance));
        if(!WriteBin4(2, fdist, fp, filename))
            return 0;
        if(!WriteBin4(1, hData->mFds[fi].mEvCount, fp, filename))
            return 0;
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            if(!WriteBin4(1, hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
                return 0;
        }
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
                             ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
        const int bps = (hData->mSampleType == ST_S16) ? 2 :
                        ((hData->mSampleType == ST_S24) ? 3 : 0);

        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                double out[2 * MAX_TRUNCSIZE];

                TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
                if(hData->mChannelType == CT_STEREO)
                    TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
                for(i = 0;i < (channels * n);i++)
                {
                    int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
                    if(!WriteBin4(bps, static_cast<uint32_t>(v), fp, filename))
                        return 0;
                }
            }
        }
    }
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
                int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD));

                if(!WriteBin4(1, static_cast<uint32_t>(v), fp, filename))
                    return 0;
                if(hData->mChannelType == CT_STEREO)
                {
                    v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD));

                    if(!WriteBin4(1, static_cast<uint32_t>(v), fp, filename))
                        return 0;
                }
            }
        }
    }
    fclose(fp);
    return 1;
}


/***********************
 *** HRTF processing ***
 ***********************/

/* Balances the maximum HRIR magnitudes of multi-field data sets by
 * independently normalizing each field in relation to the overall maximum.
 * This is done to ignore distance attenuation.
 */
static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
{
    double maxMags[MAX_FD_COUNT];
    uint fi, ei, ai, ti, i;

    double maxMag{0.0};
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        maxMags[fi] = 0.0;

        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]);
                }
            }
        }

        maxMag = std::max(maxMags[fi], maxMag);
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        const double magFactor{maxMag / maxMags[fi]};

        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        azd->mIrs[ti][i] *= magFactor;
                }
            }
        }
    }
}

/* Calculate the contribution of each HRIR to the diffuse-field average based
 * on its coverage volume.  All volumes are centered at the spherical HRIR
 * coordinates and measured by extruded solid angle.
 */
static void CalculateDfWeights(const HrirDataT *hData, double *weights)
{
    double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
    double solidAngle, solidVolume;
    uint fi, ei;

    sum = 0.0;
    // The head radius acts as the limit for the inner radius.
    innerRa = hData->mRadius;
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        // Each volume ends half way between progressive field measurements.
        if((fi + 1) < hData->mFdCount)
            outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
        // The final volume has its limit extended to some practical value.
        // This is done to emphasize the far-field responses in the average.
        else
            outerRa = 10.0f;

        evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            // For each elevation, calculate the upper and lower limits of
            // the patch band.
            ev = hData->mFds[fi].mEvs[ei].mElevation;
            lowerEv = std::max(-M_PI / 2.0, ev - evs);
            upperEv = std::min(M_PI / 2.0, ev + evs);
            // Calculate the surface area of the patch band.
            solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv));
            // Then the volume of the extruded patch band.
            solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0;
            // Each weight is the volume of one extruded patch.
            weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount;
            // Sum the total coverage volume of the HRIRs for all fields.
            sum += solidAngle;
        }

        innerRa = outerRa;
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        // Normalize the weights given the total surface coverage for all
        // fields.
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
            weights[(fi * MAX_EV_COUNT) + ei] /= sum;
    }
}

/* Calculate the diffuse-field average from the given magnitude responses of
 * the HRIR set.  Weighting can be applied to compensate for the varying
 * coverage of each HRIR.  The final average can then be limited by the
 * specified magnitude range (in positive dB; 0.0 to skip).
 */
static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
{
    std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT);
    uint count, ti, fi, ei, i, ai;

    if(weighted)
    {
        // Use coverage weighting to calculate the average.
        CalculateDfWeights(hData, weights.data());
    }
    else
    {
        double weight;

        // If coverage weighting is not used, the weights still need to be
        // averaged by the number of existing HRIRs.
        count = hData->mIrCount;
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
                count -= hData->mFds[fi].mEvs[ei].mAzCount;
        }
        weight = 1.0 / count;

        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
                weights[(fi * MAX_EV_COUNT) + ei] = weight;
        }
    }
    for(ti = 0;ti < channels;ti++)
    {
        for(i = 0;i < m;i++)
            dfa[(ti * m) + i] = 0.0;
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
            {
                for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
                {
                    HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                    // Get the weight for this HRIR's contribution.
                    double weight = weights[(fi * MAX_EV_COUNT) + ei];

                    // Add this HRIR's weighted power average to the total.
                    for(i = 0;i < m;i++)
                        dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
                }
            }
        }
        // Finish the average calculation and keep it from being too small.
        for(i = 0;i < m;i++)
            dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON);
        // Apply a limit to the magnitude range of the diffuse-field average
        // if desired.
        if(limit > 0.0)
            LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
    }
}

// Perform diffuse-field equalization on the magnitude responses of the HRIR
// set using the given average response.
static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
{
    uint ti, fi, ei, ai, i;

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        azd->mIrs[ti][i] /= dfa[(ti * m) + i];
                }
            }
        }
    }
}

/* Perform minimum-phase reconstruction using the magnitude responses of the
 * HRIR set. Work is delegated to this struct, which runs asynchronously on one
 * or more threads (sharing the same reconstructor object).
 */
struct HrirReconstructor {
    std::vector<double*> mIrs;
    std::atomic<size_t> mCurrent;
    std::atomic<size_t> mDone;
    size_t mFftSize;
    size_t mIrPoints;

    void Worker()
    {
        auto h = std::vector<complex_d>(mFftSize);

        while(1)
        {
            /* Load the current index to process. */
            size_t idx{mCurrent.load()};
            do {
                /* If the index is at the end, we're done. */
                if(idx >= mIrs.size())
                    return;
                /* Otherwise, increment the current index atomically so other
                 * threads know to go to the next one. If this call fails, the
                 * current index was just changed by another thread and the new
                 * value is loaded into idx, which we'll recheck.
                 */
            } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));

            /* Now do the reconstruction, and apply the inverse FFT to get the
             * time-domain response.
             */
            MinimumPhase(mFftSize, mIrs[idx], h.data());
            FftInverse(mFftSize, h.data());
            for(size_t i{0u};i < mIrPoints;++i)
                mIrs[idx][i] = h[i].real();

            /* Increment the number of IRs done. */
            mDone.fetch_add(1);
        }
    }
};

static void ReconstructHrirs(const HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};

    /* Count the number of IRs to process (excluding elevations that will be
     * synthesized later).
     */
    size_t total{hData->mIrCount};
    for(uint fi{0u};fi < hData->mFdCount;fi++)
    {
        for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
            total -= hData->mFds[fi].mEvs[ei].mAzCount;
    }
    total *= channels;

    /* Set up the reconstructor with the needed size info and pointers to the
     * IRs to process.
     */
    HrirReconstructor reconstructor;
    reconstructor.mIrs.reserve(total);
    reconstructor.mCurrent.store(0, std::memory_order_relaxed);
    reconstructor.mDone.store(0, std::memory_order_relaxed);
    reconstructor.mFftSize = hData->mFftSize;
    reconstructor.mIrPoints = hData->mIrPoints;
    for(uint fi{0u};fi < hData->mFdCount;fi++)
    {
        const HrirFdT &field = hData->mFds[fi];
        for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
        {
            const HrirEvT &elev = field.mEvs[ei];
            for(uint ai{0u};ai < elev.mAzCount;ai++)
            {
                const HrirAzT &azd = elev.mAzs[ai];
                for(uint ti{0u};ti < channels;ti++)
                    reconstructor.mIrs.push_back(azd.mIrs[ti]);
            }
        }
    }

    /* Launch two threads to work on reconstruction. */
    std::thread thrd1{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
    std::thread thrd2{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};

    /* Keep track of the number of IRs done, periodically reporting it. */
    size_t count;
    while((count=reconstructor.mDone.load()) != total)
    {
        size_t pcdone{count * 100 / total};

        printf("\r%3zu%% done (%zu of %zu)", pcdone, count, total);
        fflush(stdout);

        std::this_thread::sleep_for(std::chrono::milliseconds{50});
    }
    size_t pcdone{count * 100 / total};
    printf("\r%3zu%% done (%zu of %zu)\n", pcdone, count, total);

    if(thrd2.joinable()) thrd2.join();
    if(thrd1.joinable()) thrd1.join();
}

// Resamples the HRIRs for use at the given sampling rate.
static void ResampleHrirs(const uint rate, HrirDataT *hData)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    uint n = hData->mIrPoints;
    uint ti, fi, ei, ai;
    ResamplerT rs;

    ResamplerSetup(&rs, hData->mIrRate, rate);
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                    ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
            }
        }
    }
    hData->mIrRate = rate;
}

/* Given field and elevation indices and an azimuth, calculate the indices of
 * the two HRIRs that bound the coordinate along with a factor for
 * calculating the continuous HRIR using interpolation.
 */
static void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af)
{
    double f{(2.0*M_PI + az) * field.mEvs[ei].mAzCount / (2.0*M_PI)};
    uint i{static_cast<uint>(f) % field.mEvs[ei].mAzCount};

    f -= std::floor(f);
    *a0 = i;
    *a1 = (i + 1) % field.mEvs[ei].mAzCount;
    *af = f;
}

/* Synthesize any missing onset timings at the bottom elevations of each field.
 * This just mirrors some top elevations for the bottom, and blends the
 * remaining elevations (not an accurate model).
 */
static void SynthesizeOnsets(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};

    auto proc_field = [channels](HrirFdT &field) -> void
    {
        /* Get the starting elevation from the measurements, and use it as the
         * upper elevation limit for what needs to be calculated.
         */
        const uint upperElevReal{field.mEvStart};
        if(upperElevReal <= 0) return;

        /* Get the lowest half of the missing elevations' delays by mirroring
         * the top elevation delays. The responses are on a spherical grid
         * centered between the ears, so these should align.
         */
        uint ei{};
        if(channels > 1)
        {
            /* Take the polar opposite position of the desired measurement and
             * swap the ears.
             */
            field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[1];
            field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
            for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
            {
                const uint topElev{field.mEvCount-ei-1};

                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    /* Rotate this current azimuth by a half-circle, and lookup
                     * the mirrored elevation to find the indices for the polar
                     * opposite position (may need blending).
                     */
                    const double az{field.mEvs[ei].mAzs[ai].mAzimuth + M_PI};
                    CalcAzIndices(field, topElev, az, &a0, &a1, &af);

                    /* Blend the delays, and again, swap the ears. */
                    field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[1],
                        field.mEvs[topElev].mAzs[a1].mDelays[1], af);
                    field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[0],
                        field.mEvs[topElev].mAzs[a1].mDelays[0], af);
                }
            }
        }
        else
        {
            field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
            for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
            {
                const uint topElev{field.mEvCount-ei-1};

                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    /* For mono data sets, mirror the azimuth front<->back
                     * since the other ear is a mirror of what we have (e.g.
                     * the left ear's back-left is simulated with the right
                     * ear's front-right, which uses the left ear's front-left
                     * measurement).
                     */
                    double az{field.mEvs[ei].mAzs[ai].mAzimuth};
                    if(az <= M_PI) az = M_PI - az;
                    else az = (M_PI*2.0)-az + M_PI;
                    CalcAzIndices(field, topElev, az, &a0, &a1, &af);

                    field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[0],
                        field.mEvs[topElev].mAzs[a1].mDelays[0], af);
                }
            }
        }
        /* Record the lowest elevation filled in with the mirrored top. */
        const uint lowerElevFake{ei-1u};

        /* Fill in the remaining delays using bilinear interpolation. This
         * helps smooth the transition back to the real delays.
         */
        for(;ei < upperElevReal;++ei)
        {
            const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) /
                (field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)};

            for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
            {
                uint a0, a1, a2, a3;
                double af0, af1;

                double az{field.mEvs[ei].mAzs[ai].mAzimuth};
                CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0);
                CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1);
                double blend[4]{
                    (1.0-ef) * (1.0-af0),
                    (1.0-ef) * (    af0),
                    (    ef) * (1.0-af1),
                    (    ef) * (    af1)
                };

                for(uint ti{0u};ti < channels;ti++)
                {
                    field.mEvs[ei].mAzs[ai].mDelays[ti] =
                        field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] +
                        field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] +
                        field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] +
                        field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3];
                }
            }
        }
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
}

/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
 * field.  Right now this just blends the lowest elevation HRIRs together and
 * applies some attenuation and high frequency damping.  It is a simple, if
 * inaccurate model.
 */
static void SynthesizeHrirs(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
    const uint irSize{hData->mIrPoints};
    const double beta{3.5e-6 * hData->mIrRate};

    auto proc_field = [channels,irSize,beta](HrirFdT &field) -> void
    {
        const uint oi{field.mEvStart};
        if(oi <= 0) return;

        for(uint ti{0u};ti < channels;ti++)
        {
            for(uint i{0u};i < irSize;i++)
                field.mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
            /* Blend the lowest defined elevation's responses for an average
             * -90 degree elevation response.
             */
            double blend_count{0.0};
            for(uint ai{0u};ai < field.mEvs[oi].mAzCount;ai++)
            {
                /* Only include the left responses for the left ear, and the
                 * right responses for the right ear. This removes the cross-
                 * talk that shouldn't exist for the -90 degree elevation
                 * response (and would be mistimed anyway). NOTE: Azimuth goes
                 * from 0...2pi rather than -pi...+pi (0 in front, clockwise).
                 */
                if(std::abs(field.mEvs[oi].mAzs[ai].mAzimuth) < EPSILON ||
                   (ti == LeftChannel && field.mEvs[oi].mAzs[ai].mAzimuth > M_PI-EPSILON) ||
                   (ti == RightChannel && field.mEvs[oi].mAzs[ai].mAzimuth < M_PI+EPSILON))
                {
                    for(uint i{0u};i < irSize;i++)
                        field.mEvs[0].mAzs[0].mIrs[ti][i] += field.mEvs[oi].mAzs[ai].mIrs[ti][i];
                    blend_count += 1.0;
                }
            }
            if(blend_count > 0.0)
            {
                for(uint i{0u};i < irSize;i++)
                    field.mEvs[0].mAzs[0].mIrs[ti][i] /= blend_count;
            }

            for(uint ei{1u};ei < field.mEvStart;ei++)
            {
                const double of{static_cast<double>(ei) / field.mEvStart};
                const double b{(1.0 - of) * beta};
                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
                    double lp[4]{};
                    for(uint i{0u};i < irSize;i++)
                    {
                        /* Blend the two defined HRIRs closest to this azimuth,
                         * then blend that with the synthesized -90 elevation.
                         */
                        const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
                            field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)};
                        const double s0{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)};
                        /* Apply a low-pass to simulate body occlusion. */
                        lp[0] = Lerp(s0, lp[0], b);
                        lp[1] = Lerp(lp[0], lp[1], b);
                        lp[2] = Lerp(lp[1], lp[2], b);
                        lp[3] = Lerp(lp[2], lp[3], b);
                        field.mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
                    }
                }
            }
            const double b{beta};
            double lp[4]{};
            for(uint i{0u};i < irSize;i++)
            {
                const double s0{field.mEvs[0].mAzs[0].mIrs[ti][i]};
                lp[0] = Lerp(s0, lp[0], b);
                lp[1] = Lerp(lp[0], lp[1], b);
                lp[2] = Lerp(lp[1], lp[2], b);
                lp[3] = Lerp(lp[2], lp[3], b);
                field.mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
            }
        }
        field.mEvStart = 0;
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
}

// The following routines assume a full set of HRIRs for all elevations.

// Normalize the HRIR set and slightly attenuate the result.
static void NormalizeHrirs(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
    const uint irSize{hData->mIrPoints};

    /* Find the maximum amplitude and RMS out of all the IRs. */
    struct LevelPair { double amp, rms; };
    auto proc0_field = [channels,irSize](const LevelPair levels, const HrirFdT &field) -> LevelPair
    {
        auto proc_elev = [channels,irSize](const LevelPair levels, const HrirEvT &elev) -> LevelPair
        {
            auto proc_azi = [channels,irSize](const LevelPair levels, const HrirAzT &azi) -> LevelPair
            {
                auto proc_channel = [irSize](const LevelPair levels, const double *ir) -> LevelPair
                {
                    /* Calculate the peak amplitude and RMS of this IR. */
                    auto current = std::accumulate(ir, ir+irSize, LevelPair{0.0, 0.0},
                        [](const LevelPair current, const double impulse) -> LevelPair
                        {
                            return LevelPair{std::max(std::abs(impulse), current.amp),
                                current.rms + impulse*impulse};
                        });
                    current.rms = std::sqrt(current.rms / irSize);

                    /* Accumulate levels by taking the maximum amplitude and RMS. */
                    return LevelPair{std::max(current.amp, levels.amp),
                        std::max(current.rms, levels.rms)};
                };
                return std::accumulate(azi.mIrs, azi.mIrs+channels, levels, proc_channel);
            };
            return std::accumulate(elev.mAzs, elev.mAzs+elev.mAzCount, levels, proc_azi);
        };
        return std::accumulate(field.mEvs, field.mEvs+field.mEvCount, levels, proc_elev);
    };
    const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount,
        LevelPair{0.0, 0.0}, proc0_field);

    /* Normalize using the maximum RMS of the HRIRs. The RMS measure for the
     * non-filtered signal is of an impulse with equal length (to the filter):
     *
     * rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n)
     *             = sqrt(1 / n)
     *
     * This helps keep a more consistent volume between the non-filtered signal
     * and various data sets.
     */
    double factor{std::sqrt(1.0 / irSize) / maxlev.rms};

    /* Also ensure the samples themselves won't clip. */
    factor = std::min(factor, 0.99/maxlev.amp);

    /* Now scale all IRs by the given factor. */
    auto proc1_field = [channels,irSize,factor](HrirFdT &field) -> void
    {
        auto proc_elev = [channels,irSize,factor](HrirEvT &elev) -> void
        {
            auto proc_azi = [channels,irSize,factor](HrirAzT &azi) -> void
            {
                auto proc_channel = [irSize,factor](double *ir) -> void
                {
                    std::transform(ir, ir+irSize, ir,
                        std::bind(std::multiplies<double>{}, _1, factor));
                };
                std::for_each(azi.mIrs, azi.mIrs+channels, proc_channel);
            };
            std::for_each(elev.mAzs, elev.mAzs+elev.mAzCount, proc_azi);
        };
        std::for_each(field.mEvs, field.mEvs+field.mEvCount, proc_elev);
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc1_field);
}

// Calculate the left-ear time delay using a spherical head model.
static double CalcLTD(const double ev, const double az, const double rad, const double dist)
{
    double azp, dlp, l, al;

    azp = std::asin(std::cos(ev) * std::sin(az));
    dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
    l = std::sqrt((dist*dist) - (rad*rad));
    al = (0.5 * M_PI) + azp;
    if(dlp > l)
        dlp = l + (rad * (al - std::acos(rad / dist)));
    return dlp / 343.3;
}

// Calculate the effective head-related time delays for each minimum-phase
// HRIR. This is done per-field since distance delay is ignored.
static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    double customRatio{radius / hData->mRadius};
    uint ti, fi, ei, ai;

    if(model == HM_SPHERE)
    {
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
            {
                HrirEvT *evd = &hData->mFds[fi].mEvs[ei];

                for(ai = 0;ai < evd->mAzCount;ai++)
                {
                    HrirAzT *azd = &evd->mAzs[ai];

                    for(ti = 0;ti < channels;ti++)
                        azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
                }
            }
        }
    }
    else if(customRatio != 1.0)
    {
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
            {
                HrirEvT *evd = &hData->mFds[fi].mEvs[ei];

                for(ai = 0;ai < evd->mAzCount;ai++)
                {
                    HrirAzT *azd = &evd->mAzs[ai];
                    for(ti = 0;ti < channels;ti++)
                        azd->mDelays[ti] *= customRatio;
                }
            }
        }
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        double minHrtd{std::numeric_limits<double>::infinity()};
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                for(ti = 0;ti < channels;ti++)
                    minHrtd = std::min(azd->mDelays[ti], minHrtd);
            }
        }

        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ti = 0;ti < channels;ti++)
            {
                for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
                    hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
            }
        }
    }
}

// Allocate and configure dynamic HRIR structures.
int PrepareHrirData(const uint fdCount, const double (&distances)[MAX_FD_COUNT],
    const uint (&evCounts)[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT],
    HrirDataT *hData)
{
    uint evTotal = 0, azTotal = 0, fi, ei, ai;

    for(fi = 0;fi < fdCount;fi++)
    {
        evTotal += evCounts[fi];
        for(ei = 0;ei < evCounts[fi];ei++)
            azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
    }
    if(!fdCount || !evTotal || !azTotal)
        return 0;

    hData->mEvsBase.resize(evTotal);
    hData->mAzsBase.resize(azTotal);
    hData->mFds.resize(fdCount);
    hData->mIrCount = azTotal;
    hData->mFdCount = fdCount;
    evTotal = 0;
    azTotal = 0;
    for(fi = 0;fi < fdCount;fi++)
    {
        hData->mFds[fi].mDistance = distances[fi];
        hData->mFds[fi].mEvCount = evCounts[fi];
        hData->mFds[fi].mEvStart = 0;
        hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal];
        evTotal += evCounts[fi];
        for(ei = 0;ei < evCounts[fi];ei++)
        {
            uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];

            hData->mFds[fi].mIrCount += azCount;
            hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
            hData->mFds[fi].mEvs[ei].mIrCount += azCount;
            hData->mFds[fi].mEvs[ei].mAzCount = azCount;
            hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal];
            for(ai = 0;ai < azCount;ai++)
            {
                hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr;
            }
            azTotal += azCount;
        }
    }
    return 1;
}


/* Parse the data set definition and process the source data, storing the
 * resulting data set as desired.  If the input name is NULL it will read
 * from standard input.
 */
static int ProcessDefinition(const char *inName, const uint outRate, const ChannelModeT chanMode, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
{
    char rateStr[8+1], expName[MAX_PATH_LEN];
    char startbytes[4]{};
    size_t startbytecount{0u};
    HrirDataT hData;
    FILE *fp;
    int ret;

    if(!inName)
    {
        inName = "stdin";
        fp = stdin;
    }
    else
    {
        fp = fopen(inName, "r");
        if(fp == nullptr)
        {
            fprintf(stderr, "Error: Could not open input file '%s'\n", inName);
            return 0;
        }

        startbytecount = fread(startbytes, 1, sizeof(startbytes), fp);
        if(startbytecount != sizeof(startbytes))
        {
            fclose(fp);
            fprintf(stderr, "Error: Could not read input file '%s'\n", inName);
            return 0;
        }

        if(startbytes[0] == '\x89' && startbytes[1] == 'H' && startbytes[2] == 'D' &&
           startbytes[3] == 'F')
        {
            fclose(fp);
            fp = nullptr;

            fprintf(stdout, "Reading HRTF data from %s...\n", inName);
            if(!LoadSofaFile(inName, fftSize, truncSize, chanMode, &hData))
                return 0;
        }
    }
    if(fp != nullptr)
    {
        fprintf(stdout, "Reading HRIR definition from %s...\n", inName);
        const bool success{LoadDefInput(fp, startbytes, startbytecount, inName, fftSize, truncSize,
            chanMode, &hData)};
        if(fp != stdin)
            fclose(fp);
        if(!success)
            return 0;
    }

    if(equalize)
    {
        uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
        uint m = 1 + hData.mFftSize / 2;
        std::vector<double> dfa(c * m);

        if(hData.mFdCount > 1)
        {
            fprintf(stdout, "Balancing field magnitudes...\n");
            BalanceFieldMagnitudes(&hData, c, m);
        }
        fprintf(stdout, "Calculating diffuse-field average...\n");
        CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data());
        fprintf(stdout, "Performing diffuse-field equalization...\n");
        DiffuseFieldEqualize(c, m, dfa.data(), &hData);
    }
    fprintf(stdout, "Performing minimum phase reconstruction...\n");
    ReconstructHrirs(&hData);
    if(outRate != 0 && outRate != hData.mIrRate)
    {
        fprintf(stdout, "Resampling HRIRs...\n");
        ResampleHrirs(outRate, &hData);
    }
    fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
    hData.mIrPoints = truncSize;
    fprintf(stdout, "Synthesizing missing elevations...\n");
    if(model == HM_DATASET)
        SynthesizeOnsets(&hData);
    SynthesizeHrirs(&hData);
    fprintf(stdout, "Normalizing final HRIRs...\n");
    NormalizeHrirs(&hData);
    fprintf(stdout, "Calculating impulse delays...\n");
    CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
    snprintf(rateStr, 8, "%u", hData.mIrRate);
    StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
    fprintf(stdout, "Creating MHR data set %s...\n", expName);
    ret = StoreMhr(&hData, expName);

    return ret;
}

static void PrintHelp(const char *argv0, FILE *ofile)
{
    fprintf(ofile, "Usage:  %s [<option>...]\n\n", argv0);
    fprintf(ofile, "Options:\n");
    fprintf(ofile, " -r <rate>       Change the data set sample rate to the specified value and\n");
    fprintf(ofile, "                 resample the HRIRs accordingly.\n");
    fprintf(ofile, " -m              Change the data set to mono, mirroring the left ear for the\n");
    fprintf(ofile, "                 right ear.\n");
    fprintf(ofile, " -f <points>     Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
    fprintf(ofile, " -e {on|off}     Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
    fprintf(ofile, " -s {on|off}     Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
    fprintf(ofile, " -l {<dB>|none}  Specify a limit to the magnitude range of the diffuse-field\n");
    fprintf(ofile, "                 average (default: %.2f).\n", DEFAULT_LIMIT);
    fprintf(ofile, " -w <points>     Specify the size of the truncation window that's applied\n");
    fprintf(ofile, "                 after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
    fprintf(ofile, " -d {dataset|    Specify the model used for calculating the head-delay timing\n");
    fprintf(ofile, "     sphere}     values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
    fprintf(ofile, " -c <radius>     Use a customized head radius measured to-ear in meters.\n");
    fprintf(ofile, " -i <filename>   Specify an HRIR definition file to use (defaults to stdin).\n");
    fprintf(ofile, " -o <filename>   Specify an output file. Use of '%%r' will be substituted with\n");
    fprintf(ofile, "                 the data set sample rate.\n");
}

// Standard command line dispatch.
int main(int argc, char *argv[])
{
    const char *inName = nullptr, *outName = nullptr;
    uint outRate, fftSize;
    int equalize, surface;
    char *end = nullptr;
    ChannelModeT chanMode;
    HeadModelT model;
    uint truncSize;
    double radius;
    double limit;
    int opt;

    GET_UNICODE_ARGS(&argc, &argv);

    if(argc < 2)
    {
        fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
        PrintHelp(argv[0], stdout);
        exit(EXIT_SUCCESS);
    }

    outName = "./oalsoft_hrtf_%r.mhr";
    outRate = 0;
    chanMode = CM_AllowStereo;
    fftSize = DEFAULT_FFTSIZE;
    equalize = DEFAULT_EQUALIZE;
    surface = DEFAULT_SURFACE;
    limit = DEFAULT_LIMIT;
    truncSize = DEFAULT_TRUNCSIZE;
    model = DEFAULT_HEAD_MODEL;
    radius = DEFAULT_CUSTOM_RADIUS;

    while((opt=getopt(argc, argv, "r:mf:e:s:l:w:d:c:e:i:o:h")) != -1)
    {
        switch(opt)
        {
        case 'r':
            outRate = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'm':
            chanMode = CM_ForceMono;
            break;

        case 'f':
            fftSize = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'e':
            if(strcmp(optarg, "on") == 0)
                equalize = 1;
            else if(strcmp(optarg, "off") == 0)
                equalize = 0;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 's':
            if(strcmp(optarg, "on") == 0)
                surface = 1;
            else if(strcmp(optarg, "off") == 0)
                surface = 0;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 'l':
            if(strcmp(optarg, "none") == 0)
                limit = 0.0;
            else
            {
                limit = strtod(optarg, &end);
                if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
                {
                    fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
                    exit(EXIT_FAILURE);
                }
            }
            break;

        case 'w':
            truncSize = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'd':
            if(strcmp(optarg, "dataset") == 0)
                model = HM_DATASET;
            else if(strcmp(optarg, "sphere") == 0)
                model = HM_SPHERE;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 'c':
            radius = strtod(optarg, &end);
            if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
                exit(EXIT_FAILURE);
            }
            break;

        case 'i':
            inName = optarg;
            break;

        case 'o':
            outName = optarg;
            break;

        case 'h':
            PrintHelp(argv[0], stdout);
            exit(EXIT_SUCCESS);

        default: /* '?' */
            PrintHelp(argv[0], stderr);
            exit(EXIT_FAILURE);
        }
    }

    int ret = ProcessDefinition(inName, outRate, chanMode, fftSize, equalize, surface, limit,
        truncSize, model, radius, outName);
    if(!ret) return -1;
    fprintf(stdout, "Operation completed.\n");

    return EXIT_SUCCESS;
}