1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
|
//$ nobt
/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com )
* Copyright (c) 2023 Christopher Robinson
*
* Based on original fortran 77 code from FFTPACKv4 from NETLIB
* (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber
* of NCAR, in 1985.
*
* As confirmed by the NCAR fftpack software curators, the following
* FFTPACKv5 license applies to FFTPACKv4 sources. My changes are
* released under the same terms.
*
* FFTPACK license:
*
* http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
*
* Copyright (c) 2004 the University Corporation for Atmospheric
* Research ("UCAR"). All rights reserved. Developed by NCAR's
* Computational and Information Systems Laboratory, UCAR,
* www.cisl.ucar.edu.
*
* Redistribution and use of the Software in source and binary forms,
* with or without modification, is permitted provided that the
* following conditions are met:
*
* - Neither the names of NCAR's Computational and Information Systems
* Laboratory, the University Corporation for Atmospheric Research,
* nor the names of its sponsors or contributors may be used to
* endorse or promote products derived from this Software without
* specific prior written permission.
*
* - Redistributions of source code must retain the above copyright
* notices, this list of conditions, and the disclaimer below.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the disclaimer below in the
* documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
* SOFTWARE.
*
*
* PFFFT : a Pretty Fast FFT.
*
* This file is largerly based on the original FFTPACK implementation, modified
* in order to take advantage of SIMD instructions of modern CPUs.
*/
#include "pffft.h"
#include <array>
#include <assert.h>
#include <cmath>
#include <cstring>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "albit.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alspan.h"
#include "opthelpers.h"
namespace {
using uint = unsigned int;
#if defined(__GNUC__)
#define ALWAYS_INLINE(return_type) inline return_type __attribute__ ((always_inline))
#define NEVER_INLINE(return_type) return_type __attribute__ ((noinline))
#define RESTRICT __restrict
#elif defined(_MSC_VER)
#define ALWAYS_INLINE(return_type) __forceinline return_type
#define NEVER_INLINE(return_type) __declspec(noinline) return_type
#define RESTRICT __restrict
#else
#define ALWAYS_INLINE(return_type) inline return_type
#define NEVER_INLINE(return_type) return_type
#define RESTRICT
#endif
/* Vector support macros: the rest of the code is independent of
* SSE/Altivec/NEON -- adding support for other platforms with 4-element
* vectors should be limited to these macros
*/
/* Define PFFFT_SIMD_DISABLE if you want to use scalar code instead of SIMD code */
//#define PFFFT_SIMD_DISABLE
#ifndef PFFFT_SIMD_DISABLE
/*
* Altivec support macros
*/
#if defined(__ppc__) || defined(__ppc64__) || defined(__powerpc__) || defined(__powerpc64__)
typedef vector float v4sf;
#define SIMD_SZ 4
#define VZERO() ((vector float) vec_splat_u8(0))
#define VMUL(a,b) vec_madd(a,b, VZERO())
#define VADD(a,b) vec_add(a,b)
#define VMADD(a,b,c) vec_madd(a,b,c)
#define VSUB(a,b) vec_sub(a,b)
#define LD_PS1(p) vec_splats(p)
inline v4sf vset4(float a, float b, float c, float d)
{
/* There a more efficient way to do this? */
alignas(16) std::array<float,4> vals{{a, b, c, d}};
return vec_ld(0, vals.data());
}
#define VSET4 vset4
#define VINSERT0(v, a) vec_insert((a), (v), 0)
#define VEXTRACT0(v) vec_extract((v), 0)
#define INTERLEAVE2(in1, in2, out1, out2) do { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; } while(0)
#define UNINTERLEAVE2(in1, in2, out1, out2) do { \
vector unsigned char vperm1 = (vector unsigned char)(0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27); \
vector unsigned char vperm2 = (vector unsigned char)(4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31); \
v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \
} while(0)
#define VTRANSPOSE4(x0,x1,x2,x3) do { \
v4sf y0 = vec_mergeh(x0, x2); \
v4sf y1 = vec_mergel(x0, x2); \
v4sf y2 = vec_mergeh(x1, x3); \
v4sf y3 = vec_mergel(x1, x3); \
x0 = vec_mergeh(y0, y2); \
x1 = vec_mergel(y0, y2); \
x2 = vec_mergeh(y1, y3); \
x3 = vec_mergel(y1, y3); \
} while(0)
#define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char)(16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15))
#define VALIGNED(ptr) ((reinterpret_cast<uintptr_t>(ptr) & 0xF) == 0)
/*
* SSE1 support macros
*/
#elif defined(__x86_64__) || defined(__SSE__) || defined(_M_X64) || \
(defined(_M_IX86_FP) && _M_IX86_FP >= 1)
#include <xmmintrin.h>
typedef __m128 v4sf;
#define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors.
#define VZERO _mm_setzero_ps
#define VMUL _mm_mul_ps
#define VADD _mm_add_ps
#define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c)
#define VSUB _mm_sub_ps
#define LD_PS1 _mm_set1_ps
#define VSET4 _mm_setr_ps
#define VINSERT0(v, a) _mm_move_ss((v), _mm_set_ss(a))
#define VEXTRACT0 _mm_cvtss_f32
#define INTERLEAVE2(in1, in2, out1, out2) do { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; } while(0)
#define UNINTERLEAVE2(in1, in2, out1, out2) do { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; } while(0)
#define VTRANSPOSE4 _MM_TRANSPOSE4_PS
#define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0))
#define VALIGNED(ptr) ((reinterpret_cast<uintptr_t>(ptr) & 0xF) == 0)
/*
* ARM NEON support macros
*/
#elif defined(__ARM_NEON) || defined(__aarch64__) || defined(__arm64)
#include <arm_neon.h>
typedef float32x4_t v4sf;
#define SIMD_SZ 4
#define VZERO() vdupq_n_f32(0)
#define VMUL vmulq_f32
#define VADD vaddq_f32
#define VMADD(a,b,c) vmlaq_f32(c,a,b)
#define VSUB vsubq_f32
#define LD_PS1 vdupq_n_f32
inline v4sf vset4(float a, float b, float c, float d)
{
float32x4_t ret{vmovq_n_f32(a)};
ret = vsetq_lane_f32(b, ret, 1);
ret = vsetq_lane_f32(c, ret, 2);
ret = vsetq_lane_f32(d, ret, 3);
return ret;
}
#define VSET4 vset4
#define VINSERT0(v, a) vsetq_lane_f32((a), (v), 0)
#define VEXTRACT0(v) vgetq_lane_f32((v), 0)
#define INTERLEAVE2(in1, in2, out1, out2) do { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } while(0)
#define UNINTERLEAVE2(in1, in2, out1, out2) do { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } while(0)
#define VTRANSPOSE4(x0,x1,x2,x3) do { \
float32x4x2_t t0_ = vzipq_f32(x0, x2); \
float32x4x2_t t1_ = vzipq_f32(x1, x3); \
float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \
float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \
x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \
} while(0)
// marginally faster version
//#define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); }
#define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a))
#define VALIGNED(ptr) ((reinterpret_cast<uintptr_t>(ptr) & 0x3) == 0)
/*
* Generic GCC vector macros
*/
#elif defined(__GNUC__)
using v4sf [[gnu::vector_size(16), gnu::aligned(16)]] = float;
#define SIMD_SZ 4
#define VZERO() v4sf{0,0,0,0}
#define VMUL(a,b) ((a) * (b))
#define VADD(a,b) ((a) + (b))
#define VMADD(a,b,c) ((a)*(b) + (c))
#define VSUB(a,b) ((a) - (b))
constexpr v4sf ld_ps1(float a) noexcept { return v4sf{a, a, a, a}; }
#define LD_PS1 ld_ps1
#define VSET4(a, b, c, d) v4sf{(a), (b), (c), (d)}
constexpr v4sf vinsert0(v4sf v, float a) noexcept
{ return v4sf{a, v[1], v[2], v[3]}; }
#define VINSERT0 vinsert0
#define VEXTRACT0(v) ((v)[0])
[[gnu::always_inline]] inline v4sf unpacklo(v4sf a, v4sf b) noexcept
{ return v4sf{a[0], b[0], a[1], b[1]}; }
[[gnu::always_inline]] inline v4sf unpackhi(v4sf a, v4sf b) noexcept
{ return v4sf{a[2], b[2], a[3], b[3]}; }
[[gnu::always_inline]] inline void interleave2(v4sf in1, v4sf in2, v4sf &out1, v4sf &out2) noexcept
{
v4sf tmp__{unpacklo(in1, in2)};
out2 = unpackhi(in1, in2);
out1 = tmp__;
}
#define INTERLEAVE2 interleave2
[[gnu::always_inline]] inline void uninterleave2(v4sf in1, v4sf in2, v4sf &out1, v4sf &out2) noexcept
{
v4sf tmp__{in1[0], in1[2], in2[0], in2[2]};
out2 = v4sf{in1[1], in1[3], in2[1], in2[3]};
out1 = tmp__;
}
#define UNINTERLEAVE2 uninterleave2
[[gnu::always_inline]] inline void vtranspose4(v4sf &x0, v4sf &x1, v4sf &x2, v4sf &x3) noexcept
{
v4sf tmp0{unpacklo(x0, x1)};
v4sf tmp2{unpacklo(x2, x3)};
v4sf tmp1{unpackhi(x0, x1)};
v4sf tmp3{unpackhi(x2, x3)};
x0 = v4sf{tmp0[0], tmp0[1], tmp2[0], tmp2[1]};
x1 = v4sf{tmp0[2], tmp0[3], tmp2[2], tmp2[3]};
x2 = v4sf{tmp1[0], tmp1[1], tmp3[0], tmp3[1]};
x3 = v4sf{tmp1[2], tmp1[3], tmp3[2], tmp3[3]};
}
#define VTRANSPOSE4 vtranspose4
[[gnu::always_inline]] inline v4sf vswaphl(v4sf a, v4sf b) noexcept
{ return v4sf{b[0], b[1], a[2], a[3]}; }
#define VSWAPHL vswaphl
#define VALIGNED(ptr) ((reinterpret_cast<uintptr_t>(ptr) & 0xF) == 0)
#else
#warning "building with simd disabled !\n";
#define PFFFT_SIMD_DISABLE // fallback to scalar code
#endif
#endif /* PFFFT_SIMD_DISABLE */
// fallback mode for situations where SIMD is not available, use scalar mode instead
#ifdef PFFFT_SIMD_DISABLE
typedef float v4sf;
#define SIMD_SZ 1
#define VZERO() 0.f
#define VMUL(a,b) ((a)*(b))
#define VADD(a,b) ((a)+(b))
#define VMADD(a,b,c) ((a)*(b)+(c))
#define VSUB(a,b) ((a)-(b))
#define LD_PS1(p) (p)
#define VALIGNED(ptr) ((reinterpret_cast<uintptr_t>(ptr) & 0x3) == 0)
#endif
// shortcuts for complex multiplications
#define VCPLXMUL(ar,ai,br,bi) do { v4sf tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMADD(ai,br,tmp); } while(0)
#define VCPLXMULCONJ(ar,ai,br,bi) do { v4sf tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VMADD(ai,bi,ar); ai=VSUB(VMUL(ai,br),tmp); } while(0)
#if !defined(PFFFT_SIMD_DISABLE)
#define assertv4(v,f0,f1,f2,f3) assert(v##_f[0] == (f0) && v##_f[1] == (f1) && v##_f[2] == (f2) && v##_f[3] == (f3))
/* detect bugs with the vector support macros */
[[maybe_unused]] void validate_pffft_simd()
{
using float4 = std::array<float,4>;
static constexpr float f[16]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
float4 a0_f, a1_f, a2_f, a3_f, t_f, u_f;
v4sf a0_v, a1_v, a2_v, a3_v, t_v, u_v;
std::memcpy(&a0_v, f, 4*sizeof(float));
std::memcpy(&a1_v, f+4, 4*sizeof(float));
std::memcpy(&a2_v, f+8, 4*sizeof(float));
std::memcpy(&a3_v, f+12, 4*sizeof(float));
t_v = VZERO(); t_f = al::bit_cast<float4>(t_v);
printf("VZERO=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]); assertv4(t, 0, 0, 0, 0);
t_v = VADD(a1_v, a2_v); t_f = al::bit_cast<float4>(t_v);
printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]); assertv4(t, 12, 14, 16, 18);
t_v = VMUL(a1_v, a2_v); t_f = al::bit_cast<float4>(t_v);
printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]); assertv4(t, 32, 45, 60, 77);
t_v = VMADD(a1_v, a2_v,a0_v); t_f = al::bit_cast<float4>(t_v);
printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]); assertv4(t, 32, 46, 62, 80);
INTERLEAVE2(a1_v,a2_v,t_v,u_v); t_f = al::bit_cast<float4>(t_v); u_f = al::bit_cast<float4>(u_v);
printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3], u_f[0], u_f[1], u_f[2], u_f[3]);
assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11);
UNINTERLEAVE2(a1_v,a2_v,t_v,u_v); t_f = al::bit_cast<float4>(t_v); u_f = al::bit_cast<float4>(u_v);
printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3], u_f[0], u_f[1], u_f[2], u_f[3]);
assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11);
t_v=LD_PS1(f[15]); t_f = al::bit_cast<float4>(t_v);
printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]);
assertv4(t, 15, 15, 15, 15);
t_v = VSWAPHL(a1_v, a2_v); t_f = al::bit_cast<float4>(t_v);
printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t_f[0], t_f[1], t_f[2], t_f[3]);
assertv4(t, 8, 9, 6, 7);
VTRANSPOSE4(a0_v, a1_v, a2_v, a3_v);
a0_f = al::bit_cast<float4>(a0_v);
a1_f = al::bit_cast<float4>(a1_v);
a2_f = al::bit_cast<float4>(a2_v);
a3_f = al::bit_cast<float4>(a3_v);
printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n",
a0_f[0], a0_f[1], a0_f[2], a0_f[3], a1_f[0], a1_f[1], a1_f[2], a1_f[3],
a2_f[0], a2_f[1], a2_f[2], a2_f[3], a3_f[0], a3_f[1], a3_f[2], a3_f[3]);
assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15);
}
#endif //!PFFFT_SIMD_DISABLE
/* SSE and co like 16-bytes aligned pointers */
#define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines...
/*
passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2
*/
NEVER_INLINE(void) passf2_ps(const size_t ido, const size_t l1, const v4sf *cc, v4sf *ch,
const float *wa1, const float fsign)
{
const size_t l1ido{l1*ido};
if(ido <= 2)
{
for(size_t k{0};k < l1ido;k += ido, ch += ido, cc += 2*ido)
{
ch[0] = VADD(cc[0], cc[ido+0]);
ch[l1ido] = VSUB(cc[0], cc[ido+0]);
ch[1] = VADD(cc[1], cc[ido+1]);
ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]);
}
}
else
{
const v4sf vsign{LD_PS1(fsign)};
for(size_t k{0};k < l1ido;k += ido, ch += ido, cc += 2*ido)
{
for(size_t i{0};i < ido-1;i += 2)
{
v4sf tr2{VSUB(cc[i+0], cc[i+ido+0])};
v4sf ti2{VSUB(cc[i+1], cc[i+ido+1])};
v4sf wr{LD_PS1(wa1[i])}, wi{VMUL(vsign, LD_PS1(wa1[i+1]))};
ch[i] = VADD(cc[i+0], cc[i+ido+0]);
ch[i+1] = VADD(cc[i+1], cc[i+ido+1]);
VCPLXMUL(tr2, ti2, wr, wi);
ch[i+l1ido] = tr2;
ch[i+l1ido+1] = ti2;
}
}
}
}
/*
passf3 and passb3 has been merged here, fsign = -1 for passf3, +1 for passb3
*/
NEVER_INLINE(void) passf3_ps(const size_t ido, const size_t l1, const v4sf *cc, v4sf *ch,
const float *wa1, const float *wa2, const float fsign)
{
assert(ido > 2);
const v4sf taur{LD_PS1(-0.5f)};
const v4sf taui{LD_PS1(0.866025403784439f*fsign)};
const size_t l1ido{l1*ido};
for(size_t k{0};k < l1ido;k += ido, cc += 3*ido, ch +=ido)
{
for(size_t i{0};i < ido-1;i += 2)
{
v4sf tr2{VADD(cc[i+ido], cc[i+2*ido])};
v4sf cr2{VADD(cc[i], VMUL(taur,tr2))};
ch[i] = VADD(cc[i], tr2);
v4sf ti2{VADD(cc[i+ido+1], cc[i+2*ido+1])};
v4sf ci2{VADD(cc[i +1], VMUL(taur,ti2))};
ch[i+1] = VADD(cc[i+1], ti2);
v4sf cr3{VMUL(taui, VSUB(cc[i+ido], cc[i+2*ido]))};
v4sf ci3{VMUL(taui, VSUB(cc[i+ido+1], cc[i+2*ido+1]))};
v4sf dr2{VSUB(cr2, ci3)};
v4sf dr3{VADD(cr2, ci3)};
v4sf di2{VADD(ci2, cr3)};
v4sf di3{VSUB(ci2, cr3)};
float wr1{wa1[i]}, wi1{fsign*wa1[i+1]}, wr2{wa2[i]}, wi2{fsign*wa2[i+1]};
VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
ch[i+l1ido] = dr2;
ch[i+l1ido + 1] = di2;
VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
ch[i+2*l1ido] = dr3;
ch[i+2*l1ido+1] = di3;
}
}
} /* passf3 */
NEVER_INLINE(void) passf4_ps(const size_t ido, const size_t l1, const v4sf *cc, v4sf *ch,
const float *wa1, const float *wa2, const float *wa3, const float fsign)
{
/* fsign == -1 for forward transform and +1 for backward transform */
const v4sf vsign{LD_PS1(fsign)};
const size_t l1ido{l1*ido};
if(ido == 2)
{
for(size_t k{0};k < l1ido;k += ido, ch += ido, cc += 4*ido)
{
v4sf tr1{VSUB(cc[0], cc[2*ido + 0])};
v4sf tr2{VADD(cc[0], cc[2*ido + 0])};
v4sf ti1{VSUB(cc[1], cc[2*ido + 1])};
v4sf ti2{VADD(cc[1], cc[2*ido + 1])};
v4sf ti4{VMUL(VSUB(cc[1*ido + 0], cc[3*ido + 0]), vsign)};
v4sf tr4{VMUL(VSUB(cc[3*ido + 1], cc[1*ido + 1]), vsign)};
v4sf tr3{VADD(cc[ido + 0], cc[3*ido + 0])};
v4sf ti3{VADD(cc[ido + 1], cc[3*ido + 1])};
ch[0*l1ido + 0] = VADD(tr2, tr3);
ch[0*l1ido + 1] = VADD(ti2, ti3);
ch[1*l1ido + 0] = VADD(tr1, tr4);
ch[1*l1ido + 1] = VADD(ti1, ti4);
ch[2*l1ido + 0] = VSUB(tr2, tr3);
ch[2*l1ido + 1] = VSUB(ti2, ti3);
ch[3*l1ido + 0] = VSUB(tr1, tr4);
ch[3*l1ido + 1] = VSUB(ti1, ti4);
}
}
else
{
for(size_t k{0};k < l1ido;k += ido, ch+=ido, cc += 4*ido)
{
for(size_t i{0};i < ido-1;i+=2)
{
v4sf tr1{VSUB(cc[i + 0], cc[i + 2*ido + 0])};
v4sf tr2{VADD(cc[i + 0], cc[i + 2*ido + 0])};
v4sf ti1{VSUB(cc[i + 1], cc[i + 2*ido + 1])};
v4sf ti2{VADD(cc[i + 1], cc[i + 2*ido + 1])};
v4sf tr4{VMUL(VSUB(cc[i + 3*ido + 1], cc[i + 1*ido + 1]), vsign)};
v4sf ti4{VMUL(VSUB(cc[i + 1*ido + 0], cc[i + 3*ido + 0]), vsign)};
v4sf tr3{VADD(cc[i + ido + 0], cc[i + 3*ido + 0])};
v4sf ti3{VADD(cc[i + ido + 1], cc[i + 3*ido + 1])};
ch[i] = VADD(tr2, tr3);
v4sf cr3{VSUB(tr2, tr3)};
ch[i + 1] = VADD(ti2, ti3);
v4sf ci3{VSUB(ti2, ti3)};
v4sf cr2{VADD(tr1, tr4)};
v4sf cr4{VSUB(tr1, tr4)};
v4sf ci2{VADD(ti1, ti4)};
v4sf ci4{VSUB(ti1, ti4)};
float wr1{wa1[i]}, wi1{fsign*wa1[i+1]};
VCPLXMUL(cr2, ci2, LD_PS1(wr1), LD_PS1(wi1));
float wr2{wa2[i]}, wi2{fsign*wa2[i+1]};
ch[i + l1ido] = cr2;
ch[i + l1ido + 1] = ci2;
VCPLXMUL(cr3, ci3, LD_PS1(wr2), LD_PS1(wi2));
float wr3{wa3[i]}, wi3{fsign*wa3[i+1]};
ch[i + 2*l1ido] = cr3;
ch[i + 2*l1ido + 1] = ci3;
VCPLXMUL(cr4, ci4, LD_PS1(wr3), LD_PS1(wi3));
ch[i + 3*l1ido] = cr4;
ch[i + 3*l1ido + 1] = ci4;
}
}
}
} /* passf4 */
/*
* passf5 and passb5 has been merged here, fsign = -1 for passf5, +1 for passb5
*/
NEVER_INLINE(void) passf5_ps(const size_t ido, const size_t l1, const v4sf *cc, v4sf *ch,
const float *wa1, const float *wa2, const float *wa3, const float *wa4, const float fsign)
{
const v4sf tr11{LD_PS1(0.309016994374947f)};
const v4sf tr12{LD_PS1(-0.809016994374947f)};
const v4sf ti11{LD_PS1(0.951056516295154f*fsign)};
const v4sf ti12{LD_PS1(0.587785252292473f*fsign)};
#define cc_ref(a_1,a_2) cc[(a_2-1)*ido + (a_1) + 1]
#define ch_ref(a_1,a_3) ch[(a_3-1)*l1*ido + (a_1) + 1]
assert(ido > 2);
for(size_t k{0};k < l1;++k, cc += 5*ido, ch += ido)
{
for(size_t i{0};i < ido-1;i += 2)
{
v4sf ti5{VSUB(cc_ref(i , 2), cc_ref(i , 5))};
v4sf ti2{VADD(cc_ref(i , 2), cc_ref(i , 5))};
v4sf ti4{VSUB(cc_ref(i , 3), cc_ref(i , 4))};
v4sf ti3{VADD(cc_ref(i , 3), cc_ref(i , 4))};
v4sf tr5{VSUB(cc_ref(i-1, 2), cc_ref(i-1, 5))};
v4sf tr2{VADD(cc_ref(i-1, 2), cc_ref(i-1, 5))};
v4sf tr4{VSUB(cc_ref(i-1, 3), cc_ref(i-1, 4))};
v4sf tr3{VADD(cc_ref(i-1, 3), cc_ref(i-1, 4))};
ch_ref(i-1, 1) = VADD(cc_ref(i-1, 1), VADD(tr2, tr3));
ch_ref(i , 1) = VADD(cc_ref(i , 1), VADD(ti2, ti3));
v4sf cr2{VADD(cc_ref(i-1, 1), VADD(VMUL(tr11, tr2),VMUL(tr12, tr3)))};
v4sf ci2{VADD(cc_ref(i , 1), VADD(VMUL(tr11, ti2),VMUL(tr12, ti3)))};
v4sf cr3{VADD(cc_ref(i-1, 1), VADD(VMUL(tr12, tr2),VMUL(tr11, tr3)))};
v4sf ci3{VADD(cc_ref(i , 1), VADD(VMUL(tr12, ti2),VMUL(tr11, ti3)))};
v4sf cr5{VADD(VMUL(ti11, tr5), VMUL(ti12, tr4))};
v4sf ci5{VADD(VMUL(ti11, ti5), VMUL(ti12, ti4))};
v4sf cr4{VSUB(VMUL(ti12, tr5), VMUL(ti11, tr4))};
v4sf ci4{VSUB(VMUL(ti12, ti5), VMUL(ti11, ti4))};
v4sf dr3{VSUB(cr3, ci4)};
v4sf dr4{VADD(cr3, ci4)};
v4sf di3{VADD(ci3, cr4)};
v4sf di4{VSUB(ci3, cr4)};
v4sf dr5{VADD(cr2, ci5)};
v4sf dr2{VSUB(cr2, ci5)};
v4sf di5{VSUB(ci2, cr5)};
v4sf di2{VADD(ci2, cr5)};
float wr1{wa1[i]}, wi1{fsign*wa1[i+1]}, wr2{wa2[i]}, wi2{fsign*wa2[i+1]};
float wr3{wa3[i]}, wi3{fsign*wa3[i+1]}, wr4{wa4[i]}, wi4{fsign*wa4[i+1]};
VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
ch_ref(i - 1, 2) = dr2;
ch_ref(i, 2) = di2;
VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
ch_ref(i - 1, 3) = dr3;
ch_ref(i, 3) = di3;
VCPLXMUL(dr4, di4, LD_PS1(wr3), LD_PS1(wi3));
ch_ref(i - 1, 4) = dr4;
ch_ref(i, 4) = di4;
VCPLXMUL(dr5, di5, LD_PS1(wr4), LD_PS1(wi4));
ch_ref(i - 1, 5) = dr5;
ch_ref(i, 5) = di5;
}
}
#undef ch_ref
#undef cc_ref
}
NEVER_INLINE(void) radf2_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc,
v4sf *RESTRICT ch, const float *wa1)
{
const size_t l1ido{l1*ido};
for(size_t k{0};k < l1ido;k += ido)
{
v4sf a{cc[k]}, b{cc[k + l1ido]};
ch[2*k] = VADD(a, b);
ch[2*(k+ido)-1] = VSUB(a, b);
}
if(ido < 2)
return;
if(ido != 2)
{
for(size_t k{0};k < l1ido;k += ido)
{
for(size_t i{2};i < ido;i += 2)
{
v4sf tr2{cc[i - 1 + k + l1ido]}, ti2{cc[i + k + l1ido]};
v4sf br{cc[i - 1 + k]}, bi{cc[i + k]};
VCPLXMULCONJ(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
ch[i + 2*k] = VADD(bi, ti2);
ch[2*(k+ido) - i] = VSUB(ti2, bi);
ch[i - 1 + 2*k] = VADD(br, tr2);
ch[2*(k+ido) - i -1] = VSUB(br, tr2);
}
}
if((ido&1) == 1)
return;
}
const v4sf minus_one{LD_PS1(-1.0f)};
for(size_t k{0};k < l1ido;k += ido)
{
ch[2*k + ido] = VMUL(minus_one, cc[ido-1 + k + l1ido]);
ch[2*k + ido-1] = cc[k + ido-1];
}
} /* radf2 */
NEVER_INLINE(void) radb2_ps(const size_t ido, const size_t l1, const v4sf *cc, v4sf *ch,
const float *wa1)
{
const size_t l1ido{l1*ido};
for(size_t k{0};k < l1ido;k += ido)
{
v4sf a{cc[2*k]};
v4sf b{cc[2*(k+ido) - 1]};
ch[k] = VADD(a, b);
ch[k + l1ido] = VSUB(a, b);
}
if(ido < 2)
return;
if(ido != 2)
{
for(size_t k{0};k < l1ido;k += ido)
{
for(size_t i{2};i < ido;i += 2)
{
v4sf a{cc[i-1 + 2*k]};
v4sf b{cc[2*(k + ido) - i - 1]};
v4sf c{cc[i+0 + 2*k]};
v4sf d{cc[2*(k + ido) - i + 0]};
ch[i-1 + k] = VADD(a, b);
v4sf tr2{VSUB(a, b)};
ch[i+0 + k] = VSUB(c, d);
v4sf ti2{VADD(c, d)};
VCPLXMUL(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
ch[i-1 + k + l1ido] = tr2;
ch[i+0 + k + l1ido] = ti2;
}
}
if((ido&1) == 1)
return;
}
const v4sf minus_two{LD_PS1(-2.0f)};
for(size_t k{0};k < l1ido;k += ido)
{
v4sf a{cc[2*k + ido-1]};
v4sf b{cc[2*k + ido]};
ch[k + ido-1] = VADD(a,a);
ch[k + ido-1 + l1ido] = VMUL(minus_two, b);
}
} /* radb2 */
void radf3_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
const float *wa1, const float *wa2)
{
const v4sf taur{LD_PS1(-0.5f)};
const v4sf taui{LD_PS1(0.866025403784439f)};
for(size_t k{0};k < l1;++k)
{
v4sf cr2{VADD(cc[(k + l1)*ido], cc[(k + 2*l1)*ido])};
ch[3*k*ido] = VADD(cc[k*ido], cr2);
ch[(3*k+2)*ido] = VMUL(taui, VSUB(cc[(k + l1*2)*ido], cc[(k + l1)*ido]));
ch[ido-1 + (3*k + 1)*ido] = VADD(cc[k*ido], VMUL(taur, cr2));
}
if(ido == 1)
return;
for(size_t k{0};k < l1;++k)
{
for(size_t i{2};i < ido;i += 2)
{
const size_t ic{ido - i};
v4sf wr1{LD_PS1(wa1[i - 2])};
v4sf wi1{LD_PS1(wa1[i - 1])};
v4sf dr2{cc[i - 1 + (k + l1)*ido]};
v4sf di2{cc[i + (k + l1)*ido]};
VCPLXMULCONJ(dr2, di2, wr1, wi1);
v4sf wr2{LD_PS1(wa2[i - 2])};
v4sf wi2{LD_PS1(wa2[i - 1])};
v4sf dr3{cc[i - 1 + (k + l1*2)*ido]};
v4sf di3{cc[i + (k + l1*2)*ido]};
VCPLXMULCONJ(dr3, di3, wr2, wi2);
v4sf cr2{VADD(dr2, dr3)};
v4sf ci2{VADD(di2, di3)};
ch[i - 1 + 3*k*ido] = VADD(cc[i - 1 + k*ido], cr2);
ch[i + 3*k*ido] = VADD(cc[i + k*ido], ci2);
v4sf tr2{VADD(cc[i - 1 + k*ido], VMUL(taur, cr2))};
v4sf ti2{VADD(cc[i + k*ido], VMUL(taur, ci2))};
v4sf tr3{VMUL(taui, VSUB(di2, di3))};
v4sf ti3{VMUL(taui, VSUB(dr3, dr2))};
ch[i - 1 + (3*k + 2)*ido] = VADD(tr2, tr3);
ch[ic - 1 + (3*k + 1)*ido] = VSUB(tr2, tr3);
ch[i + (3*k + 2)*ido] = VADD(ti2, ti3);
ch[ic + (3*k + 1)*ido] = VSUB(ti3, ti2);
}
}
} /* radf3 */
void radb3_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
const float *wa1, const float *wa2)
{
static constexpr float taur{-0.5f};
static constexpr float taui{0.866025403784439f};
static constexpr float taui_2{taui*2.0f};
const v4sf vtaur{LD_PS1(taur)};
const v4sf vtaui_2{LD_PS1(taui_2)};
for(size_t k{0};k < l1;++k)
{
v4sf tr2 = cc[ido-1 + (3*k + 1)*ido];
tr2 = VADD(tr2,tr2);
v4sf cr2 = VMADD(vtaur, tr2, cc[3*k*ido]);
ch[k*ido] = VADD(cc[3*k*ido], tr2);
v4sf ci3 = VMUL(vtaui_2, cc[(3*k + 2)*ido]);
ch[(k + l1)*ido] = VSUB(cr2, ci3);
ch[(k + 2*l1)*ido] = VADD(cr2, ci3);
}
if(ido == 1)
return;
const v4sf vtaui{LD_PS1(taui)};
for(size_t k{0};k < l1;++k)
{
for(size_t i{2};i < ido;i += 2)
{
const size_t ic{ido - i};
v4sf tr2{VADD(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido])};
v4sf cr2{VMADD(vtaur, tr2, cc[i - 1 + 3*k*ido])};
ch[i - 1 + k*ido] = VADD(cc[i - 1 + 3*k*ido], tr2);
v4sf ti2{VSUB(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido])};
v4sf ci2{VMADD(vtaur, ti2, cc[i + 3*k*ido])};
ch[i + k*ido] = VADD(cc[i + 3*k*ido], ti2);
v4sf cr3{VMUL(vtaui, VSUB(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]))};
v4sf ci3{VMUL(vtaui, VADD(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]))};
v4sf dr2{VSUB(cr2, ci3)};
v4sf dr3{VADD(cr2, ci3)};
v4sf di2{VADD(ci2, cr3)};
v4sf di3{VSUB(ci2, cr3)};
VCPLXMUL(dr2, di2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
ch[i - 1 + (k + l1)*ido] = dr2;
ch[i + (k + l1)*ido] = di2;
VCPLXMUL(dr3, di3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
ch[i - 1 + (k + 2*l1)*ido] = dr3;
ch[i + (k + 2*l1)*ido] = di3;
}
}
} /* radb3 */
NEVER_INLINE(void) radf4_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc,
v4sf *RESTRICT ch, const float *RESTRICT wa1, const float *RESTRICT wa2,
const float *RESTRICT wa3)
{
const size_t l1ido{l1*ido};
{
const v4sf *RESTRICT cc_{cc}, *RESTRICT cc_end{cc + l1ido};
v4sf *RESTRICT ch_{ch};
while(cc != cc_end)
{
// this loop represents between 25% and 40% of total radf4_ps cost !
v4sf a0{cc[0]}, a1{cc[l1ido]};
v4sf a2{cc[2*l1ido]}, a3{cc[3*l1ido]};
v4sf tr1{VADD(a1, a3)};
v4sf tr2{VADD(a0, a2)};
ch[2*ido-1] = VSUB(a0, a2);
ch[2*ido ] = VSUB(a3, a1);
ch[0 ] = VADD(tr1, tr2);
ch[4*ido-1] = VSUB(tr2, tr1);
cc += ido; ch += 4*ido;
}
cc = cc_;
ch = ch_;
}
if(ido < 2)
return;
if(ido != 2)
{
for(size_t k{0};k < l1ido;k += ido)
{
const v4sf *RESTRICT pc{cc + 1 + k};
for(size_t i{2};i < ido;i += 2, pc += 2)
{
const size_t ic{ido - i};
v4sf cr2{pc[1*l1ido+0]};
v4sf ci2{pc[1*l1ido+1]};
v4sf wr{LD_PS1(wa1[i - 2])};
v4sf wi{LD_PS1(wa1[i - 1])};
VCPLXMULCONJ(cr2,ci2,wr,wi);
v4sf cr3{pc[2*l1ido+0]};
v4sf ci3{pc[2*l1ido+1]};
wr = LD_PS1(wa2[i-2]);
wi = LD_PS1(wa2[i-1]);
VCPLXMULCONJ(cr3, ci3, wr, wi);
v4sf cr4{pc[3*l1ido]};
v4sf ci4{pc[3*l1ido+1]};
wr = LD_PS1(wa3[i-2]);
wi = LD_PS1(wa3[i-1]);
VCPLXMULCONJ(cr4, ci4, wr, wi);
/* at this point, on SSE, five of "cr2 cr3 cr4 ci2 ci3 ci4" should be loaded in registers */
v4sf tr1{VADD(cr2,cr4)};
v4sf tr4{VSUB(cr4,cr2)};
v4sf tr2{VADD(pc[0],cr3)};
v4sf tr3{VSUB(pc[0],cr3)};
ch[i - 1 + 4*k] = VADD(tr1,tr2);
ch[ic - 1 + 4*k + 3*ido] = VSUB(tr2,tr1); // at this point tr1 and tr2 can be disposed
v4sf ti1{VADD(ci2,ci4)};
v4sf ti4{VSUB(ci2,ci4)};
ch[i - 1 + 4*k + 2*ido] = VADD(ti4,tr3);
ch[ic - 1 + 4*k + 1*ido] = VSUB(tr3,ti4); // dispose tr3, ti4
v4sf ti2{VADD(pc[1],ci3)};
v4sf ti3{VSUB(pc[1],ci3)};
ch[i + 4*k] = VADD(ti1, ti2);
ch[ic + 4*k + 3*ido] = VSUB(ti1, ti2);
ch[i + 4*k + 2*ido] = VADD(tr4, ti3);
ch[ic + 4*k + 1*ido] = VSUB(tr4, ti3);
}
}
if((ido&1) == 1)
return;
}
const v4sf minus_hsqt2{LD_PS1(al::numbers::sqrt2_v<float> * -0.5f)};
for(size_t k{0};k < l1ido;k += ido)
{
v4sf a{cc[ido-1 + k + l1ido]}, b{cc[ido-1 + k + 3*l1ido]};
v4sf c{cc[ido-1 + k]}, d{cc[ido-1 + k + 2*l1ido]};
v4sf ti1{VMUL(minus_hsqt2, VADD(a, b))};
v4sf tr1{VMUL(minus_hsqt2, VSUB(b, a))};
ch[ido-1 + 4*k] = VADD(tr1, c);
ch[ido-1 + 4*k + 2*ido] = VSUB(c, tr1);
ch[4*k + 1*ido] = VSUB(ti1, d);
ch[4*k + 3*ido] = VADD(ti1, d);
}
} /* radf4 */
NEVER_INLINE(void) radb4_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc,
v4sf *RESTRICT ch, const float *RESTRICT wa1, const float *RESTRICT wa2,
const float *RESTRICT wa3)
{
const v4sf two{LD_PS1(2.0f)};
const size_t l1ido{l1*ido};
{
const v4sf *RESTRICT cc_{cc}, *RESTRICT ch_end{ch + l1ido};
v4sf *ch_{ch};
while(ch != ch_end)
{
v4sf a{cc[0]}, b{cc[4*ido-1]};
v4sf c{cc[2*ido]}, d{cc[2*ido-1]};
v4sf tr3{VMUL(two,d)};
v4sf tr2{VADD(a,b)};
v4sf tr1{VSUB(a,b)};
v4sf tr4{VMUL(two,c)};
ch[0*l1ido] = VADD(tr2, tr3);
ch[2*l1ido] = VSUB(tr2, tr3);
ch[1*l1ido] = VSUB(tr1, tr4);
ch[3*l1ido] = VADD(tr1, tr4);
cc += 4*ido; ch += ido;
}
cc = cc_; ch = ch_;
}
if(ido < 2)
return;
if(ido != 2)
{
for(size_t k{0};k < l1ido;k += ido)
{
const v4sf *RESTRICT pc{cc - 1 + 4*k};
v4sf *RESTRICT ph{ch + k + 1};
for(size_t i{2};i < ido;i += 2)
{
v4sf tr1{VSUB(pc[i], pc[4*ido - i])};
v4sf tr2{VADD(pc[i], pc[4*ido - i])};
v4sf ti4{VSUB(pc[2*ido + i], pc[2*ido - i])};
v4sf tr3{VADD(pc[2*ido + i], pc[2*ido - i])};
ph[0] = VADD(tr2, tr3);
v4sf cr3{VSUB(tr2, tr3)};
v4sf ti3{VSUB(pc[2*ido + i + 1], pc[2*ido - i + 1])};
v4sf tr4{VADD(pc[2*ido + i + 1], pc[2*ido - i + 1])};
v4sf cr2{VSUB(tr1, tr4)};
v4sf cr4{VADD(tr1, tr4)};
v4sf ti1{VADD(pc[i + 1], pc[4*ido - i + 1])};
v4sf ti2{VSUB(pc[i + 1], pc[4*ido - i + 1])};
ph[1] = VADD(ti2, ti3); ph += l1ido;
v4sf ci3{VSUB(ti2, ti3)};
v4sf ci2{VADD(ti1, ti4)};
v4sf ci4{VSUB(ti1, ti4)};
VCPLXMUL(cr2, ci2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
ph[0] = cr2;
ph[1] = ci2; ph += l1ido;
VCPLXMUL(cr3, ci3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
ph[0] = cr3;
ph[1] = ci3; ph += l1ido;
VCPLXMUL(cr4, ci4, LD_PS1(wa3[i-2]), LD_PS1(wa3[i-1]));
ph[0] = cr4;
ph[1] = ci4; ph = ph - 3*l1ido + 2;
}
}
if((ido&1) == 1)
return;
}
const v4sf minus_sqrt2{LD_PS1(-1.414213562373095f)};
for(size_t k{0};k < l1ido;k += ido)
{
const size_t i0{4*k + ido};
v4sf c{cc[i0-1]}, d{cc[i0 + 2*ido-1]};
v4sf a{cc[i0+0]}, b{cc[i0 + 2*ido+0]};
v4sf tr1{VSUB(c,d)};
v4sf tr2{VADD(c,d)};
v4sf ti1{VADD(b,a)};
v4sf ti2{VSUB(b,a)};
ch[ido-1 + k + 0*l1ido] = VADD(tr2,tr2);
ch[ido-1 + k + 1*l1ido] = VMUL(minus_sqrt2, VSUB(ti1, tr1));
ch[ido-1 + k + 2*l1ido] = VADD(ti2, ti2);
ch[ido-1 + k + 3*l1ido] = VMUL(minus_sqrt2, VADD(ti1, tr1));
}
} /* radb4 */
void radf5_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
const float *wa1, const float *wa2, const float *wa3, const float *wa4)
{
const v4sf tr11{LD_PS1(0.309016994374947f)};
const v4sf ti11{LD_PS1(0.951056516295154f)};
const v4sf tr12{LD_PS1(-0.809016994374947f)};
const v4sf ti12{LD_PS1(0.587785252292473f)};
#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1]
#define ch_ref(a_1,a_2,a_3) ch[((a_3)*5 + (a_2))*ido + a_1]
/* Parameter adjustments */
const size_t ch_offset{1 + ido * 6};
ch -= ch_offset;
const size_t cc_offset{1 + ido * (1 + l1)};
cc -= cc_offset;
/* Function Body */
for(size_t k{1};k <= l1;++k)
{
v4sf cr2{VADD(cc_ref(1, k, 5), cc_ref(1, k, 2))};
v4sf ci5{VSUB(cc_ref(1, k, 5), cc_ref(1, k, 2))};
v4sf cr3{VADD(cc_ref(1, k, 4), cc_ref(1, k, 3))};
v4sf ci4{VSUB(cc_ref(1, k, 4), cc_ref(1, k, 3))};
ch_ref(1, 1, k) = VADD(cc_ref(1, k, 1), VADD(cr2, cr3));
ch_ref(ido, 2, k) = VADD(cc_ref(1, k, 1), VMADD(tr11, cr2, VMUL(tr12, cr3)));
ch_ref(1, 3, k) = VMADD(ti11, ci5, VMUL(ti12, ci4));
ch_ref(ido, 4, k) = VADD(cc_ref(1, k, 1), VMADD(tr12, cr2, VMUL(tr11, cr3)));
ch_ref(1, 5, k) = VSUB(VMUL(ti12, ci5), VMUL(ti11, ci4));
//printf("pffft: radf5, k=%d ch_ref=%f, ci4=%f\n", k, ch_ref(1, 5, k), ci4);
}
if(ido == 1)
return;
const size_t idp2{ido + 2};
for(size_t k{1};k <= l1;++k)
{
for(size_t i{3};i <= ido;i += 2)
{
const size_t ic{idp2 - i};
v4sf dr2{LD_PS1(wa1[i-3])};
v4sf di2{LD_PS1(wa1[i-2])};
v4sf dr3{LD_PS1(wa2[i-3])};
v4sf di3{LD_PS1(wa2[i-2])};
v4sf dr4{LD_PS1(wa3[i-3])};
v4sf di4{LD_PS1(wa3[i-2])};
v4sf dr5{LD_PS1(wa4[i-3])};
v4sf di5{LD_PS1(wa4[i-2])};
VCPLXMULCONJ(dr2, di2, cc_ref(i-1, k, 2), cc_ref(i, k, 2));
VCPLXMULCONJ(dr3, di3, cc_ref(i-1, k, 3), cc_ref(i, k, 3));
VCPLXMULCONJ(dr4, di4, cc_ref(i-1, k, 4), cc_ref(i, k, 4));
VCPLXMULCONJ(dr5, di5, cc_ref(i-1, k, 5), cc_ref(i, k, 5));
v4sf cr2{VADD(dr2, dr5)};
v4sf ci5{VSUB(dr5, dr2)};
v4sf cr5{VSUB(di2, di5)};
v4sf ci2{VADD(di2, di5)};
v4sf cr3{VADD(dr3, dr4)};
v4sf ci4{VSUB(dr4, dr3)};
v4sf cr4{VSUB(di3, di4)};
v4sf ci3{VADD(di3, di4)};
ch_ref(i - 1, 1, k) = VADD(cc_ref(i - 1, k, 1), VADD(cr2, cr3));
ch_ref(i, 1, k) = VSUB(cc_ref(i, k, 1), VADD(ci2, ci3));
v4sf tr2{VADD(cc_ref(i - 1, k, 1), VMADD(tr11, cr2, VMUL(tr12, cr3)))};
v4sf ti2{VSUB(cc_ref(i, k, 1), VMADD(tr11, ci2, VMUL(tr12, ci3)))};
v4sf tr3{VADD(cc_ref(i - 1, k, 1), VMADD(tr12, cr2, VMUL(tr11, cr3)))};
v4sf ti3{VSUB(cc_ref(i, k, 1), VMADD(tr12, ci2, VMUL(tr11, ci3)))};
v4sf tr5{VMADD(ti11, cr5, VMUL(ti12, cr4))};
v4sf ti5{VMADD(ti11, ci5, VMUL(ti12, ci4))};
v4sf tr4{VSUB(VMUL(ti12, cr5), VMUL(ti11, cr4))};
v4sf ti4{VSUB(VMUL(ti12, ci5), VMUL(ti11, ci4))};
ch_ref(i - 1, 3, k) = VSUB(tr2, tr5);
ch_ref(ic - 1, 2, k) = VADD(tr2, tr5);
ch_ref(i, 3, k) = VADD(ti2, ti5);
ch_ref(ic, 2, k) = VSUB(ti5, ti2);
ch_ref(i - 1, 5, k) = VSUB(tr3, tr4);
ch_ref(ic - 1, 4, k) = VADD(tr3, tr4);
ch_ref(i, 5, k) = VADD(ti3, ti4);
ch_ref(ic, 4, k) = VSUB(ti4, ti3);
}
}
#undef cc_ref
#undef ch_ref
} /* radf5 */
void radb5_ps(const size_t ido, const size_t l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
const float *wa1, const float *wa2, const float *wa3, const float *wa4)
{
const v4sf tr11{LD_PS1(0.309016994374947f)};
const v4sf ti11{LD_PS1(0.951056516295154f)};
const v4sf tr12{LD_PS1(-0.809016994374947f)};
const v4sf ti12{LD_PS1(0.587785252292473f)};
#define cc_ref(a_1,a_2,a_3) cc[((a_3)*5 + (a_2))*ido + a_1]
#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1]
/* Parameter adjustments */
const size_t ch_offset{1 + ido*(1 + l1)};
ch -= ch_offset;
const size_t cc_offset{1 + ido*6};
cc -= cc_offset;
/* Function Body */
for(size_t k{1};k <= l1;++k)
{
v4sf ti5{VADD(cc_ref(1, 3, k), cc_ref(1, 3, k))};
v4sf ti4{VADD(cc_ref(1, 5, k), cc_ref(1, 5, k))};
v4sf tr2{VADD(cc_ref(ido, 2, k), cc_ref(ido, 2, k))};
v4sf tr3{VADD(cc_ref(ido, 4, k), cc_ref(ido, 4, k))};
ch_ref(1, k, 1) = VADD(cc_ref(1, 1, k), VADD(tr2, tr3));
v4sf cr2{VADD(cc_ref(1, 1, k), VMADD(tr11, tr2, VMUL(tr12, tr3)))};
v4sf cr3{VADD(cc_ref(1, 1, k), VMADD(tr12, tr2, VMUL(tr11, tr3)))};
v4sf ci5{VMADD(ti11, ti5, VMUL(ti12, ti4))};
v4sf ci4{VSUB(VMUL(ti12, ti5), VMUL(ti11, ti4))};
ch_ref(1, k, 2) = VSUB(cr2, ci5);
ch_ref(1, k, 3) = VSUB(cr3, ci4);
ch_ref(1, k, 4) = VADD(cr3, ci4);
ch_ref(1, k, 5) = VADD(cr2, ci5);
}
if(ido == 1)
return;
const size_t idp2{ido + 2};
for(size_t k{1};k <= l1;++k)
{
for(size_t i{3};i <= ido;i += 2)
{
const size_t ic{idp2 - i};
v4sf ti5{VADD(cc_ref(i , 3, k), cc_ref(ic , 2, k))};
v4sf ti2{VSUB(cc_ref(i , 3, k), cc_ref(ic , 2, k))};
v4sf ti4{VADD(cc_ref(i , 5, k), cc_ref(ic , 4, k))};
v4sf ti3{VSUB(cc_ref(i , 5, k), cc_ref(ic , 4, k))};
v4sf tr5{VSUB(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k))};
v4sf tr2{VADD(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k))};
v4sf tr4{VSUB(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k))};
v4sf tr3{VADD(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k))};
ch_ref(i - 1, k, 1) = VADD(cc_ref(i-1, 1, k), VADD(tr2, tr3));
ch_ref(i, k, 1) = VADD(cc_ref(i, 1, k), VADD(ti2, ti3));
v4sf cr2{VADD(cc_ref(i-1, 1, k), VMADD(tr11, tr2, VMUL(tr12, tr3)))};
v4sf ci2{VADD(cc_ref(i , 1, k), VMADD(tr11, ti2, VMUL(tr12, ti3)))};
v4sf cr3{VADD(cc_ref(i-1, 1, k), VMADD(tr12, tr2, VMUL(tr11, tr3)))};
v4sf ci3{VADD(cc_ref(i , 1, k), VMADD(tr12, ti2, VMUL(tr11, ti3)))};
v4sf cr5{VMADD(ti11, tr5, VMUL(ti12, tr4))};
v4sf ci5{VMADD(ti11, ti5, VMUL(ti12, ti4))};
v4sf cr4{VSUB(VMUL(ti12, tr5), VMUL(ti11, tr4))};
v4sf ci4{VSUB(VMUL(ti12, ti5), VMUL(ti11, ti4))};
v4sf dr3{VSUB(cr3, ci4)};
v4sf dr4{VADD(cr3, ci4)};
v4sf di3{VADD(ci3, cr4)};
v4sf di4{VSUB(ci3, cr4)};
v4sf dr5{VADD(cr2, ci5)};
v4sf dr2{VSUB(cr2, ci5)};
v4sf di5{VSUB(ci2, cr5)};
v4sf di2{VADD(ci2, cr5)};
VCPLXMUL(dr2, di2, LD_PS1(wa1[i-3]), LD_PS1(wa1[i-2]));
VCPLXMUL(dr3, di3, LD_PS1(wa2[i-3]), LD_PS1(wa2[i-2]));
VCPLXMUL(dr4, di4, LD_PS1(wa3[i-3]), LD_PS1(wa3[i-2]));
VCPLXMUL(dr5, di5, LD_PS1(wa4[i-3]), LD_PS1(wa4[i-2]));
ch_ref(i-1, k, 2) = dr2; ch_ref(i, k, 2) = di2;
ch_ref(i-1, k, 3) = dr3; ch_ref(i, k, 3) = di3;
ch_ref(i-1, k, 4) = dr4; ch_ref(i, k, 4) = di4;
ch_ref(i-1, k, 5) = dr5; ch_ref(i, k, 5) = di5;
}
}
#undef cc_ref
#undef ch_ref
} /* radb5 */
NEVER_INLINE(v4sf *) rfftf1_ps(const size_t n, const v4sf *input_readonly, v4sf *work1,
v4sf *work2, const float *wa, const al::span<const uint,15> ifac)
{
assert(work1 != work2);
const v4sf *in{input_readonly};
v4sf *out{in == work2 ? work1 : work2};
const size_t nf{ifac[1]};
size_t l2{n};
size_t iw{n-1};
for(size_t k1{1};k1 <= nf;++k1)
{
size_t kh{nf - k1};
size_t ip{ifac[kh + 2]};
size_t l1{l2 / ip};
size_t ido{n / l2};
iw -= (ip - 1)*ido;
switch(ip)
{
case 5:
{
size_t ix2{iw + ido};
size_t ix3{ix2 + ido};
size_t ix4{ix3 + ido};
radf5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
}
break;
case 4:
{
size_t ix2{iw + ido};
size_t ix3{ix2 + ido};
radf4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
}
break;
case 3:
{
size_t ix2{iw + ido};
radf3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
}
break;
case 2:
radf2_ps(ido, l1, in, out, &wa[iw]);
break;
default:
assert(0);
break;
}
l2 = l1;
if(out == work2)
{
out = work1;
in = work2;
}
else
{
out = work2;
in = work1;
}
}
return const_cast<v4sf*>(in); /* this is in fact the output .. */
} /* rfftf1 */
NEVER_INLINE(v4sf *) rfftb1_ps(const size_t n, const v4sf *input_readonly, v4sf *work1,
v4sf *work2, const float *wa, const al::span<const uint,15> ifac)
{
assert(work1 != work2);
const v4sf *in{input_readonly};
v4sf *out{in == work2 ? work1 : work2};
const size_t nf{ifac[1]};
size_t l1{1};
size_t iw{0};
for(size_t k1{1};k1 <= nf;++k1)
{
size_t ip{ifac[k1 + 1]};
size_t l2{ip*l1};
size_t ido{n / l2};
switch(ip)
{
case 5:
{
size_t ix2{iw + ido};
size_t ix3{ix2 + ido};
size_t ix4{ix3 + ido};
radb5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
}
break;
case 4:
{
size_t ix2{iw + ido};
size_t ix3{ix2 + ido};
radb4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
}
break;
case 3:
{
size_t ix2{iw + ido};
radb3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
}
break;
case 2:
radb2_ps(ido, l1, in, out, &wa[iw]);
break;
default:
assert(0);
break;
}
l1 = l2;
iw += (ip - 1)*ido;
if(out == work2)
{
out = work1;
in = work2;
}
else
{
out = work2;
in = work1;
}
}
return const_cast<v4sf*>(in); /* this is in fact the output .. */
}
v4sf *cfftf1_ps(const size_t n, const v4sf *input_readonly, v4sf *work1, v4sf *work2,
const float *wa, const al::span<const uint,15> ifac, const float fsign)
{
assert(work1 != work2);
const v4sf *in{input_readonly};
v4sf *out{in == work2 ? work1 : work2};
const size_t nf{ifac[1]};
size_t l1{1}, iw{0};
for(size_t k1{2};k1 <= nf+1;++k1)
{
const size_t ip{ifac[k1]};
const size_t l2{ip*l1};
const size_t ido{n / l2};
const size_t idot{ido + ido};
switch(ip)
{
case 5:
{
size_t ix2{iw + idot};
size_t ix3{ix2 + idot};
size_t ix4{ix3 + idot};
passf5_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], fsign);
}
break;
case 4:
{
size_t ix2{iw + idot};
size_t ix3{ix2 + idot};
passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], fsign);
}
break;
case 3:
{
size_t ix2{iw + idot};
passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], fsign);
}
break;
case 2:
passf2_ps(idot, l1, in, out, &wa[iw], fsign);
break;
default:
assert(0);
}
l1 = l2;
iw += (ip - 1)*idot;
if(out == work2)
{
out = work1;
in = work2;
}
else
{
out = work2;
in = work1;
}
}
return const_cast<v4sf*>(in); /* this is in fact the output .. */
}
uint decompose(const uint n, const al::span<uint,15> ifac, const al::span<const uint,4> ntryh)
{
uint nl{n}, nf{0};
for(const uint ntry : ntryh)
{
while(nl != 1)
{
const uint nq{nl / ntry};
const uint nr{nl % ntry};
if(nr != 0) break;
ifac[2+nf++] = ntry;
nl = nq;
if(ntry == 2 && nf != 1)
{
for(size_t i{2};i <= nf;++i)
{
size_t ib{nf - i + 2};
ifac[ib + 1] = ifac[ib];
}
ifac[2] = 2;
}
}
}
ifac[0] = n;
ifac[1] = nf;
return nf;
}
void rffti1_ps(const uint n, float *wa, const al::span<uint,15> ifac)
{
static constexpr uint ntryh[]{4,2,3,5};
const uint nf{decompose(n, ifac, ntryh)};
const double argh{2.0*al::numbers::pi / n};
size_t is{0};
size_t nfm1{nf - 1};
size_t l1{1};
for(size_t k1{0};k1 < nfm1;++k1)
{
const size_t ip{ifac[k1+2]};
const size_t l2{l1*ip};
const size_t ido{n / l2};
const size_t ipm{ip - 1};
size_t ld{0};
for(size_t j{0};j < ipm;++j)
{
size_t i{is};
ld += l1;
const double argld{static_cast<double>(ld)*argh};
double fi{0.0};
for(size_t ii{2};ii < ido;ii += 2)
{
fi += 1.0;
wa[i++] = static_cast<float>(std::cos(fi*argld));
wa[i++] = static_cast<float>(std::sin(fi*argld));
}
is += ido;
}
l1 = l2;
}
} /* rffti1 */
void cffti1_ps(const uint n, float *wa, const al::span<uint,15> ifac)
{
static constexpr uint ntryh[]{5,3,4,2};
const uint nf{decompose(n, ifac, ntryh)};
const double argh{2.0*al::numbers::pi / n};
size_t i{1};
size_t l1{1};
for(size_t k1{0};k1 < nf;++k1)
{
const size_t ip{ifac[k1+2]};
const size_t l2{l1*ip};
const size_t ido{n / l2};
const size_t idot{ido + ido + 2};
const size_t ipm{ip - 1};
size_t ld{0};
for(size_t j{0};j < ipm;++j)
{
size_t i1{i};
wa[i-1] = 1;
wa[i] = 0;
ld += l1;
const double argld{static_cast<double>(ld)*argh};
double fi{0.0};
for(size_t ii{3};ii < idot;ii += 2)
{
fi += 1.0;
wa[++i] = static_cast<float>(std::cos(fi*argld));
wa[++i] = static_cast<float>(std::sin(fi*argld));
}
if(ip > 5)
{
wa[i1-1] = wa[i-1];
wa[i1] = wa[i];
}
}
l1 = l2;
}
} /* cffti1 */
} // namespace
void *pffft_aligned_malloc(size_t nb_bytes)
{ return al_malloc(MALLOC_V4SF_ALIGNMENT, nb_bytes); }
void pffft_aligned_free(void *p) { al_free(p); }
int pffft_simd_size() { return SIMD_SZ; }
struct PFFFT_Setup {
uint N;
uint Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL)
std::array<uint,15> ifac;
pffft_transform_t transform;
float *twiddle; // N/4 elements
alignas(MALLOC_V4SF_ALIGNMENT) v4sf e[1]; // N/4*3 elements
};
PFFFT_Setup *pffft_new_setup(unsigned int N, pffft_transform_t transform)
{
assert(transform == PFFFT_REAL || transform == PFFFT_COMPLEX);
assert(N > 0);
/* unfortunately, the fft size must be a multiple of 16 for complex FFTs
* and 32 for real FFTs -- a lot of stuff would need to be rewritten to
* handle other cases (or maybe just switch to a scalar fft, I don't know..)
*/
if(transform == PFFFT_REAL)
assert((N%(2*SIMD_SZ*SIMD_SZ)) == 0);
else
assert((N%(SIMD_SZ*SIMD_SZ)) == 0);
const uint Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ;
const size_t storelen{offsetof(PFFFT_Setup, e[0]) + (2u*Ncvec * sizeof(v4sf))};
void *store{al_calloc(MALLOC_V4SF_ALIGNMENT, storelen)};
if(!store) return nullptr;
PFFFT_Setup *s{::new(store) PFFFT_Setup{}};
s->N = N;
s->transform = transform;
/* nb of complex simd vectors */
s->Ncvec = Ncvec;
s->twiddle = reinterpret_cast<float*>(&s->e[2u*Ncvec*(SIMD_SZ-1)/SIMD_SZ]);
if constexpr(SIMD_SZ > 1)
{
auto e = std::vector<float>(2u*Ncvec*(SIMD_SZ-1), 0.0f);
for(size_t k{0};k < s->Ncvec;++k)
{
const size_t i{k / SIMD_SZ};
const size_t j{k % SIMD_SZ};
for(size_t m{0};m < SIMD_SZ-1;++m)
{
const double A{-2.0*al::numbers::pi*static_cast<double>((m+1)*k) / N};
e[((i*3 + m)*2 + 0)*SIMD_SZ + j] = static_cast<float>(std::cos(A));
e[((i*3 + m)*2 + 1)*SIMD_SZ + j] = static_cast<float>(std::sin(A));
}
}
std::memcpy(s->e, e.data(), e.size()*sizeof(float));
}
if(transform == PFFFT_REAL)
rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
else
cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
/* check that N is decomposable with allowed prime factors */
size_t m{1};
for(size_t k{0};k < s->ifac[1];++k)
m *= s->ifac[2+k];
if(m != N/SIMD_SZ)
{
pffft_destroy_setup(s);
s = nullptr;
}
return s;
}
void pffft_destroy_setup(PFFFT_Setup *s)
{
std::destroy_at(s);
al_free(s);
}
#if !defined(PFFFT_SIMD_DISABLE)
namespace {
/* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */
void reversed_copy(const size_t N, const v4sf *in, const int in_stride, v4sf *out)
{
v4sf g0, g1;
INTERLEAVE2(in[0], in[1], g0, g1);
in += in_stride;
*--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h]
for(size_t k{1};k < N;++k)
{
v4sf h0, h1;
INTERLEAVE2(in[0], in[1], h0, h1);
in += in_stride;
*--out = VSWAPHL(g1, h0);
*--out = VSWAPHL(h0, h1);
g1 = h1;
}
*--out = VSWAPHL(g1, g0);
}
void unreversed_copy(const size_t N, const v4sf *in, v4sf *out, const int out_stride)
{
v4sf g0{in[0]}, g1{g0};
++in;
for(size_t k{1};k < N;++k)
{
v4sf h0{*in++}; v4sf h1{*in++};
g1 = VSWAPHL(g1, h0);
h0 = VSWAPHL(h0, h1);
UNINTERLEAVE2(h0, g1, out[0], out[1]);
out += out_stride;
g1 = h1;
}
v4sf h0{*in++}, h1{g0};
g1 = VSWAPHL(g1, h0);
h0 = VSWAPHL(h0, h1);
UNINTERLEAVE2(h0, g1, out[0], out[1]);
}
void pffft_cplx_finalize(const size_t Ncvec, const v4sf *in, v4sf *out, const v4sf *e)
{
assert(in != out);
const size_t dk{Ncvec/SIMD_SZ}; // number of 4x4 matrix blocks
for(size_t k{0};k < dk;++k)
{
v4sf r0{in[8*k+0]}, i0{in[8*k+1]};
v4sf r1{in[8*k+2]}, i1{in[8*k+3]};
v4sf r2{in[8*k+4]}, i2{in[8*k+5]};
v4sf r3{in[8*k+6]}, i3{in[8*k+7]};
VTRANSPOSE4(r0,r1,r2,r3);
VTRANSPOSE4(i0,i1,i2,i3);
VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]);
VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]);
VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]);
v4sf sr0{VADD(r0,r2)}, dr0{VSUB(r0, r2)};
v4sf sr1{VADD(r1,r3)}, dr1{VSUB(r1, r3)};
v4sf si0{VADD(i0,i2)}, di0{VSUB(i0, i2)};
v4sf si1{VADD(i1,i3)}, di1{VSUB(i1, i3)};
/* transformation for each column is:
*
* [1 1 1 1 0 0 0 0] [r0]
* [1 0 -1 0 0 -1 0 1] [r1]
* [1 -1 1 -1 0 0 0 0] [r2]
* [1 0 -1 0 0 1 0 -1] [r3]
* [0 0 0 0 1 1 1 1] * [i0]
* [0 1 0 -1 1 0 -1 0] [i1]
* [0 0 0 0 1 -1 1 -1] [i2]
* [0 -1 0 1 1 0 -1 0] [i3]
*/
r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1);
r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1);
*out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
*out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
}
}
void pffft_cplx_preprocess(const size_t Ncvec, const v4sf *in, v4sf *out, const v4sf *e)
{
assert(in != out);
const size_t dk{Ncvec/SIMD_SZ}; // number of 4x4 matrix blocks
for(size_t k{0};k < dk;++k)
{
v4sf r0{in[8*k+0]}, i0{in[8*k+1]};
v4sf r1{in[8*k+2]}, i1{in[8*k+3]};
v4sf r2{in[8*k+4]}, i2{in[8*k+5]};
v4sf r3{in[8*k+6]}, i3{in[8*k+7]};
v4sf sr0{VADD(r0,r2)}, dr0{VSUB(r0, r2)};
v4sf sr1{VADD(r1,r3)}, dr1{VSUB(r1, r3)};
v4sf si0{VADD(i0,i2)}, di0{VSUB(i0, i2)};
v4sf si1{VADD(i1,i3)}, di1{VSUB(i1, i3)};
r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1);
r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1);
VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]);
VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]);
VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]);
VTRANSPOSE4(r0,r1,r2,r3);
VTRANSPOSE4(i0,i1,i2,i3);
*out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
*out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
}
}
ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in,
const v4sf *e, v4sf *out)
{
v4sf r0{*in0}, i0{*in1};
v4sf r1{*in++}; v4sf i1{*in++};
v4sf r2{*in++}; v4sf i2{*in++};
v4sf r3{*in++}; v4sf i3{*in++};
VTRANSPOSE4(r0,r1,r2,r3);
VTRANSPOSE4(i0,i1,i2,i3);
/* transformation for each column is:
*
* [1 1 1 1 0 0 0 0] [r0]
* [1 0 -1 0 0 -1 0 1] [r1]
* [1 0 -1 0 0 1 0 -1] [r2]
* [1 -1 1 -1 0 0 0 0] [r3]
* [0 0 0 0 1 1 1 1] * [i0]
* [0 -1 0 1 -1 0 1 0] [i1]
* [0 -1 0 1 1 0 -1 0] [i2]
* [0 0 0 0 -1 1 -1 1] [i3]
*/
//cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
//cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
VCPLXMUL(r1,i1,e[0],e[1]);
VCPLXMUL(r2,i2,e[2],e[3]);
VCPLXMUL(r3,i3,e[4],e[5]);
//cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
//cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
v4sf sr0{VADD(r0,r2)}, dr0{VSUB(r0,r2)};
v4sf sr1{VADD(r1,r3)}, dr1{VSUB(r3,r1)};
v4sf si0{VADD(i0,i2)}, di0{VSUB(i0,i2)};
v4sf si1{VADD(i1,i3)}, di1{VSUB(i3,i1)};
r0 = VADD(sr0, sr1);
r3 = VSUB(sr0, sr1);
i0 = VADD(si0, si1);
i3 = VSUB(si1, si0);
r1 = VADD(dr0, di1);
r2 = VSUB(dr0, di1);
i1 = VSUB(dr1, di0);
i2 = VADD(dr1, di0);
*out++ = r0;
*out++ = i0;
*out++ = r1;
*out++ = i1;
*out++ = r2;
*out++ = i2;
*out++ = r3;
*out++ = i3;
}
NEVER_INLINE(void) pffft_real_finalize(const size_t Ncvec, const v4sf *in, v4sf *out, const v4sf *e)
{
static constexpr float s{al::numbers::sqrt2_v<float>/2.0f};
assert(in != out);
const size_t dk{Ncvec/SIMD_SZ}; // number of 4x4 matrix blocks
/* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
const v4sf zero{VZERO()};
const auto cr = al::bit_cast<std::array<float,SIMD_SZ>>(in[0]);
const auto ci = al::bit_cast<std::array<float,SIMD_SZ>>(in[Ncvec*2-1]);
pffft_real_finalize_4x4(&zero, &zero, in+1, e, out);
/* [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3]
*
* [Xr(1)] ] [1 1 1 1 0 0 0 0]
* [Xr(N/4) ] [0 0 0 0 1 s 0 -s]
* [Xr(N/2) ] [1 0 -1 0 0 0 0 0]
* [Xr(3N/4)] [0 0 0 0 1 -s 0 s]
* [Xi(1) ] [1 -1 1 -1 0 0 0 0]
* [Xi(N/4) ] [0 0 0 0 0 -s -1 -s]
* [Xi(N/2) ] [0 -1 0 1 0 0 0 0]
* [Xi(3N/4)] [0 0 0 0 0 -s 1 -s]
*/
const float xr0{(cr[0]+cr[2]) + (cr[1]+cr[3])}; out[0] = VINSERT0(out[0], xr0);
const float xi0{(cr[0]+cr[2]) - (cr[1]+cr[3])}; out[1] = VINSERT0(out[1], xi0);
const float xr2{(cr[0]-cr[2])}; out[4] = VINSERT0(out[4], xr2);
const float xi2{(cr[3]-cr[1])}; out[5] = VINSERT0(out[5], xi2);
const float xr1{ ci[0] + s*(ci[1]-ci[3])}; out[2] = VINSERT0(out[2], xr1);
const float xi1{-ci[2] - s*(ci[1]+ci[3])}; out[3] = VINSERT0(out[3], xi1);
const float xr3{ ci[0] - s*(ci[1]-ci[3])}; out[6] = VINSERT0(out[6], xr3);
const float xi3{ ci[2] - s*(ci[1]+ci[3])}; out[7] = VINSERT0(out[7], xi3);
for(size_t k{1};k < dk;++k)
pffft_real_finalize_4x4(&in[8*k-1], &in[8*k+0], in + 8*k+1, e + k*6, out + k*8);
}
ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in, const v4sf *e, v4sf *out,
const bool first)
{
v4sf r0{in[0]}, i0{in[1]}, r1{in[2]}, i1{in[3]};
v4sf r2{in[4]}, i2{in[5]}, r3{in[6]}, i3{in[7]};
/* transformation for each column is:
*
* [1 1 1 1 0 0 0 0] [r0]
* [1 0 0 -1 0 -1 -1 0] [r1]
* [1 -1 -1 1 0 0 0 0] [r2]
* [1 0 0 -1 0 1 1 0] [r3]
* [0 0 0 0 1 -1 1 -1] * [i0]
* [0 -1 1 0 1 0 0 1] [i1]
* [0 0 0 0 1 1 -1 -1] [i2]
* [0 1 -1 0 1 0 0 1] [i3]
*/
v4sf sr0{VADD(r0,r3)}, dr0{VSUB(r0,r3)};
v4sf sr1{VADD(r1,r2)}, dr1{VSUB(r1,r2)};
v4sf si0{VADD(i0,i3)}, di0{VSUB(i0,i3)};
v4sf si1{VADD(i1,i2)}, di1{VSUB(i1,i2)};
r0 = VADD(sr0, sr1);
r2 = VSUB(sr0, sr1);
r1 = VSUB(dr0, si1);
r3 = VADD(dr0, si1);
i0 = VSUB(di0, di1);
i2 = VADD(di0, di1);
i1 = VSUB(si0, dr1);
i3 = VADD(si0, dr1);
VCPLXMULCONJ(r1,i1,e[0],e[1]);
VCPLXMULCONJ(r2,i2,e[2],e[3]);
VCPLXMULCONJ(r3,i3,e[4],e[5]);
VTRANSPOSE4(r0,r1,r2,r3);
VTRANSPOSE4(i0,i1,i2,i3);
if(!first)
{
*out++ = r0;
*out++ = i0;
}
*out++ = r1;
*out++ = i1;
*out++ = r2;
*out++ = i2;
*out++ = r3;
*out++ = i3;
}
NEVER_INLINE(void) pffft_real_preprocess(const size_t Ncvec, const v4sf *in, v4sf *out, const v4sf *e)
{
static constexpr float sqrt2{al::numbers::sqrt2_v<float>};
assert(in != out);
const size_t dk{Ncvec/SIMD_SZ}; // number of 4x4 matrix blocks
/* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
std::array<float,SIMD_SZ> Xr, Xi;
for(size_t k{0};k < SIMD_SZ;++k)
{
Xr[k] = VEXTRACT0(in[2*k]);
Xi[k] = VEXTRACT0(in[2*k + 1]);
}
pffft_real_preprocess_4x4(in, e, out+1, true); // will write only 6 values
/* [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3]
*
* [cr0] [1 0 2 0 1 0 0 0]
* [cr1] [1 0 0 0 -1 0 -2 0]
* [cr2] [1 0 -2 0 1 0 0 0]
* [cr3] [1 0 0 0 -1 0 2 0]
* [ci0] [0 2 0 2 0 0 0 0]
* [ci1] [0 s 0 -s 0 -s 0 -s]
* [ci2] [0 0 0 0 0 -2 0 2]
* [ci3] [0 -s 0 s 0 -s 0 -s]
*/
for(size_t k{1};k < dk;++k)
pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, false);
const float cr0{(Xr[0]+Xi[0]) + 2*Xr[2]};
const float cr1{(Xr[0]-Xi[0]) - 2*Xi[2]};
const float cr2{(Xr[0]+Xi[0]) - 2*Xr[2]};
const float cr3{(Xr[0]-Xi[0]) + 2*Xi[2]};
out[0] = VSET4(cr0, cr1, cr2, cr3);
const float ci0{ 2*(Xr[1]+Xr[3])};
const float ci1{ sqrt2*(Xr[1]-Xr[3]) - sqrt2*(Xi[1]+Xi[3])};
const float ci2{ 2*(Xi[3]-Xi[1])};
const float ci3{-sqrt2*(Xr[1]-Xr[3]) - sqrt2*(Xi[1]+Xi[3])};
out[2*Ncvec-1] = VSET4(ci0, ci1, ci2, ci3);
}
void pffft_transform_internal(PFFFT_Setup *setup, const v4sf *vinput, v4sf *voutput,
v4sf *scratch, const pffft_direction_t direction, const bool ordered)
{
assert(scratch != nullptr);
assert(voutput != scratch);
const size_t Ncvec{setup->Ncvec};
const bool nf_odd{(setup->ifac[1]&1) != 0};
v4sf *buff[2]{voutput, scratch};
bool ib{nf_odd != ordered};
if(direction == PFFFT_FORWARD)
{
/* Swap the initial work buffer for forward FFTs, which helps avoid an
* extra copy for output.
*/
ib = !ib;
if(setup->transform == PFFFT_REAL)
{
ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib], setup->twiddle, setup->ifac) == buff[1]);
pffft_real_finalize(Ncvec, buff[ib], buff[!ib], setup->e);
}
else
{
v4sf *tmp{buff[ib]};
for(size_t k=0; k < Ncvec; ++k)
UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]);
ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib], setup->twiddle, setup->ifac, -1.0f) == buff[1]);
pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], setup->e);
}
if(ordered)
pffft_zreorder(setup, reinterpret_cast<float*>(buff[!ib]),
reinterpret_cast<float*>(buff[ib]), PFFFT_FORWARD);
else
ib = !ib;
}
else
{
if(vinput == buff[ib])
ib = !ib; // may happen when finput == foutput
if(ordered)
{
pffft_zreorder(setup, reinterpret_cast<const float*>(vinput),
reinterpret_cast<float*>(buff[ib]), PFFFT_BACKWARD);
vinput = buff[ib];
ib = !ib;
}
if(setup->transform == PFFFT_REAL)
{
pffft_real_preprocess(Ncvec, vinput, buff[ib], setup->e);
ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1], setup->twiddle, setup->ifac) == buff[1]);
}
else
{
pffft_cplx_preprocess(Ncvec, vinput, buff[ib], setup->e);
ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1], setup->twiddle, setup->ifac, +1.0f) == buff[1]);
for(size_t k{0};k < Ncvec;++k)
INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]);
}
}
if(buff[ib] != voutput)
{
/* extra copy required -- this situation should only happen when finput == foutput */
assert(vinput==voutput);
for(size_t k{0};k < Ncvec;++k)
{
v4sf a{buff[ib][2*k]}, b{buff[ib][2*k+1]};
voutput[2*k] = a; voutput[2*k+1] = b;
}
}
}
} // namespace
void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction)
{
assert(in != out);
const size_t N{setup->N}, Ncvec{setup->Ncvec};
const v4sf *vin{reinterpret_cast<const v4sf*>(in)};
v4sf *vout{reinterpret_cast<v4sf*>(out)};
if(setup->transform == PFFFT_REAL)
{
const size_t dk{N/32};
if(direction == PFFFT_FORWARD)
{
for(size_t k{0};k < dk;++k)
{
INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]);
INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]);
}
reversed_copy(dk, vin+2, 8, vout + N/SIMD_SZ/2);
reversed_copy(dk, vin+6, 8, vout + N/SIMD_SZ);
}
else
{
for(size_t k{0};k < dk;++k)
{
UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]);
UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]);
}
unreversed_copy(dk, vin + N/SIMD_SZ/4, vout + N/SIMD_SZ - 6, -8);
unreversed_copy(dk, vin + 3*N/SIMD_SZ/4, vout + N/SIMD_SZ - 2, -8);
}
}
else
{
if(direction == PFFFT_FORWARD)
{
for(size_t k{0};k < Ncvec;++k)
{
size_t kk{(k/4) + (k%4)*(Ncvec/4)};
INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]);
}
}
else
{
for(size_t k{0};k < Ncvec;++k)
{
size_t kk{(k/4) + (k%4)*(Ncvec/4)};
UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]);
}
}
}
}
void pffft_zconvolve_scale_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab,
float scaling)
{
const size_t Ncvec{s->Ncvec};
const v4sf *RESTRICT va{reinterpret_cast<const v4sf*>(a)};
const v4sf *RESTRICT vb{reinterpret_cast<const v4sf*>(b)};
v4sf *RESTRICT vab{reinterpret_cast<v4sf*>(ab)};
#ifdef __arm__
__builtin_prefetch(va);
__builtin_prefetch(vb);
__builtin_prefetch(vab);
__builtin_prefetch(va+2);
__builtin_prefetch(vb+2);
__builtin_prefetch(vab+2);
__builtin_prefetch(va+4);
__builtin_prefetch(vb+4);
__builtin_prefetch(vab+4);
__builtin_prefetch(va+6);
__builtin_prefetch(vb+6);
__builtin_prefetch(vab+6);
#ifndef __clang__
#define ZCONVOLVE_USING_INLINE_NEON_ASM
#endif
#endif
const float ar1{VEXTRACT0(va[0])};
const float ai1{VEXTRACT0(va[1])};
const float br1{VEXTRACT0(vb[0])};
const float bi1{VEXTRACT0(vb[1])};
const float abr1{VEXTRACT0(vab[0])};
const float abi1{VEXTRACT0(vab[1])};
#ifdef ZCONVOLVE_USING_INLINE_ASM
/* Inline asm version, unfortunately miscompiled by clang 3.2, at least on
* Ubuntu. So this will be restricted to GCC.
*
* Does it still miscompile with Clang? Is it even needed with today's
* optimizers?
*/
const float *a_{a}, *b_{b}; float *ab_{ab};
size_t N{Ncvec};
asm volatile("mov r8, %2 \n"
"vdup.f32 q15, %4 \n"
"1: \n"
"pld [%0,#64] \n"
"pld [%1,#64] \n"
"pld [%2,#64] \n"
"pld [%0,#96] \n"
"pld [%1,#96] \n"
"pld [%2,#96] \n"
"vld1.f32 {q0,q1}, [%0,:128]! \n"
"vld1.f32 {q4,q5}, [%1,:128]! \n"
"vld1.f32 {q2,q3}, [%0,:128]! \n"
"vld1.f32 {q6,q7}, [%1,:128]! \n"
"vld1.f32 {q8,q9}, [r8,:128]! \n"
"vmul.f32 q10, q0, q4 \n"
"vmul.f32 q11, q0, q5 \n"
"vmul.f32 q12, q2, q6 \n"
"vmul.f32 q13, q2, q7 \n"
"vmls.f32 q10, q1, q5 \n"
"vmla.f32 q11, q1, q4 \n"
"vld1.f32 {q0,q1}, [r8,:128]! \n"
"vmls.f32 q12, q3, q7 \n"
"vmla.f32 q13, q3, q6 \n"
"vmla.f32 q8, q10, q15 \n"
"vmla.f32 q9, q11, q15 \n"
"vmla.f32 q0, q12, q15 \n"
"vmla.f32 q1, q13, q15 \n"
"vst1.f32 {q8,q9},[%2,:128]! \n"
"vst1.f32 {q0,q1},[%2,:128]! \n"
"subs %3, #2 \n"
"bne 1b \n"
: "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory");
#else
/* Default routine, works fine for non-arm cpus with current compilers. */
const v4sf vscal{LD_PS1(scaling)};
for(size_t i{0};i < Ncvec;i += 2)
{
v4sf ar4{va[2*i+0]}, ai4{va[2*i+1]};
v4sf br4{vb[2*i+0]}, bi4{vb[2*i+1]};
VCPLXMUL(ar4, ai4, br4, bi4);
vab[2*i+0] = VMADD(ar4, vscal, vab[2*i+0]);
vab[2*i+1] = VMADD(ai4, vscal, vab[2*i+1]);
ar4 = va[2*i+2]; ai4 = va[2*i+3];
br4 = vb[2*i+2]; bi4 = vb[2*i+3];
VCPLXMUL(ar4, ai4, br4, bi4);
vab[2*i+2] = VMADD(ar4, vscal, vab[2*i+2]);
vab[2*i+3] = VMADD(ai4, vscal, vab[2*i+3]);
}
#endif
if(s->transform == PFFFT_REAL)
{
vab[0] = VINSERT0(vab[0], abr1 + ar1*br1*scaling);
vab[1] = VINSERT0(vab[1], abi1 + ai1*bi1*scaling);
}
}
void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab)
{
const size_t Ncvec{s->Ncvec};
const v4sf *RESTRICT va{reinterpret_cast<const v4sf*>(a)};
const v4sf *RESTRICT vb{reinterpret_cast<const v4sf*>(b)};
v4sf *RESTRICT vab{reinterpret_cast<v4sf*>(ab)};
#ifdef __arm__
__builtin_prefetch(va);
__builtin_prefetch(vb);
__builtin_prefetch(vab);
__builtin_prefetch(va+2);
__builtin_prefetch(vb+2);
__builtin_prefetch(vab+2);
__builtin_prefetch(va+4);
__builtin_prefetch(vb+4);
__builtin_prefetch(vab+4);
__builtin_prefetch(va+6);
__builtin_prefetch(vb+6);
__builtin_prefetch(vab+6);
#endif
const float ar1{VEXTRACT0(va[0])};
const float ai1{VEXTRACT0(va[1])};
const float br1{VEXTRACT0(vb[0])};
const float bi1{VEXTRACT0(vb[1])};
const float abr1{VEXTRACT0(vab[0])};
const float abi1{VEXTRACT0(vab[1])};
/* No inline assembly for this version. I'm not familiar enough with NEON
* assembly, and I don't know that it's needed with today's optimizers.
*/
for(size_t i{0};i < Ncvec;i += 2)
{
v4sf ar4{va[2*i+0]}, ai4{va[2*i+1]};
v4sf br4{vb[2*i+0]}, bi4{vb[2*i+1]};
VCPLXMUL(ar4, ai4, br4, bi4);
vab[2*i+0] = VADD(ar4, vab[2*i+0]);
vab[2*i+1] = VADD(ai4, vab[2*i+1]);
ar4 = va[2*i+2]; ai4 = va[2*i+3];
br4 = vb[2*i+2]; bi4 = vb[2*i+3];
VCPLXMUL(ar4, ai4, br4, bi4);
vab[2*i+2] = VADD(ar4, vab[2*i+2]);
vab[2*i+3] = VADD(ai4, vab[2*i+3]);
}
if(s->transform == PFFFT_REAL)
{
vab[0] = VINSERT0(vab[0], abr1 + ar1*br1);
vab[1] = VINSERT0(vab[1], abi1 + ai1*bi1);
}
}
void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction)
{
assert(VALIGNED(input) && VALIGNED(output) && VALIGNED(work));
pffft_transform_internal(setup, reinterpret_cast<const v4sf*>(al::assume_aligned<16>(input)),
reinterpret_cast<v4sf*>(al::assume_aligned<16>(output)),
reinterpret_cast<v4sf*>(al::assume_aligned<16>(work)), direction, false);
}
void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction)
{
assert(VALIGNED(input) && VALIGNED(output) && VALIGNED(work));
pffft_transform_internal(setup, reinterpret_cast<const v4sf*>(al::assume_aligned<16>(input)),
reinterpret_cast<v4sf*>(al::assume_aligned<16>(output)),
reinterpret_cast<v4sf*>(al::assume_aligned<16>(work)), direction, true);
}
#else // defined(PFFFT_SIMD_DISABLE)
// standard routine using scalar floats, without SIMD stuff.
namespace {
#define pffft_transform_internal_nosimd pffft_transform_internal
void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output,
float *scratch, const pffft_direction_t direction, bool ordered)
{
const size_t Ncvec{setup->Ncvec};
const bool nf_odd{(setup->ifac[1]&1) != 0};
assert(scratch != nullptr);
/* z-domain data for complex transforms is already ordered without SIMD. */
if(setup->transform == PFFFT_COMPLEX)
ordered = false;
float *buff[2]{output, scratch};
bool ib{nf_odd != ordered};
if(direction == PFFFT_FORWARD)
{
if(setup->transform == PFFFT_REAL)
ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib], setup->twiddle, setup->ifac) == buff[1]);
else
ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], setup->twiddle, setup->ifac, -1.0f) == buff[1]);
if(ordered)
{
pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD);
ib = !ib;
}
}
else
{
if (input == buff[ib])
ib = !ib; // may happen when finput == foutput
if(ordered)
{
pffft_zreorder(setup, input, buff[ib], PFFFT_BACKWARD);
input = buff[ib];
ib = !ib;
}
if(setup->transform == PFFFT_REAL)
ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib], setup->twiddle, setup->ifac) == buff[1]);
else
ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], setup->twiddle, setup->ifac, +1.0f) == buff[1]);
}
if(buff[ib] != output)
{
// extra copy required -- this situation should happens only when finput == foutput
assert(input==output);
for(size_t k{0};k < Ncvec;++k)
{
float a{buff[ib][2*k]}, b{buff[ib][2*k+1]};
output[2*k] = a; output[2*k+1] = b;
}
}
}
} // namespace
#define pffft_zreorder_nosimd pffft_zreorder
void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out,
pffft_direction_t direction)
{
const size_t N{setup->N};
if(setup->transform == PFFFT_COMPLEX)
{
for(size_t k{0};k < 2*N;++k)
out[k] = in[k];
return;
}
else if(direction == PFFFT_FORWARD)
{
float x_N{in[N-1]};
for(size_t k{N-1};k > 1;--k)
out[k] = in[k-1];
out[0] = in[0];
out[1] = x_N;
}
else
{
float x_N{in[1]};
for(size_t k{1};k < N-1;++k)
out[k] = in[k+1];
out[0] = in[0];
out[N-1] = x_N;
}
}
void pffft_zconvolve_scale_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab,
float scaling)
{
size_t Ncvec{s->Ncvec};
if(s->transform == PFFFT_REAL)
{
// take care of the fftpack ordering
ab[0] += a[0]*b[0]*scaling;
ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling;
++ab; ++a; ++b; --Ncvec;
}
for(size_t i{0};i < Ncvec;++i)
{
float ar{a[2*i+0]}, ai{a[2*i+1]};
const float br{b[2*i+0]}, bi{b[2*i+1]};
VCPLXMUL(ar, ai, br, bi);
ab[2*i+0] += ar*scaling;
ab[2*i+1] += ai*scaling;
}
}
void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab)
{
size_t Ncvec{s->Ncvec};
if(s->transform == PFFFT_REAL)
{
// take care of the fftpack ordering
ab[0] += a[0]*b[0];
ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1];
++ab; ++a; ++b; --Ncvec;
}
for(size_t i{0};i < Ncvec;++i)
{
float ar{a[2*i+0]}, ai{a[2*i+1]};
const float br{b[2*i+0]}, bi{b[2*i+1]};
VCPLXMUL(ar, ai, br, bi);
ab[2*i+0] += ar;
ab[2*i+1] += ai;
}
}
void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction)
{
pffft_transform_internal(setup, input, output, work, direction, false);
}
void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction)
{
pffft_transform_internal(setup, input, output, work, direction, true);
}
#endif // defined(PFFFT_SIMD_DISABLE)
|