1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
#include "config.h"
#include <arm_neon.h>
#include <limits>
#include "AL/al.h"
#include "AL/alc.h"
#include "alcmain.h"
#include "alu.h"
#include "hrtf.h"
#include "defs.h"
#include "hrtfbase.h"
template<>
const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState*, const ALfloat *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst)
{
const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
alignas(16) ALuint pos_[4], frac_[4];
int32x4_t pos4, frac4;
InitPosArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
auto dst_iter = dst.begin();
const auto aligned_end = (dst.size()&~3u) + dst_iter;
while(dst_iter != aligned_end)
{
const int pos0{vgetq_lane_s32(pos4, 0)};
const int pos1{vgetq_lane_s32(pos4, 1)};
const int pos2{vgetq_lane_s32(pos4, 2)};
const int pos3{vgetq_lane_s32(pos4, 3)};
const float32x4_t val1{src[pos0], src[pos1], src[pos2], src[pos3]};
const float32x4_t val2{src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]};
/* val1 + (val2-val1)*mu */
const float32x4_t r0{vsubq_f32(val2, val1)};
const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
const float32x4_t out{vmlaq_f32(val1, mu, r0)};
vst1q_f32(dst_iter, out);
dst_iter += 4;
frac4 = vaddq_s32(frac4, increment4);
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
frac4 = vandq_s32(frac4, fracMask4);
}
if(dst_iter != dst.end())
{
src += static_cast<ALuint>(vgetq_lane_s32(pos4, 0));
frac = static_cast<ALuint>(vgetq_lane_s32(frac4, 0));
do {
*(dst_iter++) = lerp(src[0], src[1], static_cast<float>(frac) * (1.0f/FRACTIONONE));
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(dst_iter != dst.end());
}
return dst.begin();
}
template<>
const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst)
{
const ALfloat *const filter{state->bsinc.filter};
const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
const size_t m{state->bsinc.m};
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
const ALfloat pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
#undef FRAC_PHASE_BITDIFF
// Apply the scale and phase interpolated filter.
float32x4_t r4{vdupq_n_f32(0.0f)};
{
const float32x4_t pf4{vdupq_n_f32(pf)};
const float *fil{filter + m*pi*4};
const float *phd{fil + m};
const float *scd{phd + m};
const float *spd{scd + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const float32x4_t f4 = vmlaq_f32(
vmlaq_f32(vld1q_f32(fil), sf4, vld1q_f32(scd)),
pf4, vmlaq_f32(vld1q_f32(phd), sf4, vld1q_f32(spd)));
fil += 4; scd += 4; phd += 4; spd += 4;
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
j += 4;
} while(--td);
}
r4 = vaddq_f32(r4, vrev64q_f32(r4));
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst.begin();
}
template<>
const ALfloat *Resample_<FastBSincTag,NEONTag>(const InterpState *state,
const ALfloat *RESTRICT src, ALuint frac, ALuint increment, const al::span<float> dst)
{
const ALfloat *const filter{state->bsinc.filter};
const size_t m{state->bsinc.m};
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
const ALfloat pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
#undef FRAC_PHASE_BITDIFF
// Apply the phase interpolated filter.
float32x4_t r4{vdupq_n_f32(0.0f)};
{
const float32x4_t pf4{vdupq_n_f32(pf)};
const float *fil{filter + m*pi*4};
const float *phd{fil + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = fil + pf*phd */
const float32x4_t f4 = vmlaq_f32(vld1q_f32(fil), pf4, vld1q_f32(phd));
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
fil += 4; phd += 4; j += 4;
} while(--td);
}
r4 = vaddq_f32(r4, vrev64q_f32(r4));
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst.begin();
}
static inline void ApplyCoeffs(size_t /*Offset*/, float2 *RESTRICT Values, const ALuint IrSize,
const HrirArray &Coeffs, const ALfloat left, const ALfloat right)
{
ASSUME(IrSize >= 4);
float32x4_t leftright4;
{
float32x2_t leftright2 = vdup_n_f32(0.0);
leftright2 = vset_lane_f32(left, leftright2, 0);
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
for(ALuint c{0};c < IrSize;c += 2)
{
float32x4_t vals = vld1q_f32(&Values[c][0]);
float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
vst1q_f32(&Values[c][0], vals);
}
}
template<>
void MixHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
MixHrtfFilter *hrtfparams, const size_t BufferSize)
{
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
hrtfparams, BufferSize);
}
template<>
void MixHrtfBlend_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
oldparams, newparams, BufferSize);
}
template<>
void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
const size_t BufferSize)
{
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize);
}
template<>
void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
{
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
const bool reached_target{InSamples.size() >= Counter};
const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
const auto aligned_end = minz(static_cast<uintptr_t>(min_end-InSamples.begin()+3) & ~3u,
InSamples.size()) + InSamples.begin();
for(FloatBufferLine &output : OutBuffer)
{
ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
ALfloat gain{*CurrentGains};
const ALfloat diff{*TargetGains - gain};
auto in_iter = InSamples.begin();
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
{
const ALfloat step{diff * delta};
ALfloat step_count{0.0f};
/* Mix with applying gain steps in aligned multiples of 4. */
if(ptrdiff_t todo{(min_end-in_iter) >> 2})
{
const float32x4_t four4{vdupq_n_f32(4.0f)};
const float32x4_t step4{vdupq_n_f32(step)};
const float32x4_t gain4{vdupq_n_f32(gain)};
float32x4_t step_count4{vsetq_lane_f32(0.0f,
vsetq_lane_f32(1.0f,
vsetq_lane_f32(2.0f,
vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3),
2), 1), 0
)};
do {
const float32x4_t val4 = vld1q_f32(in_iter);
float32x4_t dry4 = vld1q_f32(dst);
dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
step_count4 = vaddq_f32(step_count4, four4);
vst1q_f32(dst, dry4);
in_iter += 4; dst += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after
* the last four mixed samples, so the lowest element
* represents the next step count to apply.
*/
step_count = vgetq_lane_f32(step_count4, 0);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
while(in_iter != min_end)
{
*(dst++) += *(in_iter++) * (gain + step*step_count);
step_count += 1.0f;
}
if(reached_target)
gain = *TargetGains;
else
gain += step*step_count;
*CurrentGains = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
while(in_iter != aligned_end)
*(dst++) += *(in_iter++) * gain;
}
++CurrentGains;
++TargetGains;
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2})
{
const float32x4_t gain4 = vdupq_n_f32(gain);
do {
const float32x4_t val4 = vld1q_f32(in_iter);
float32x4_t dry4 = vld1q_f32(dst);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(dst, dry4);
in_iter += 4; dst += 4;
} while(--todo);
}
while(in_iter != InSamples.end())
*(dst++) += *(in_iter++) * gain;
}
}
template<>
void MixRow_<NEONTag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
const float *InSamples, const size_t InStride)
{
for(const ALfloat gain : Gains)
{
const ALfloat *RESTRICT input{InSamples};
InSamples += InStride;
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
auto out_iter = OutBuffer.begin();
if(size_t todo{OutBuffer.size() >> 2})
{
const float32x4_t gain4{vdupq_n_f32(gain)};
do {
const float32x4_t val4 = vld1q_f32(input);
float32x4_t dry4 = vld1q_f32(out_iter);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(out_iter, dry4);
out_iter += 4; input += 4;
} while(--todo);
}
auto do_mix = [gain](const float cur, const float src) noexcept -> float
{ return cur + src*gain; };
std::transform(out_iter, OutBuffer.end(), input, out_iter, do_mix);
}
}
|