1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
#ifndef ALC_HRTF_H
#define ALC_HRTF_H
#include <array>
#include <cstddef>
#include <memory>
#include <string>
#include "almalloc.h"
#include "alspan.h"
#include "ambidefs.h"
#include "atomic.h"
#include "core/bufferline.h"
#include "core/filters/splitter.h"
#include "intrusive_ptr.h"
#include "vector.h"
#define HRTF_HISTORY_BITS 6
#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS)
#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1)
#define HRIR_BITS 7
#define HRIR_LENGTH (1<<HRIR_BITS)
#define HRIR_MASK (HRIR_LENGTH-1)
#define MIN_IR_LENGTH 8
using float2 = std::array<float,2>;
using HrirArray = std::array<float2,HRIR_LENGTH>;
using ubyte = unsigned char;
using ubyte2 = std::array<ubyte,2>;
using ushort = unsigned short;
using uint = unsigned int;
struct HrtfStore {
RefCount mRef;
uint sampleRate;
uint irSize;
struct Field {
float distance;
ubyte evCount;
};
/* NOTE: Fields are stored *backwards*. field[0] is the farthest field, and
* field[fdCount-1] is the nearest.
*/
uint fdCount;
const Field *field;
struct Elevation {
ushort azCount;
ushort irOffset;
};
Elevation *elev;
const HrirArray *coeffs;
const ubyte2 *delays;
void add_ref();
void release();
DEF_PLACE_NEWDEL()
};
using HrtfStorePtr = al::intrusive_ptr<HrtfStore>;
struct HrtfFilter {
alignas(16) HrirArray Coeffs;
std::array<uint,2> Delay;
float Gain;
};
struct EvRadians { float value; };
struct AzRadians { float value; };
struct AngularPoint {
EvRadians Elev;
AzRadians Azim;
};
#define HRTF_DIRECT_DELAY 192
struct DirectHrtfState {
struct ChannelData {
std::array<float,HRTF_DIRECT_DELAY> mDelay{};
BandSplitter mSplitter;
float mHfScale{};
alignas(16) HrirArray mCoeffs{};
};
std::array<float,HRTF_DIRECT_DELAY+BufferLineSize> mTemp;
/* HRTF filter state for dry buffer content */
uint mIrSize{0};
al::FlexArray<ChannelData> mChannels;
DirectHrtfState(size_t numchans) : mChannels{numchans} { }
/**
* Produces HRTF filter coefficients for decoding B-Format, given a set of
* virtual speaker positions, a matching decoding matrix, and per-order
* high-frequency gains for the decoder. The calculated impulse responses
* are ordered and scaled according to the matrix input.
*/
void build(const HrtfStore *Hrtf, const al::span<const AngularPoint> AmbiPoints,
const float (*AmbiMatrix)[MAX_AMBI_CHANNELS],
const al::span<const float,MAX_AMBI_ORDER+1> AmbiOrderHFGain);
static std::unique_ptr<DirectHrtfState> Create(size_t num_chans);
DEF_FAM_NEWDEL(DirectHrtfState, mChannels)
};
al::vector<std::string> EnumerateHrtf(const char *devname);
HrtfStorePtr GetLoadedHrtf(const std::string &name, const char *devname, const uint devrate);
void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
float spread, HrirArray &coeffs, const al::span<uint,2> delays);
#endif /* ALC_HRTF_H */
|