1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
#ifndef ALU_H
#define ALU_H
#include <array>
#include <atomic>
#include <cmath>
#include <cstddef>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "al/buffer.h"
#include "alcmain.h"
#include "almalloc.h"
#include "alspan.h"
#include "ambidefs.h"
#include "devformat.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "hrtf.h"
#include "logging.h"
struct ALbufferlistitem;
struct ALeffectslot;
struct BSincTable;
enum class DistanceModel;
#define MAX_PITCH 255
#define MAX_SENDS 16
#define DITHER_RNG_SEED 22222
enum SpatializeMode {
SpatializeOff = AL_FALSE,
SpatializeOn = AL_TRUE,
SpatializeAuto = AL_AUTO_SOFT
};
enum class Resampler {
Point,
Linear,
Cubic,
FastBSinc12,
BSinc12,
FastBSinc24,
BSinc24,
Max = BSinc24
};
extern Resampler ResamplerDefault;
/* The number of distinct scale and phase intervals within the bsinc filter
* table.
*/
#define BSINC_SCALE_BITS 4
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
#define BSINC_PHASE_BITS 4
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)
/* Interpolator state. Kind of a misnomer since the interpolator itself is
* stateless. This just keeps it from having to recompute scale-related
* mappings for every sample.
*/
struct BsincState {
ALfloat sf; /* Scale interpolation factor. */
ALuint m; /* Coefficient count. */
ALuint l; /* Left coefficient offset. */
/* Filter coefficients, followed by the scale, phase, and scale-phase
* delta coefficients. Starting at phase index 0, each subsequent phase
* index follows contiguously.
*/
const ALfloat *filter;
};
union InterpState {
BsincState bsinc;
};
using ResamplerFunc = const ALfloat*(*)(const InterpState *state, const ALfloat *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst);
void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table);
extern const BSincTable bsinc12;
extern const BSincTable bsinc24;
enum {
AF_None = 0,
AF_LowPass = 1,
AF_HighPass = 2,
AF_BandPass = AF_LowPass | AF_HighPass
};
struct MixHrtfFilter {
const HrirArray *Coeffs;
ALsizei Delay[2];
ALfloat Gain;
ALfloat GainStep;
};
struct DirectParams {
BiquadFilter LowPass;
BiquadFilter HighPass;
NfcFilter NFCtrlFilter;
struct {
HrtfFilter Old;
HrtfFilter Target;
HrtfState State;
} Hrtf;
struct {
ALfloat Current[MAX_OUTPUT_CHANNELS];
ALfloat Target[MAX_OUTPUT_CHANNELS];
} Gains;
};
struct SendParams {
BiquadFilter LowPass;
BiquadFilter HighPass;
struct {
ALfloat Current[MAX_OUTPUT_CHANNELS];
ALfloat Target[MAX_OUTPUT_CHANNELS];
} Gains;
};
struct ALvoicePropsBase {
ALfloat Pitch;
ALfloat Gain;
ALfloat OuterGain;
ALfloat MinGain;
ALfloat MaxGain;
ALfloat InnerAngle;
ALfloat OuterAngle;
ALfloat RefDistance;
ALfloat MaxDistance;
ALfloat RolloffFactor;
std::array<ALfloat,3> Position;
std::array<ALfloat,3> Velocity;
std::array<ALfloat,3> Direction;
std::array<ALfloat,3> OrientAt;
std::array<ALfloat,3> OrientUp;
ALboolean HeadRelative;
DistanceModel mDistanceModel;
Resampler mResampler;
ALboolean DirectChannels;
SpatializeMode mSpatializeMode;
ALboolean DryGainHFAuto;
ALboolean WetGainAuto;
ALboolean WetGainHFAuto;
ALfloat OuterGainHF;
ALfloat AirAbsorptionFactor;
ALfloat RoomRolloffFactor;
ALfloat DopplerFactor;
std::array<ALfloat,2> StereoPan;
ALfloat Radius;
/** Direct filter and auxiliary send info. */
struct {
ALfloat Gain;
ALfloat GainHF;
ALfloat HFReference;
ALfloat GainLF;
ALfloat LFReference;
} Direct;
struct SendData {
ALeffectslot *Slot;
ALfloat Gain;
ALfloat GainHF;
ALfloat HFReference;
ALfloat GainLF;
ALfloat LFReference;
} Send[MAX_SENDS];
};
struct ALvoiceProps : public ALvoicePropsBase {
std::atomic<ALvoiceProps*> next{nullptr};
DEF_NEWDEL(ALvoiceProps)
};
#define VOICE_IS_STATIC (1u<<0)
#define VOICE_IS_FADING (1u<<1) /* Fading sources use gain stepping for smooth transitions. */
#define VOICE_IS_AMBISONIC (1u<<2) /* Voice needs HF scaling for ambisonic upsampling. */
#define VOICE_HAS_HRTF (1u<<3)
#define VOICE_HAS_NFC (1u<<4)
struct ALvoice {
enum State {
Stopped = 0,
Playing = 1,
Stopping = 2
};
std::atomic<ALvoiceProps*> mUpdate{nullptr};
std::atomic<ALuint> mSourceID{0u};
std::atomic<State> mPlayState{Stopped};
ALvoicePropsBase mProps;
/**
* Source offset in samples, relative to the currently playing buffer, NOT
* the whole queue.
*/
std::atomic<ALuint> mPosition;
/** Fractional (fixed-point) offset to the next sample. */
std::atomic<ALuint> mPositionFrac;
/* Current buffer queue item being played. */
std::atomic<ALbufferlistitem*> mCurrentBuffer;
/* Buffer queue item to loop to at end of queue (will be NULL for non-
* looping voices).
*/
std::atomic<ALbufferlistitem*> mLoopBuffer;
/* Properties for the attached buffer(s). */
FmtChannels mFmtChannels;
ALuint mFrequency;
ALuint mNumChannels;
ALuint mSampleSize;
/** Current target parameters used for mixing. */
ALuint mStep;
ResamplerFunc mResampler;
InterpState mResampleState;
ALuint mFlags;
struct DirectData {
int FilterType;
al::span<FloatBufferLine> Buffer;
};
DirectData mDirect;
struct SendData {
int FilterType;
al::span<FloatBufferLine> Buffer;
};
std::array<SendData,MAX_SENDS> mSend;
struct ChannelData {
alignas(16) std::array<ALfloat,MAX_RESAMPLE_PADDING*2> mPrevSamples;
ALfloat mAmbiScale;
BandSplitter mAmbiSplitter;
DirectParams mDryParams;
std::array<SendParams,MAX_SENDS> mWetParams;
};
std::array<ChannelData,MAX_INPUT_CHANNELS> mChans;
ALvoice() = default;
ALvoice(const ALvoice&) = delete;
ALvoice(ALvoice&& rhs) noexcept { *this = std::move(rhs); }
~ALvoice() { delete mUpdate.exchange(nullptr, std::memory_order_acq_rel); }
ALvoice& operator=(const ALvoice&) = delete;
ALvoice& operator=(ALvoice&& rhs) noexcept
{
ALvoiceProps *old_update{mUpdate.load(std::memory_order_relaxed)};
mUpdate.store(rhs.mUpdate.exchange(old_update, std::memory_order_relaxed),
std::memory_order_relaxed);
mSourceID.store(rhs.mSourceID.load(std::memory_order_relaxed), std::memory_order_relaxed);
mPlayState.store(rhs.mPlayState.load(std::memory_order_relaxed),
std::memory_order_relaxed);
mProps = rhs.mProps;
mPosition.store(rhs.mPosition.load(std::memory_order_relaxed), std::memory_order_relaxed);
mPositionFrac.store(rhs.mPositionFrac.load(std::memory_order_relaxed),
std::memory_order_relaxed);
mCurrentBuffer.store(rhs.mCurrentBuffer.load(std::memory_order_relaxed),
std::memory_order_relaxed);
mLoopBuffer.store(rhs.mLoopBuffer.load(std::memory_order_relaxed),
std::memory_order_relaxed);
mFmtChannels = rhs.mFmtChannels;
mFrequency = rhs.mFrequency;
mNumChannels = rhs.mNumChannels;
mSampleSize = rhs.mSampleSize;
mStep = rhs.mStep;
mResampler = rhs.mResampler;
mResampleState = rhs.mResampleState;
mFlags = rhs.mFlags;
mDirect = rhs.mDirect;
mSend = rhs.mSend;
mChans = rhs.mChans;
return *this;
}
void mix(ALvoice::State vstate, ALCcontext *Context, const ALuint SamplesToDo);
};
using MixerFunc = void(*)(const al::span<const float> InSamples,
const al::span<FloatBufferLine> OutBuffer, float *CurrentGains, const float *TargetGains,
const size_t Counter, const size_t OutPos);
using RowMixerFunc = void(*)(const al::span<float> OutBuffer, const al::span<const float> Gains,
const float *InSamples, const size_t InStride);
using HrtfMixerFunc = void(*)(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
MixHrtfFilter *hrtfparams, const size_t BufferSize);
using HrtfMixerBlendFunc = void(*)(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize);
using HrtfDirectMixerFunc = void(*)(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
const size_t BufferSize);
#define GAIN_MIX_MAX (1000.0f) /* +60dB */
#define GAIN_SILENCE_THRESHOLD (0.00001f) /* -100dB */
#define SPEEDOFSOUNDMETRESPERSEC (343.3f)
#define AIRABSORBGAINHF (0.99426f) /* -0.05dB */
/* Target gain for the reverb decay feedback reaching the decay time. */
#define REVERB_DECAY_GAIN (0.001f) /* -60 dB */
#define FRACTIONBITS (12)
#define FRACTIONONE (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)
inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu) noexcept
{ return val1 + (val2-val1)*mu; }
inline ALfloat cubic(ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat mu) noexcept
{
ALfloat mu2 = mu*mu, mu3 = mu2*mu;
ALfloat a0 = -0.5f*mu3 + mu2 + -0.5f*mu;
ALfloat a1 = 1.5f*mu3 + -2.5f*mu2 + 1.0f;
ALfloat a2 = -1.5f*mu3 + 2.0f*mu2 + 0.5f*mu;
ALfloat a3 = 0.5f*mu3 + -0.5f*mu2;
return val1*a0 + val2*a1 + val3*a2 + val4*a3;
}
enum HrtfRequestMode {
Hrtf_Default = 0,
Hrtf_Enable = 1,
Hrtf_Disable = 2,
};
void aluInit(void);
void aluInitMixer(void);
ResamplerFunc SelectResampler(Resampler resampler, ALuint increment);
/* aluInitRenderer
*
* Set up the appropriate panning method and mixing method given the device
* properties.
*/
void aluInitRenderer(ALCdevice *device, ALint hrtf_id, HrtfRequestMode hrtf_appreq, HrtfRequestMode hrtf_userreq);
void aluInitEffectPanning(ALeffectslot *slot, ALCdevice *device);
/**
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
* components, which must represent a normalized (unit length) vector, and the
* spread is the angular width of the sound (0...tau).
*
* NOTE: The components use ambisonic coordinates. As a result:
*
* Ambisonic Y = OpenAL -X
* Ambisonic Z = OpenAL Y
* Ambisonic X = OpenAL -Z
*
* The components are ordered such that OpenAL's X, Y, and Z are the first,
* second, and third parameters respectively -- simply negate X and Z.
*/
void CalcAmbiCoeffs(const ALfloat y, const ALfloat z, const ALfloat x, const ALfloat spread,
ALfloat (&coeffs)[MAX_AMBI_CHANNELS]);
/**
* CalcDirectionCoeffs
*
* Calculates ambisonic coefficients based on an OpenAL direction vector. The
* vector must be normalized (unit length), and the spread is the angular width
* of the sound (0...tau).
*/
inline void CalcDirectionCoeffs(const ALfloat (&dir)[3], ALfloat spread, ALfloat (&coeffs)[MAX_AMBI_CHANNELS])
{
/* Convert from OpenAL coords to Ambisonics. */
CalcAmbiCoeffs(-dir[0], dir[1], -dir[2], spread, coeffs);
}
/**
* CalcAngleCoeffs
*
* Calculates ambisonic coefficients based on azimuth and elevation. The
* azimuth and elevation parameters are in radians, going right and up
* respectively.
*/
inline void CalcAngleCoeffs(ALfloat azimuth, ALfloat elevation, ALfloat spread, ALfloat (&coeffs)[MAX_AMBI_CHANNELS])
{
ALfloat x = -std::sin(azimuth) * std::cos(elevation);
ALfloat y = std::sin(elevation);
ALfloat z = std::cos(azimuth) * std::cos(elevation);
CalcAmbiCoeffs(x, y, z, spread, coeffs);
}
/**
* ComputePanGains
*
* Computes panning gains using the given channel decoder coefficients and the
* pre-calculated direction or angle coefficients. For B-Format sources, the
* coeffs are a 'slice' of a transform matrix for the input channel, used to
* scale and orient the sound samples.
*/
void ComputePanGains(const MixParams *mix, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS]);
inline std::array<ALfloat,MAX_AMBI_CHANNELS> GetAmbiIdentityRow(size_t i) noexcept
{
std::array<ALfloat,MAX_AMBI_CHANNELS> ret{};
ret[i] = 1.0f;
return ret;
}
void aluMixData(ALCdevice *device, ALvoid *OutBuffer, const ALuint NumSamples);
/* Caller must lock the device state, and the mixer must not be running. */
void aluHandleDisconnect(ALCdevice *device, const char *msg, ...) DECL_FORMAT(printf, 2, 3);
extern MixerFunc MixSamples;
extern RowMixerFunc MixRowSamples;
extern const ALfloat ConeScale;
extern const ALfloat ZScale;
#endif
|