/* * SOFA utility methods for inspecting SOFA file metrics and determining HRTF * utility compatible layouts. * * Copyright (C) 2018-2019 Christopher Fitzgerald * Copyright (C) 2019 Christopher Robinson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html */ #include "sofa-support.h" #include #include #include #include #include #include #include "mysofa.h" namespace { using uint = unsigned int; using double3 = std::array; /* Produces a sorted array of unique elements from a particular axis of the * triplets array. The filters are used to focus on particular coordinates * of other axes as necessary. The epsilons are used to constrain the * equality of unique elements. */ std::vector GetUniquelySortedElems(const std::vector &aers, const uint axis, const std::array filters, const std::array epsilons) { std::vector elems; for(const double3 &aer : aers) { const double elem{aer[axis]}; uint j; for(j = 0;j < 3;j++) { if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) break; } if(j < 3) continue; auto iter = elems.begin(); for(;iter != elems.end();++iter) { const double delta{elem - *iter}; if(delta > epsilons[axis]) continue; if(delta >= -epsilons[axis]) break; iter = elems.emplace(iter, elem); break; } if(iter == elems.end()) elems.emplace_back(elem); } return elems; } /* Given a list of azimuths, this will produce the smallest step size that can * uniformly cover the list. Ideally this will be over half, but in degenerate * cases this can fall to a minimum of 5 (the lower limit). */ double GetUniformAzimStep(const double epsilon, const std::vector &elems) { if(elems.size() < 5) return 0.0; /* Get the maximum count possible, given the first two elements. It would * be impossible to have more than this since the first element must be * included. */ uint count{static_cast(std::ceil(360.0 / (elems[1]-elems[0])))}; count = std::min(count, 255u); for(;count >= 5;--count) { /* Given the stepping value for this number of elements, check each * multiple to ensure there's a matching element. */ const double step{360.0 / count}; bool good{true}; size_t idx{1u}; for(uint mult{1u};mult < count && good;++mult) { const double target{step*mult + elems[0]}; while(idx < elems.size() && target-elems[idx] > epsilon) ++idx; good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); } if(good) return step; } return 0.0; } /* Given a list of elevations, this will produce the smallest step size that * can uniformly cover the list. Ideally this will be over half, but in * degenerate cases this can fall to a minimum of 5 (the lower limit). */ double GetUniformElevStep(const double epsilon, std::vector &elems) { if(elems.size() < 5) return 0.0; /* Reverse the elevations so it increments starting with -90 (flipped from * +90). This makes it easier to work out a proper stepping value. */ std::reverse(elems.begin(), elems.end()); for(auto &v : elems) v *= -1.0; uint count{static_cast(std::ceil(180.0 / (elems[1]-elems[0])))}; count = std::min(count, 255u); double ret{0.0}; for(;count >= 5;--count) { const double step{180.0 / count}; bool good{true}; size_t idx{1u}; /* Elevations don't need to match all multiples if there's not enough * elements to check. Missing elevations can be synthesized. */ for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) { const double target{step*mult + elems[0]}; while(idx < elems.size() && target-elems[idx] > epsilon) ++idx; good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); } if(good) { ret = step; break; } } /* Re-reverse the elevations to restore the correct order. */ for(auto &v : elems) v *= -1.0; std::reverse(elems.begin(), elems.end()); return ret; } } // namespace const char *SofaErrorStr(int err) { switch(err) { case MYSOFA_OK: return "OK"; case MYSOFA_INVALID_FORMAT: return "Invalid format"; case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; case MYSOFA_INTERNAL_ERROR: return "Internal error"; case MYSOFA_NO_MEMORY: return "Out of memory"; case MYSOFA_READ_ERROR: return "Read error"; } return "Unknown"; } std::vector GetCompatibleLayout(const size_t m, const float *xyzs) { auto aers = std::vector(m, double3{}); for(size_t i{0u};i < m;++i) { std::array vals{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; mysofa_c2s(vals.data()); aers[i] = {vals[0], vals[1], vals[2]}; } auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); std::vector fds; fds.reserve(radii.size()); for(const double dist : radii) { auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001}); /* Remove elevations that don't have a valid set of azimuths. */ auto invalid_elev = [&dist,&aers](const double ev) -> bool { auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); if(std::abs(ev) > 89.999) return azims.size() != 1; if(azims.empty() || !(std::abs(azims[0]) < 0.1)) return true; return GetUniformAzimStep(0.1, azims) <= 0.0; }; elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); double step{GetUniformElevStep(0.1, elevs)}; if(step <= 0.0) { if(elevs.empty()) fprintf(stdout, "No usable elevations on field distance %f.\n", dist); else { fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist, elevs[0]); for(size_t ei{1u};ei < elevs.size();++ei) fprintf(stdout, ", %+.2f", elevs[ei]); fputc('\n', stdout); } continue; } uint evStart{0u}; for(uint ei{0u};ei < elevs.size();ei++) { if(!(elevs[ei] < 0.0)) { fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); return fds; } double eif{(90.0+elevs[ei]) / step}; const double ev_start{std::round(eif)}; if(std::abs(eif - ev_start) < (0.1/step)) { evStart = static_cast(ev_start); break; } } const auto evCount = static_cast(std::round(180.0 / step)) + 1; if(evCount < 5) { fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); continue; } SofaField field{}; field.mDistance = dist; field.mEvCount = evCount; field.mEvStart = evStart; field.mAzCounts.resize(evCount, 0u); auto &azCounts = field.mAzCounts; for(uint ei{evStart};ei < evCount;ei++) { double ev{-90.0 + ei*180.0/(evCount - 1)}; auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); if(ei == 0 || ei == (evCount-1)) { if(azims.size() != 1) { fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); return fds; } azCounts[ei] = 1; } else { step = GetUniformAzimStep(0.1, azims); if(step <= 0.0) { fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", ev, dist); return fds; } azCounts[ei] = static_cast(std::round(360.0f / step)); } } fds.emplace_back(std::move(field)); } return fds; }