/* * An example showing how to play a stream sync'd to video, using ffmpeg. * * Requires C++11. */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { #include "libavcodec/avcodec.h" #include "libavformat/avformat.h" #include "libavformat/avio.h" #include "libavutil/time.h" #include "libavutil/pixfmt.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libswscale/swscale.h" #include "libswresample/swresample.h" } #include "SDL.h" #include "AL/alc.h" #include "AL/al.h" #include "AL/alext.h" namespace { const std::string AppName("alffplay"); bool do_direct_out = false; LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT; const std::chrono::seconds AVNoSyncThreshold(10); const std::chrono::duration VideoSyncThreshold(0.01); #define VIDEO_PICTURE_QUEUE_SIZE 16 const std::chrono::duration AudioSyncThreshold(0.03); const std::chrono::duration AudioSampleCorrectionMax(0.05); /* Averaging filter coefficient for audio sync. */ #define AUDIO_DIFF_AVG_NB 20 const double AudioAvgFilterCoeff = std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB); const std::chrono::milliseconds AudioBufferTime(20); /* Per-buffer */ #define AUDIO_BUFFER_QUEUE_SIZE 25 /* Number of buffers to queue (~500ms) */ #define MAX_QUEUE_SIZE (15 * 1024 * 1024) /* Bytes of compressed data to keep queued */ enum { FF_UPDATE_EVENT = SDL_USEREVENT, FF_REFRESH_EVENT, FF_MOVIE_DONE_EVENT }; enum class SyncMaster { Audio, Video, External, Default = External }; class PacketQueue { std::deque mPackets; size_t mTotalSize{0}; public: ~PacketQueue() { clear(); } bool empty() const noexcept { return mPackets.empty(); } size_t totalSize() const noexcept { return mTotalSize; } void put(const AVPacket *pkt) { mPackets.push_back(AVPacket{}); if(av_packet_ref(&mPackets.back(), pkt) != 0) mPackets.pop_back(); else mTotalSize += mPackets.back().size; } AVPacket *front() noexcept { return &mPackets.front(); } void pop() { AVPacket *pkt = &mPackets.front(); mTotalSize -= pkt->size; av_packet_unref(pkt); mPackets.pop_front(); } void clear() { for(AVPacket &pkt : mPackets) av_packet_unref(&pkt); mPackets.clear(); mTotalSize = 0; } }; struct MovieState; struct AudioState { MovieState &mMovie; AVStream *mStream{nullptr}; AVCodecContext *mCodecCtx{nullptr}; std::mutex mQueueMtx; std::condition_variable mQueueCond; /* Used for clock difference average computation */ std::chrono::duration mClockDiffAvg{0}; /* Time (in nanoseconds) of the next sample to be buffered */ std::chrono::nanoseconds mCurrentPts{0}; /* Decompressed sample frame, and swresample context for conversion */ AVFrame *mDecodedFrame{nullptr}; struct SwrContext *mSwresCtx{nullptr}; /* Conversion format, for what gets fed to Alure */ int mDstChanLayout{0}; enum AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE}; /* Storage of converted samples */ uint8_t *mSamples{nullptr}; int mSamplesLen{0}; /* In samples */ int mSamplesPos{0}; int mSamplesMax{0}; /* OpenAL format */ ALenum mFormat{AL_NONE}; ALsizei mFrameSize{0}; std::recursive_mutex mSrcMutex; ALuint mSource{0}; ALuint mBuffers[AUDIO_BUFFER_QUEUE_SIZE]; ALsizei mBufferIdx{0}; AudioState(MovieState &movie) : mMovie(movie) { for(auto &buf : mBuffers) buf = 0; } ~AudioState() { if(mSource) alDeleteSources(1, &mSource); alDeleteBuffers(AUDIO_BUFFER_QUEUE_SIZE, mBuffers); av_frame_free(&mDecodedFrame); swr_free(&mSwresCtx); av_freep(&mSamples); avcodec_free_context(&mCodecCtx); } std::chrono::nanoseconds getClock(); int getSync(); int decodeFrame(); int readAudio(uint8_t *samples, int length); int handler(); }; struct VideoState { MovieState &mMovie; AVStream *mStream{nullptr}; AVCodecContext *mCodecCtx{nullptr}; std::mutex mQueueMtx; std::condition_variable mQueueCond; std::chrono::nanoseconds mClock{0}; std::chrono::duration mFrameTimer{0}; std::chrono::nanoseconds mFrameLastPts{0}; std::chrono::nanoseconds mFrameLastDelay{0}; std::chrono::nanoseconds mCurrentPts{0}; /* time (av_gettime) at which we updated mCurrentPts - used to have running video pts */ std::chrono::microseconds mCurrentPtsTime{0}; /* Decompressed video frame, and swscale context for conversion */ AVFrame *mDecodedFrame{nullptr}; struct SwsContext *mSwscaleCtx{nullptr}; struct Picture { SDL_Texture *mImage{nullptr}; int mWidth{0}, mHeight{0}; /* Logical image size (actual size may be larger) */ std::atomic mUpdated{false}; std::chrono::nanoseconds mPts{0}; ~Picture() { if(mImage) SDL_DestroyTexture(mImage); mImage = nullptr; } }; std::array mPictQ; size_t mPictQSize{0}, mPictQRead{0}, mPictQWrite{0}; std::mutex mPictQMutex; std::condition_variable mPictQCond; bool mFirstUpdate{true}; std::atomic mEOS{false}; std::atomic mFinalUpdate{false}; VideoState(MovieState &movie) : mMovie(movie) { } ~VideoState() { sws_freeContext(mSwscaleCtx); mSwscaleCtx = nullptr; av_frame_free(&mDecodedFrame); avcodec_free_context(&mCodecCtx); } std::chrono::nanoseconds getClock(); static Uint32 SDLCALL sdl_refresh_timer_cb(Uint32 interval, void *opaque); void schedRefresh(std::chrono::milliseconds delay); void display(SDL_Window *screen, SDL_Renderer *renderer); void refreshTimer(SDL_Window *screen, SDL_Renderer *renderer); void updatePicture(SDL_Window *screen, SDL_Renderer *renderer); int queuePicture(std::chrono::nanoseconds pts); std::chrono::nanoseconds synchronize(std::chrono::nanoseconds pts); int handler(); }; struct MovieState { AVFormatContext *mFormatCtx{nullptr}; SyncMaster mAVSyncType{SyncMaster::Default}; std::chrono::microseconds mClockBase{0}; std::mutex mSendMtx; std::condition_variable mSendCond; /* NOTE: false/clear = need data, true/set = no data needed */ std::atomic_flag mSendDataGood; std::atomic mQuit{false}; AudioState mAudio; VideoState mVideo; std::thread mParseThread; std::thread mAudioThread; std::thread mVideoThread; std::string mFilename; MovieState(std::string fname) : mAudio(*this), mVideo(*this), mFilename(std::move(fname)) { } ~MovieState() { mQuit = true; if(mParseThread.joinable()) mParseThread.join(); avformat_close_input(&mFormatCtx); } static int decode_interrupt_cb(void *ctx); bool prepare(); void setTitle(SDL_Window *window); std::chrono::nanoseconds getClock(); std::chrono::nanoseconds getMasterClock(); int streamComponentOpen(int stream_index); int parse_handler(); }; std::chrono::nanoseconds AudioState::getClock() { using fixed32 = std::chrono::duration>; using nanoseconds = std::chrono::nanoseconds; std::unique_lock lock(mSrcMutex); /* The audio clock is the timestamp of the sample currently being heard. * It's based on 4 components: * 1 - The timestamp of the next sample to buffer (mCurrentPts) * 2 - The length of the source's buffer queue * (AudioBufferTime*AL_BUFFERS_QUEUED) * 3 - The offset OpenAL is currently at in the source (the first value * from AL_SAMPLE_OFFSET_LATENCY_SOFT) * 4 - The latency between OpenAL and the DAC (the second value from * AL_SAMPLE_OFFSET_LATENCY_SOFT) * * Subtracting the length of the source queue from the next sample's * timestamp gives the timestamp of the sample at start of the source * queue. Adding the source offset to that results in the timestamp for * OpenAL's current position, and subtracting the source latency from that * gives the timestamp of the sample currently at the DAC. */ nanoseconds pts = mCurrentPts; if(mSource) { ALint64SOFT offset[2]; ALint queued; ALint status; /* NOTE: The source state must be checked last, in case an underrun * occurs and the source stops between retrieving the offset+latency * and getting the state. */ if(alGetSourcei64vSOFT) alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset); else { ALint ioffset; alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset); offset[0] = (ALint64SOFT)ioffset << 32; offset[1] = 0; } alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued); alGetSourcei(mSource, AL_SOURCE_STATE, &status); /* If the source is AL_STOPPED, then there was an underrun and all * buffers are processed, so ignore the source queue. The audio thread * will put the source into an AL_INITIAL state and clear the queue * when it starts recovery. */ if(status != AL_STOPPED) { pts -= AudioBufferTime*queued; pts += std::chrono::duration_cast( fixed32(offset[0] / mCodecCtx->sample_rate) ); } if(status == AL_PLAYING) pts -= nanoseconds(offset[1]); } lock.unlock(); return std::max(pts, std::chrono::nanoseconds::zero()); } int AudioState::getSync() { using seconds = std::chrono::duration; if(mMovie.mAVSyncType == SyncMaster::Audio) return 0; auto ref_clock = mMovie.getMasterClock(); auto diff = seconds(ref_clock - getClock()); if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold)) { /* Difference is TOO big; reset accumulated average */ mClockDiffAvg = std::chrono::duration::zero(); return 0; } /* Accumulate the diffs */ mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff; auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff); if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold) return 0; /* Constrain the per-update difference to avoid exceedingly large skips */ if(!(diff < AudioSampleCorrectionMax)) return (int)(AudioSampleCorrectionMax * mCodecCtx->sample_rate).count(); if(!(diff > -AudioSampleCorrectionMax)) return (int)(-AudioSampleCorrectionMax * mCodecCtx->sample_rate).count(); return (int)(diff.count()*mCodecCtx->sample_rate); } int AudioState::decodeFrame() { while(!mMovie.mQuit.load()) { std::unique_lock lock(mQueueMtx); int ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame); if(ret == AVERROR(EAGAIN)) { mMovie.mSendDataGood.clear(std::memory_order_relaxed); std::unique_lock(mMovie.mSendMtx).unlock(); mMovie.mSendCond.notify_one(); do { mQueueCond.wait(lock); ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame); } while(ret == AVERROR(EAGAIN)); } lock.unlock(); if(ret == AVERROR_EOF) break; mMovie.mSendDataGood.clear(std::memory_order_relaxed); mMovie.mSendCond.notify_one(); if(ret < 0) { std::cerr<< "Failed to decode frame: "<nb_samples <= 0) { av_frame_unref(mDecodedFrame); continue; } /* If provided, update w/ pts */ int64_t pts = av_frame_get_best_effort_timestamp(mDecodedFrame); if(pts != AV_NOPTS_VALUE) mCurrentPts = std::chrono::duration_cast( std::chrono::duration(av_q2d(mStream->time_base)*pts) ); if(mDecodedFrame->nb_samples > mSamplesMax) { av_freep(&mSamples); av_samples_alloc( &mSamples, nullptr, mCodecCtx->channels, mDecodedFrame->nb_samples, mDstSampleFmt, 0 ); mSamplesMax = mDecodedFrame->nb_samples; } /* Return the amount of sample frames converted */ int data_size = swr_convert(mSwresCtx, &mSamples, mDecodedFrame->nb_samples, (const uint8_t**)mDecodedFrame->data, mDecodedFrame->nb_samples ); av_frame_unref(mDecodedFrame); return data_size; } return 0; } /* Duplicates the sample at in to out, count times. The frame size is a * multiple of the template type size. */ template static void sample_dup(uint8_t *out, const uint8_t *in, int count, int frame_size) { const T *sample = reinterpret_cast(in); T *dst = reinterpret_cast(out); if(frame_size == sizeof(T)) std::fill_n(dst, count, *sample); else { /* NOTE: frame_size is a multiple of sizeof(T). */ int type_mult = frame_size / sizeof(T); int i = 0; std::generate_n(dst, count*type_mult, [sample,type_mult,&i]() -> T { T ret = sample[i]; i = (i+1)%type_mult; return ret; } ); } } int AudioState::readAudio(uint8_t *samples, int length) { using seconds = std::chrono::duration; using nanoseconds = std::chrono::nanoseconds; int sample_skip = getSync(); int audio_size = 0; /* Read the next chunk of data, refill the buffer, and queue it * on the source */ length /= mFrameSize; while(audio_size < length) { if(mSamplesLen <= 0 || mSamplesPos >= mSamplesLen) { int frame_len = decodeFrame(); if(frame_len <= 0) break; mSamplesLen = frame_len; mSamplesPos = std::min(mSamplesLen, sample_skip); sample_skip -= mSamplesPos; mCurrentPts += nanoseconds(seconds(mSamplesPos)) / mCodecCtx->sample_rate; continue; } int rem = length - audio_size; if(mSamplesPos >= 0) { int len = mSamplesLen - mSamplesPos; if(rem > len) rem = len; memcpy(samples, mSamples + mSamplesPos*mFrameSize, rem*mFrameSize); } else { rem = std::min(rem, -mSamplesPos); /* Add samples by copying the first sample */ if((mFrameSize&7) == 0) sample_dup(samples, mSamples, rem, mFrameSize); else if((mFrameSize&3) == 0) sample_dup(samples, mSamples, rem, mFrameSize); else if((mFrameSize&1) == 0) sample_dup(samples, mSamples, rem, mFrameSize); else sample_dup(samples, mSamples, rem, mFrameSize); } mSamplesPos += rem; mCurrentPts += nanoseconds(seconds(rem)) / mCodecCtx->sample_rate; samples += rem*mFrameSize; audio_size += rem; } if(audio_size < length && audio_size > 0) { int rem = length - audio_size; std::fill_n(samples, rem*mFrameSize, (mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00); mCurrentPts += nanoseconds(seconds(rem)) / mCodecCtx->sample_rate; audio_size += rem; } return audio_size * mFrameSize; } int AudioState::handler() { std::unique_lock lock(mSrcMutex); ALenum fmt; /* Find a suitable format for Alure. */ mDstChanLayout = 0; if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P) { mDstSampleFmt = AV_SAMPLE_FMT_U8; mFrameSize = 1; if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_71CHN8")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 8; mFormat = fmt; } if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 || mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_51CHN8")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 6; mFormat = fmt; } if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 1; mFormat = AL_FORMAT_MONO8; } if(!mDstChanLayout) { mDstChanLayout = AV_CH_LAYOUT_STEREO; mFrameSize *= 2; mFormat = AL_FORMAT_STEREO8; } } if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP) && alIsExtensionPresent("AL_EXT_FLOAT32")) { mDstSampleFmt = AV_SAMPLE_FMT_FLT; mFrameSize = 4; if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_71CHN32")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 8; mFormat = fmt; } if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 || mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_51CHN32")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 6; mFormat = fmt; } if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 1; mFormat = AL_FORMAT_MONO_FLOAT32; } if(!mDstChanLayout) { mDstChanLayout = AV_CH_LAYOUT_STEREO; mFrameSize *= 2; mFormat = AL_FORMAT_STEREO_FLOAT32; } } if(!mDstChanLayout) { mDstSampleFmt = AV_SAMPLE_FMT_S16; mFrameSize = 2; if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1 && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_71CHN16")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 8; mFormat = fmt; } if((mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1 || mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) && alIsExtensionPresent("AL_EXT_MCFORMATS") && (fmt=alGetEnumValue("AL_FORMAT_51CHN16")) != AL_NONE && fmt != -1) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 6; mFormat = fmt; } if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO) { mDstChanLayout = mCodecCtx->channel_layout; mFrameSize *= 1; mFormat = AL_FORMAT_MONO16; } if(!mDstChanLayout) { mDstChanLayout = AV_CH_LAYOUT_STEREO; mFrameSize *= 2; mFormat = AL_FORMAT_STEREO16; } } ALsizei buffer_len = std::chrono::duration_cast>( mCodecCtx->sample_rate * AudioBufferTime).count() * mFrameSize; void *samples = av_malloc(buffer_len); mSamples = NULL; mSamplesMax = 0; mSamplesPos = 0; mSamplesLen = 0; if(!(mDecodedFrame=av_frame_alloc())) { std::cerr<< "Failed to allocate audio frame" <sample_rate, mCodecCtx->channel_layout ? mCodecCtx->channel_layout : (uint64_t)av_get_default_channel_layout(mCodecCtx->channels), mCodecCtx->sample_fmt, mCodecCtx->sample_rate, 0, nullptr ); if(!mSwresCtx || swr_init(mSwresCtx) != 0) { std::cerr<< "Failed to initialize audio converter" < 0) { std::array tmp; alSourceUnqueueBuffers(mSource, processed, tmp.data()); } /* Refill the buffer queue. */ ALint queued; alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued); while(queued < AUDIO_BUFFER_QUEUE_SIZE) { int audio_size; /* Read the next chunk of data, fill the buffer, and queue it on * the source */ audio_size = readAudio(reinterpret_cast(samples), buffer_len); if(audio_size <= 0) break; ALuint bufid = mBuffers[mBufferIdx++]; mBufferIdx %= AUDIO_BUFFER_QUEUE_SIZE; alBufferData(bufid, mFormat, samples, audio_size, mCodecCtx->sample_rate); alSourceQueueBuffers(mSource, 1, &bufid); queued++; } if(queued == 0) break; /* Check that the source is playing. */ ALint state; alGetSourcei(mSource, AL_SOURCE_STATE, &state); if(state == AL_STOPPED) { /* AL_STOPPED means there was an underrun. Clear the buffer queue * since this likely means we're late, and rewind the source to get * it back into an AL_INITIAL state. */ alSourcei(mSource, AL_BUFFER, 0); alSourceRewind(mSource); continue; } lock.unlock(); /* (re)start the source if needed, and wait for a buffer to finish */ if(state != AL_PLAYING && state != AL_PAUSED) alSourcePlay(mSource); SDL_Delay((AudioBufferTime/3).count()); lock.lock(); } finish: alSourceRewind(mSource); alSourcei(mSource, AL_BUFFER, 0); av_frame_free(&mDecodedFrame); swr_free(&mSwresCtx); av_freep(&mSamples); return 0; } std::chrono::nanoseconds VideoState::getClock() { auto delta = std::chrono::microseconds(av_gettime()) - mCurrentPtsTime; return mCurrentPts + delta; } Uint32 SDLCALL VideoState::sdl_refresh_timer_cb(Uint32 /*interval*/, void *opaque) { SDL_Event evt{}; evt.user.type = FF_REFRESH_EVENT; evt.user.data1 = opaque; SDL_PushEvent(&evt); return 0; /* 0 means stop timer */ } /* Schedules an FF_REFRESH_EVENT event to occur in 'delay' ms. */ void VideoState::schedRefresh(std::chrono::milliseconds delay) { SDL_AddTimer(delay.count(), sdl_refresh_timer_cb, this); } /* Called by VideoState::refreshTimer to display the next video frame. */ void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer) { Picture *vp = &mPictQ[mPictQRead]; if(!vp->mImage) return; float aspect_ratio; int win_w, win_h; int w, h, x, y; if(mCodecCtx->sample_aspect_ratio.num == 0) aspect_ratio = 0.0f; else { aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio) * mCodecCtx->width / mCodecCtx->height; } if(aspect_ratio <= 0.0f) aspect_ratio = (float)mCodecCtx->width / (float)mCodecCtx->height; SDL_GetWindowSize(screen, &win_w, &win_h); h = win_h; w = ((int)rint(h * aspect_ratio) + 3) & ~3; if(w > win_w) { w = win_w; h = ((int)rint(w / aspect_ratio) + 3) & ~3; } x = (win_w - w) / 2; y = (win_h - h) / 2; SDL_Rect src_rect{ 0, 0, vp->mWidth, vp->mHeight }; SDL_Rect dst_rect{ x, y, w, h }; SDL_RenderCopy(renderer, vp->mImage, &src_rect, &dst_rect); SDL_RenderPresent(renderer); } /* FF_REFRESH_EVENT handler called on the main thread where the SDL_Renderer * was created. It handles the display of the next decoded video frame (if not * falling behind), and sets up the timer for the following video frame. */ void VideoState::refreshTimer(SDL_Window *screen, SDL_Renderer *renderer) { if(!mStream) { if(mEOS) { mFinalUpdate = true; std::unique_lock(mPictQMutex).unlock(); mPictQCond.notify_all(); return; } schedRefresh(std::chrono::milliseconds(100)); return; } std::unique_lock lock(mPictQMutex); retry: if(mPictQSize == 0) { if(mEOS) mFinalUpdate = true; else schedRefresh(std::chrono::milliseconds(1)); lock.unlock(); mPictQCond.notify_all(); return; } Picture *vp = &mPictQ[mPictQRead]; mCurrentPts = vp->mPts; mCurrentPtsTime = std::chrono::microseconds(av_gettime()); /* Get delay using the frame pts and the pts from last frame. */ auto delay = vp->mPts - mFrameLastPts; if(delay <= std::chrono::seconds::zero() || delay >= std::chrono::seconds(1)) { /* If incorrect delay, use previous one. */ delay = mFrameLastDelay; } /* Save for next frame. */ mFrameLastDelay = delay; mFrameLastPts = vp->mPts; /* Update delay to sync to clock if not master source. */ if(mMovie.mAVSyncType != SyncMaster::Video) { using seconds = std::chrono::duration; auto ref_clock = mMovie.getMasterClock(); auto diff = seconds(vp->mPts - ref_clock); /* Skip or repeat the frame. Take delay into account. */ auto sync_threshold = std::min(seconds(delay), VideoSyncThreshold); if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold)) { if(diff <= -sync_threshold) delay = std::chrono::nanoseconds::zero(); else if(diff >= sync_threshold) delay *= 2; } } mFrameTimer += delay; /* Compute the REAL delay. */ auto actual_delay = mFrameTimer - std::chrono::microseconds(av_gettime()); if(!(actual_delay >= VideoSyncThreshold)) { /* We don't have time to handle this picture, just skip to the next one. */ mPictQRead = (mPictQRead+1)%mPictQ.size(); mPictQSize--; goto retry; } schedRefresh(std::chrono::duration_cast(actual_delay)); /* Show the picture! */ display(screen, renderer); /* Update queue for next picture. */ mPictQRead = (mPictQRead+1)%mPictQ.size(); mPictQSize--; lock.unlock(); mPictQCond.notify_all(); } /* FF_UPDATE_EVENT handler, updates the picture's texture. It's called on the * main thread where the renderer was created. */ void VideoState::updatePicture(SDL_Window *screen, SDL_Renderer *renderer) { Picture *vp = &mPictQ[mPictQWrite]; bool fmt_updated = false; /* allocate or resize the buffer! */ if(!vp->mImage || vp->mWidth != mCodecCtx->width || vp->mHeight != mCodecCtx->height) { fmt_updated = true; if(vp->mImage) SDL_DestroyTexture(vp->mImage); vp->mImage = SDL_CreateTexture( renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING, mCodecCtx->coded_width, mCodecCtx->coded_height ); if(!vp->mImage) std::cerr<< "Failed to create YV12 texture!" <mWidth = mCodecCtx->width; vp->mHeight = mCodecCtx->height; if(mFirstUpdate && vp->mWidth > 0 && vp->mHeight > 0) { /* For the first update, set the window size to the video size. */ mFirstUpdate = false; int w = vp->mWidth; int h = vp->mHeight; if(mCodecCtx->sample_aspect_ratio.den != 0) { double aspect_ratio = av_q2d(mCodecCtx->sample_aspect_ratio); if(aspect_ratio >= 1.0) w = (int)(w*aspect_ratio + 0.5); else if(aspect_ratio > 0.0) h = (int)(h/aspect_ratio + 0.5); } SDL_SetWindowSize(screen, w, h); } } if(vp->mImage) { AVFrame *frame = mDecodedFrame; void *pixels = nullptr; int pitch = 0; if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P) SDL_UpdateYUVTexture(vp->mImage, nullptr, frame->data[0], frame->linesize[0], frame->data[1], frame->linesize[1], frame->data[2], frame->linesize[2] ); else if(SDL_LockTexture(vp->mImage, nullptr, &pixels, &pitch) != 0) std::cerr<< "Failed to lock texture" <coded_width; int coded_h = mCodecCtx->coded_height; int w = mCodecCtx->width; int h = mCodecCtx->height; if(!mSwscaleCtx || fmt_updated) { sws_freeContext(mSwscaleCtx); mSwscaleCtx = sws_getContext( w, h, mCodecCtx->pix_fmt, w, h, AV_PIX_FMT_YUV420P, 0, nullptr, nullptr, nullptr ); } /* point pict at the queue */ uint8_t *pict_data[3]; pict_data[0] = reinterpret_cast(pixels); pict_data[1] = pict_data[0] + coded_w*coded_h; pict_data[2] = pict_data[1] + coded_w*coded_h/4; int pict_linesize[3]; pict_linesize[0] = pitch; pict_linesize[1] = pitch / 2; pict_linesize[2] = pitch / 2; sws_scale(mSwscaleCtx, (const uint8_t**)frame->data, frame->linesize, 0, h, pict_data, pict_linesize); SDL_UnlockTexture(vp->mImage); } } std::unique_lock lock(mPictQMutex); vp->mUpdated = true; lock.unlock(); mPictQCond.notify_one(); } int VideoState::queuePicture(std::chrono::nanoseconds pts) { /* Wait until we have space for a new pic */ std::unique_lock lock(mPictQMutex); while(mPictQSize >= mPictQ.size() && !mMovie.mQuit.load()) mPictQCond.wait(lock); lock.unlock(); if(mMovie.mQuit.load()) return -1; Picture *vp = &mPictQ[mPictQWrite]; /* We have to create/update the picture in the main thread */ vp->mUpdated = false; SDL_Event evt{}; evt.user.type = FF_UPDATE_EVENT; evt.user.data1 = this; SDL_PushEvent(&evt); /* Wait until the picture is updated. */ lock.lock(); while(!vp->mUpdated && !mMovie.mQuit.load()) mPictQCond.wait(lock); if(mMovie.mQuit.load()) return -1; vp->mPts = pts; mPictQWrite = (mPictQWrite+1)%mPictQ.size(); mPictQSize++; lock.unlock(); return 0; } std::chrono::nanoseconds VideoState::synchronize(std::chrono::nanoseconds pts) { if(pts == std::chrono::nanoseconds::zero()) /* if we aren't given a pts, set it to the clock */ pts = mClock; else /* if we have pts, set video clock to it */ mClock = pts; /* update the video clock */ auto frame_delay = av_q2d(mCodecCtx->time_base); /* if we are repeating a frame, adjust clock accordingly */ frame_delay += mDecodedFrame->repeat_pict * (frame_delay * 0.5); mClock += std::chrono::duration_cast( std::chrono::duration(frame_delay)); return pts; } int VideoState::handler() { mDecodedFrame = av_frame_alloc(); while(!mMovie.mQuit) { std::unique_lock lock(mQueueMtx); /* Decode video frame */ int ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame); if(ret == AVERROR(EAGAIN)) { mMovie.mSendDataGood.clear(std::memory_order_relaxed); std::unique_lock(mMovie.mSendMtx).unlock(); mMovie.mSendCond.notify_one(); do { mQueueCond.wait(lock); ret = avcodec_receive_frame(mCodecCtx, mDecodedFrame); } while(ret == AVERROR(EAGAIN)); } lock.unlock(); if(ret == AVERROR_EOF) break; mMovie.mSendDataGood.clear(std::memory_order_relaxed); mMovie.mSendCond.notify_one(); if(ret < 0) { std::cerr<< "Failed to decode frame: "<( std::chrono::duration( av_q2d(mStream->time_base) * av_frame_get_best_effort_timestamp(mDecodedFrame) ) ) ); if(queuePicture(pts) < 0) break; av_frame_unref(mDecodedFrame); } mEOS = true; av_frame_free(&mDecodedFrame); std::unique_lock lock(mPictQMutex); if(mMovie.mQuit) { mPictQRead = 0; mPictQWrite = 0; mPictQSize = 0; } while(!mFinalUpdate) mPictQCond.wait(lock); return 0; } int MovieState::decode_interrupt_cb(void *ctx) { return reinterpret_cast(ctx)->mQuit; } bool MovieState::prepare() { mFormatCtx = avformat_alloc_context(); mFormatCtx->interrupt_callback.callback = decode_interrupt_cb; mFormatCtx->interrupt_callback.opaque = this; if(avio_open2(&mFormatCtx->pb, mFilename.c_str(), AVIO_FLAG_READ, &mFormatCtx->interrupt_callback, nullptr)) { std::cerr<< "Failed to open "<= mFormatCtx->nb_streams) return -1; /* Get a pointer to the codec context for the stream, and open the * associated codec. */ AVCodecContext *avctx = avcodec_alloc_context3(nullptr); if(!avctx) return -1; if(avcodec_parameters_to_context(avctx, mFormatCtx->streams[stream_index]->codecpar)) { avcodec_free_context(&avctx); return -1; } AVCodec *codec = avcodec_find_decoder(avctx->codec_id); if(!codec || avcodec_open2(avctx, codec, nullptr) < 0) { std::cerr<< "Unsupported codec: "<codec_id) << " (0x"<codec_id<codec_type) { case AVMEDIA_TYPE_AUDIO: mAudio.mStream = mFormatCtx->streams[stream_index]; mAudio.mCodecCtx = avctx; mAudioThread = std::thread(std::mem_fn(&AudioState::handler), &mAudio); break; case AVMEDIA_TYPE_VIDEO: mVideo.mStream = mFormatCtx->streams[stream_index]; mVideo.mCodecCtx = avctx; mVideo.mCurrentPtsTime = std::chrono::microseconds(av_gettime()); mVideo.mFrameTimer = mVideo.mCurrentPtsTime; mVideo.mFrameLastDelay = std::chrono::milliseconds(40); mVideoThread = std::thread(std::mem_fn(&VideoState::handler), &mVideo); break; default: avcodec_free_context(&avctx); return -1; } return stream_index; } int MovieState::parse_handler() { int video_index = -1; int audio_index = -1; /* Dump information about file onto standard error */ av_dump_format(mFormatCtx, 0, mFilename.c_str(), 0); /* Find the first video and audio streams */ for(unsigned int i = 0;i < mFormatCtx->nb_streams;i++) { if(mFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO && video_index < 0) video_index = i; else if(mFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0) audio_index = i; } /* Start the external clock in 50ms, to give the audio and video * components time to start without needing to skip ahead. */ mClockBase = std::chrono::microseconds(av_gettime() + 50000); if(audio_index >= 0) audio_index = streamComponentOpen(audio_index); if(video_index >= 0) video_index = streamComponentOpen(video_index); if(video_index < 0 && audio_index < 0) { std::cerr<< mFilename<<": could not open codecs" < lock(mAudio.mQueueMtx); int ret; do { ret = avcodec_send_packet(mAudio.mCodecCtx, audio_queue.front()); if(ret != AVERROR(EAGAIN)) audio_queue.pop(); } while(ret != AVERROR(EAGAIN) && !audio_queue.empty()); lock.unlock(); mAudio.mQueueCond.notify_one(); } if(!video_queue.empty()) { std::unique_lock lock(mVideo.mQueueMtx); int ret; do { ret = avcodec_send_packet(mVideo.mCodecCtx, video_queue.front()); if(ret != AVERROR(EAGAIN)) video_queue.pop(); } while(ret != AVERROR(EAGAIN) && !video_queue.empty()); lock.unlock(); mVideo.mQueueCond.notify_one(); } /* If the queues are completely empty, or it's not full and there's * more input to read, go get more. */ size_t queue_size = audio_queue.totalSize() + video_queue.totalSize(); if(queue_size == 0 || (queue_size < MAX_QUEUE_SIZE && !input_finished)) break; /* Nothing to send or get for now, wait a bit and try again. */ { std::unique_lock lock(mSendMtx); if(mSendDataGood.test_and_set(std::memory_order_relaxed)) mSendCond.wait_for(lock, std::chrono::milliseconds(10)); } } while(!mQuit.load(std::memory_order_relaxed)); } /* Pass a null packet to finish the send buffers (the receive functions * will get AVERROR_EOF when emptied). */ if(mVideo.mCodecCtx != nullptr) { { std::lock_guard lock(mVideo.mQueueMtx); avcodec_send_packet(mVideo.mCodecCtx, nullptr); } mVideo.mQueueCond.notify_one(); } if(mAudio.mCodecCtx != nullptr) { { std::lock_guard lock(mAudio.mQueueMtx); avcodec_send_packet(mAudio.mCodecCtx, nullptr); } mAudio.mQueueCond.notify_one(); } video_queue.clear(); audio_queue.clear(); /* all done - wait for it */ if(mVideoThread.joinable()) mVideoThread.join(); if(mAudioThread.joinable()) mAudioThread.join(); mVideo.mEOS = true; std::unique_lock lock(mVideo.mPictQMutex); while(!mVideo.mFinalUpdate) mVideo.mPictQCond.wait(lock); lock.unlock(); SDL_Event evt{}; evt.user.type = FF_MOVIE_DONE_EVENT; SDL_PushEvent(&evt); return 0; } } // namespace int main(int argc, char *argv[]) { std::unique_ptr movState; if(argc < 2) { std::cerr<< "Usage: "<] [-direct] " < ALCdevice* { ALCdevice *dev = NULL; if(argc > 3 && strcmp(argv[1], "-device") == 0) { fileidx = 3; dev = alcOpenDevice(argv[2]); if(dev) return dev; std::cerr<< "Failed to open \""<( alGetProcAddress("alGetSourcei64vSOFT") ); } if(fileidx < argc && strcmp(argv[fileidx], "-direct") == 0) { ++fileidx; do_direct_out = true; } while(fileidx < argc && !movState) { movState = std::unique_ptr(new MovieState(argv[fileidx++])); if(!movState->prepare()) movState = nullptr; } if(!movState) { std::cerr<< "Could not start a video" <setTitle(screen); /* Default to going to the next movie at the end of one. */ enum class EomAction { Next, Quit } eom_action = EomAction::Next; SDL_Event event; while(SDL_WaitEvent(&event) == 1) { switch(event.type) { case SDL_KEYDOWN: switch(event.key.keysym.sym) { case SDLK_ESCAPE: movState->mQuit = true; eom_action = EomAction::Quit; break; case SDLK_n: movState->mQuit = true; eom_action = EomAction::Next; break; default: break; } break; case SDL_WINDOWEVENT: switch(event.window.event) { case SDL_WINDOWEVENT_RESIZED: SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255); SDL_RenderFillRect(renderer, nullptr); break; default: break; } break; case SDL_QUIT: movState->mQuit = true; eom_action = EomAction::Quit; break; case FF_UPDATE_EVENT: reinterpret_cast(event.user.data1)->updatePicture( screen, renderer ); break; case FF_REFRESH_EVENT: reinterpret_cast(event.user.data1)->refreshTimer( screen, renderer ); break; case FF_MOVIE_DONE_EVENT: if(eom_action != EomAction::Quit) { movState = nullptr; while(fileidx < argc && !movState) { movState = std::unique_ptr(new MovieState(argv[fileidx++])); if(!movState->prepare()) movState = nullptr; } if(movState) { movState->setTitle(screen); break; } } /* Nothing more to play. Shut everything down and quit. */ movState = nullptr; alcMakeContextCurrent(nullptr); alcDestroyContext(context); alcCloseDevice(device); SDL_DestroyRenderer(renderer); renderer = nullptr; SDL_DestroyWindow(screen); screen = nullptr; SDL_Quit(); exit(0); default: break; } } std::cerr<< "SDL_WaitEvent error - "<