#include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alcmain.h" #include "alu.h" #include "defs.h" #include "hrtfbase.h" template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { const ALfloat *const filter{state->bsinc.filter}; const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; const ALsizei m{state->bsinc.m}; ASSUME(m > 0); ASSUME(dstlen > 0); ASSUME(increment > 0); ASSUME(frac >= 0); src -= state->bsinc.l; for(ALsizei i{0};i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; const ALfloat pf{(frac & ((1<(filter + offset)}; offset += m; const __m128 *scd{reinterpret_cast(filter + offset)}; offset += m; const __m128 *phd{reinterpret_cast(filter + offset)}; offset += m; const __m128 *spd{reinterpret_cast(filter + offset)}; // Apply the scale and phase interpolated filter. __m128 r4{_mm_setzero_ps()}; { const ALsizei count{m >> 2}; const __m128 pf4{_mm_set1_ps(pf)}; ASSUME(count > 0); #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) for(ALsizei j{0};j < count;j++) { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const __m128 f4 = MLA4( MLA4(fil[j], sf4, scd[j]), pf4, MLA4(phd[j], sf4, spd[j]) ); /* r += f*src */ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4])); } #undef MLA4 } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); dst[i] = _mm_cvtss_f32(r4); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } static inline void ApplyCoeffs(ALsizei Offset, float2 *RESTRICT Values, const ALsizei IrSize, const HrirArray &Coeffs, const ALfloat left, const ALfloat right) { const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; ASSUME(IrSize >= 2); if((Offset&1)) { __m128 imp0, imp1; __m128 coeffs{_mm_load_ps(&Coeffs[0][0])}; __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))}; imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals); ALsizei i{1}; for(;i < IrSize-1;i += 2) { coeffs = _mm_load_ps(&Coeffs[i+1][0]); vals = _mm_load_ps(&Values[i][0]); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Values[i][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0])); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals); } else { for(ALsizei i{0};i < IrSize;i += 2) { __m128 coeffs{_mm_load_ps(&Coeffs[i][0])}; __m128 vals{_mm_load_ps(&Values[i][0])}; vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs)); _mm_store_ps(&Values[i][0], vals); } } } template<> void MixHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, MixHrtfFilter *hrtfparams, const ALsizei BufferSize) { MixHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) { MixHrtfBlendBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *AccumSamples, DirectHrtfState *State, const ALsizei BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); } template<> void Mix_(const float *InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize) { ASSUME(BufferSize > 0); const ALfloat delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; for(FloatBufferLine &output : OutBuffer) { ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; ALfloat gain{*CurrentGains}; const ALfloat diff{*TargetGains - gain}; ALsizei pos{0}; if(std::fabs(diff) > std::numeric_limits::epsilon()) { ALsizei minsize{mini(BufferSize, Counter)}; const ALfloat step{diff * delta}; ALfloat step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if LIKELY(minsize > 3) { const __m128 four4{_mm_set1_ps(4.0f)}; const __m128 step4{_mm_set1_ps(step)}; const __m128 gain4{_mm_set1_ps(gain)}; __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; ALsizei todo{minsize >> 2}; do { const __m128 val4{_mm_load_ps(&InSamples[pos])}; __m128 dry4{_mm_load_ps(&dst[pos])}; #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) /* dry += val * (gain + step*step_count) */ dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); #undef MLA4 _mm_store_ps(&dst[pos], dry4); step_count4 = _mm_add_ps(step_count4, four4); pos += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after * the last four mixed samples, so the lowest element * represents the next step count to apply. */ step_count = _mm_cvtss_f32(step_count4); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < minsize;pos++) { dst[pos] += InSamples[pos]*(gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = *TargetGains; else gain += step*step_count; *CurrentGains = gain; /* Mix until pos is aligned with 4 or the mix is done. */ minsize = mini(BufferSize, (pos+3)&~3); for(;pos < minsize;pos++) dst[pos] += InSamples[pos]*gain; } ++CurrentGains; ++TargetGains; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; if LIKELY(BufferSize-pos > 3) { ALsizei todo{(BufferSize-pos) >> 2}; const __m128 gain4{_mm_set1_ps(gain)}; do { const __m128 val4{_mm_load_ps(&InSamples[pos])}; __m128 dry4{_mm_load_ps(&dst[pos])}; dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&dst[pos], dry4); pos += 4; } while(--todo); } for(;pos < BufferSize;pos++) dst[pos] += InSamples[pos]*gain; } } template<> void MixRow_(const al::span OutBuffer, const al::span Gains, const float *InSamples, const size_t InStride) { for(const float gain : Gains) { const float *RESTRICT src{InSamples}; InSamples += InStride; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; auto out_iter = OutBuffer.begin(); if(size_t todo{OutBuffer.size() >> 2}) { const __m128 gain4 = _mm_set1_ps(gain); do { const __m128 val4{_mm_load_ps(src)}; __m128 dry4{_mm_load_ps(out_iter)}; dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(out_iter, dry4); out_iter += 4; src += 4; } while(--todo); } std::transform(out_iter, OutBuffer.end(), src, out_iter, [gain](const ALfloat cur, const ALfloat src) -> ALfloat { return cur + src*gain; }); } }