/** * Ambisonic reverb engine for the OpenAL cross platform audio library * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include "alc/effects/base.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/context.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/filters/biquad.h" #include "core/filters/splitter.h" #include "core/mixer.h" #include "core/mixer/defs.h" #include "intrusive_ptr.h" #include "opthelpers.h" #include "vecmat.h" #include "vector.h" namespace { using uint = unsigned int; constexpr float MaxModulationTime{4.0f}; constexpr float DefaultModulationTime{0.25f}; #define MOD_FRACBITS 24 #define MOD_FRACONE (1<(i) / double{sTableSteps}}; const double mu2{mu*mu}, mu3{mu2*mu}; const double a0{-0.5*mu3 + mu2 + -0.5*mu}; const double a1{ 1.5*mu3 + -2.5*mu2 + 1.0f}; mFilter[i] = static_cast(a1); mFilter[sTableSteps+i] = static_cast(a0); } } constexpr float getCoeff0(size_t i) const noexcept { return mFilter[sTableSteps+i]; } constexpr float getCoeff1(size_t i) const noexcept { return mFilter[i]; } constexpr float getCoeff2(size_t i) const noexcept { return mFilter[sTableSteps-i]; } constexpr float getCoeff3(size_t i) const noexcept { return mFilter[sTableSteps*2-i]; } }; constexpr CubicFilter gCubicTable; /* Max samples per process iteration. Used to limit the size needed for * temporary buffers. Must be a multiple of 4 for SIMD alignment. */ constexpr size_t MAX_UPDATE_SAMPLES{256}; /* The number of spatialized lines or channels to process. Four channels allows * for a 3D A-Format response. NOTE: This can't be changed without taking care * of the conversion matrices, and a few places where the length arrays are * assumed to have 4 elements. */ constexpr size_t NUM_LINES{4u}; /* This coefficient is used to define the maximum frequency range controlled by * the modulation depth. The current value of 0.05 will allow it to swing from * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler * to stall on the downswing, and above 1 it will cause it to sample backwards. * The value 0.05 seems be nearest to Creative hardware behavior. */ constexpr float MODULATION_DEPTH_COEFF{0.05f}; /* The B-Format to (W-normalized) A-Format conversion matrix. This produces a * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to * reduce the error introduced in the conversion). */ alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{ { 0.5f, 0.5f, 0.5f, 0.5f }, { 0.5f, -0.5f, -0.5f, 0.5f }, { 0.5f, 0.5f, -0.5f, -0.5f }, { 0.5f, -0.5f, 0.5f, -0.5f } }; /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled * by 1/sqrt(3) to compensate for the boost in the B2A matrix). */ alignas(16) constexpr std::array,NUM_LINES> EarlyA2B{{ {{ 0.5f, 0.5f, 0.5f, 0.5f }}, {{ 0.5f, -0.5f, 0.5f, -0.5f }}, {{ 0.5f, -0.5f, -0.5f, 0.5f }}, {{ 0.5f, 0.5f, -0.5f, -0.5f }} }}; /* Converts (W-normalized) A-Format to B-Format for late reverb (scaled * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response * is rotated around Z (ambisonic X) so that the front lines are placed * horizontally in front, and the rear lines are placed vertically in back. */ constexpr auto InvSqrt2 = static_cast(1.0/al::numbers::sqrt2); alignas(16) constexpr std::array,NUM_LINES> LateA2B{{ {{ 0.5f, 0.5f, 0.5f, 0.5f }}, {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }}, {{ 0.0f, 0.0f, InvSqrt2, -InvSqrt2 }}, {{ 0.5f, 0.5f, -0.5f, -0.5f }} }}; /* The all-pass and delay lines have a variable length dependent on the * effect's density parameter, which helps alter the perceived environment * size. The size-to-density conversion is a cubed scale: * * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); * * The line lengths scale linearly with room size, so the inverse density * conversion is needed, taking the cube root of the re-scaled density to * calculate the line length multiplier: * * length_mult = max(5.0, cbrt(density*DENSITY_SCALE)); * * The density scale below will result in a max line multiplier of 50, for an * effective size range of 5m to 50m. */ constexpr float DENSITY_SCALE{125000.0f}; /* All delay line lengths are specified in seconds. * * To approximate early reflections, we break them up into primary (those * arriving from the same direction as the source) and secondary (those * arriving from the opposite direction). * * The early taps decorrelate the 4-channel signal to approximate an average * room response for the primary reflections after the initial early delay. * * Given an average room dimension (d_a) and the speed of sound (c) we can * calculate the average reflection delay (r_a) regardless of listener and * source positions as: * * r_a = d_a / c * c = 343.3 * * This can extended to finding the average difference (r_d) between the * maximum (r_1) and minimum (r_0) reflection delays: * * r_0 = 2 / 3 r_a * = r_a - r_d / 2 * = r_d * r_1 = 4 / 3 r_a * = r_a + r_d / 2 * = 2 r_d * r_d = 2 / 3 r_a * = r_1 - r_0 * * As can be determined by integrating the 1D model with a source (s) and * listener (l) positioned across the dimension of length (d_a): * * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c * * The initial taps (T_(i=0)^N) are then specified by taking a power series * that ranges between r_0 and half of r_1 less r_0: * * R_i = 2^(i / (2 N - 1)) r_d * = r_0 + (2^(i / (2 N - 1)) - 1) r_d * = r_0 + T_i * T_i = R_i - r_0 * = (2^(i / (2 N - 1)) - 1) r_d * * Assuming an average of 1m, we get the following taps: */ constexpr std::array EARLY_TAP_LENGTHS{{ 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f }}; /* The early all-pass filter lengths are based on the early tap lengths: * * A_i = R_i / a * * Where a is the approximate maximum all-pass cycle limit (20). */ constexpr std::array EARLY_ALLPASS_LENGTHS{{ 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f }}; /* The early delay lines are used to transform the primary reflections into * the secondary reflections. The A-format is arranged in such a way that * the channels/lines are spatially opposite: * * C_i is opposite C_(N-i-1) * * The delays of the two opposing reflections (R_i and O_i) from a source * anywhere along a particular dimension always sum to twice its full delay: * * 2 r_a = R_i + O_i * * With that in mind we can determine the delay between the two reflections * and thus specify our early line lengths (L_(i=0)^N) using: * * O_i = 2 r_a - R_(N-i-1) * L_i = O_i - R_(N-i-1) * = 2 (r_a - R_(N-i-1)) * = 2 (r_a - T_(N-i-1) - r_0) * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) * * Using an average dimension of 1m, we get: */ constexpr std::array EARLY_LINE_LENGTHS{{ 0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f }}; /* The late all-pass filter lengths are based on the late line lengths: * * A_i = (5 / 3) L_i / r_1 */ constexpr std::array LATE_ALLPASS_LENGTHS{{ 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f }}; /* The late lines are used to approximate the decaying cycle of recursive * late reflections. * * Splitting the lines in half, we start with the shortest reflection paths * (L_(i=0)^(N/2)): * * L_i = 2^(i / (N - 1)) r_d * * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): * * L_i = 2 r_a - L_(i-N/2) * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d * * For our 1m average room, we get: */ constexpr std::array LATE_LINE_LENGTHS{{ 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f }}; using ReverbUpdateLine = std::array; struct DelayLineI { /* The delay lines use interleaved samples, with the lengths being powers * of 2 to allow the use of bit-masking instead of a modulus for wrapping. */ size_t Mask{0u}; union { uintptr_t LineOffset{0u}; std::array *Line; }; /* Given the allocated sample buffer, this function updates each delay line * offset. */ void realizeLineOffset(std::array *sampleBuffer) noexcept { Line = sampleBuffer + LineOffset; } /* Calculate the length of a delay line and store its mask and offset. */ uint calcLineLength(const float length, const uintptr_t offset, const float frequency, const uint extra) { /* All line lengths are powers of 2, calculated from their lengths in * seconds, rounded up. */ uint samples{float2uint(std::ceil(length*frequency))}; samples = NextPowerOf2(samples + extra); /* All lines share a single sample buffer. */ Mask = samples - 1; LineOffset = offset; /* Return the sample count for accumulation. */ return samples; } void write(size_t offset, const size_t c, const float *RESTRICT in, const size_t count) const noexcept { ASSUME(count > 0); for(size_t i{0u};i < count;) { offset &= Mask; size_t td{minz(Mask+1 - offset, count - i)}; do { Line[offset++][c] = in[i++]; } while(--td); } } /* Writes the given input lines to the delay buffer, applying a geometric * reflection. This effectively applies the matrix * * [ -1/2 +1/2 +1/2 +1/2 ] * [ +1/2 -1/2 +1/2 +1/2 ] * [ +1/2 +1/2 -1/2 +1/2 ] * [ +1/2 +1/2 +1/2 -1/2 ] * * to the four input lines when writing to the delay buffer. The effect on * the B-Format signal is negating X,Y,Z, moving each response to its * spatially opposite location. */ void writeReflected(size_t offset, const al::span in, const size_t count) const noexcept { ASSUME(count > 0); for(size_t i{0u};i < count;) { offset &= Mask; size_t td{minz(Mask+1 - offset, count - i)}; do { const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]}; ++i; Line[offset][0] = ( src[1] + src[2] + src[3] - src[0]) * 0.5f; Line[offset][1] = (src[0] + src[2] + src[3] - src[1]) * 0.5f; Line[offset][2] = (src[0] + src[1] + src[3] - src[2]) * 0.5f; Line[offset][3] = (src[0] + src[1] + src[2] - src[3]) * 0.5f; ++offset; } while(--td); } } }; struct VecAllpass { DelayLineI Delay; float Coeff{0.0f}; size_t Offset[NUM_LINES]{}; void process(const al::span samples, size_t offset, const float xCoeff, const float yCoeff, const size_t todo); }; struct T60Filter { /* Two filters are used to adjust the signal. One to control the low * frequencies, and one to control the high frequencies. */ float MidGain{0.0f}; BiquadFilter HFFilter, LFFilter; void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm); /* Applies the two T60 damping filter sections. */ void process(const al::span samples) { DualBiquad{HFFilter, LFFilter}.process(samples, samples.data()); } void clear() noexcept { HFFilter.clear(); LFFilter.clear(); } }; struct EarlyReflections { /* A Gerzon vector all-pass filter is used to simulate initial diffusion. * The spread from this filter also helps smooth out the reverb tail. */ VecAllpass VecAp; /* An echo line is used to complete the second half of the early * reflections. */ DelayLineI Delay; size_t Offset[NUM_LINES]{}; float Coeff[NUM_LINES]{}; /* The gain for each output channel based on 3D panning. */ float CurrentGains[NUM_LINES][MaxAmbiChannels]{}; float TargetGains[NUM_LINES][MaxAmbiChannels]{}; void updateLines(const float density_mult, const float diffusion, const float decayTime, const float frequency); }; struct Modulation { /* The vibrato time is tracked with an index over a (MOD_FRACONE) * normalized range. */ uint Index, Step; /* The depth of frequency change, in samples. */ float Depth; float ModDelays[MAX_UPDATE_SAMPLES]; void updateModulator(float modTime, float modDepth, float frequency); void calcDelays(size_t todo); }; struct LateReverb { /* A recursive delay line is used fill in the reverb tail. */ DelayLineI Delay; size_t Offset[NUM_LINES]{}; /* Attenuation to compensate for the modal density and decay rate of the * late lines. */ float DensityGain{0.0f}; /* T60 decay filters are used to simulate absorption. */ T60Filter T60[NUM_LINES]; Modulation Mod; /* A Gerzon vector all-pass filter is used to simulate diffusion. */ VecAllpass VecAp; /* The gain for each output channel based on 3D panning. */ float CurrentGains[NUM_LINES][MaxAmbiChannels]{}; float TargetGains[NUM_LINES][MaxAmbiChannels]{}; void updateLines(const float density_mult, const float diffusion, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm, const float frequency); void clear() noexcept { for(auto &filter : T60) filter.clear(); } }; struct ReverbPipeline { /* Master effect filters */ struct { BiquadFilter Lp; BiquadFilter Hp; } mFilter[NUM_LINES]; /* Core delay line (early reflections and late reverb tap from this). */ DelayLineI mEarlyDelayIn; DelayLineI mLateDelayIn; /* Tap points for early reflection delay. */ size_t mEarlyDelayTap[NUM_LINES][2]{}; float mEarlyDelayCoeff[NUM_LINES]{}; /* Tap points for late reverb feed and delay. */ size_t mLateDelayTap[NUM_LINES][2]{}; /* Coefficients for the all-pass and line scattering matrices. */ float mMixX{0.0f}; float mMixY{0.0f}; EarlyReflections mEarly; LateReverb mLate; std::array,2> mAmbiSplitter; size_t mFadeSampleCount{1}; void updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult, const float decayTime, const float frequency); void update3DPanning(const al::span ReflectionsPan, const al::span LateReverbPan, const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix); void processEarly(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples); void processLate(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples); void clear() noexcept { for(auto &filter : mFilter) { filter.Lp.clear(); filter.Hp.clear(); } mLate.clear(); for(auto &filters : mAmbiSplitter) { for(auto &filter : filters) filter.clear(); } } }; struct ReverbState final : public EffectState { /* All delay lines are allocated as a single buffer to reduce memory * fragmentation and management code. */ al::vector,16> mSampleBuffer; struct { /* Calculated parameters which indicate if cross-fading is needed after * an update. */ float Density{1.0f}; float Diffusion{1.0f}; float DecayTime{1.49f}; float HFDecayTime{0.83f * 1.49f}; float LFDecayTime{1.0f * 1.49f}; float ModulationTime{0.25f}; float ModulationDepth{0.0f}; float HFReference{5000.0f}; float LFReference{250.0f}; } mParams; enum PipelineState : uint8_t { DeviceClear, StartFade, Fading, Cleanup, Normal, }; PipelineState mPipelineState{DeviceClear}; uint8_t mCurrentPipeline{0}; ReverbPipeline mPipelines[2]; /* The current write offset for all delay lines. */ size_t mOffset{}; /* Temporary storage used when processing. */ union { alignas(16) FloatBufferLine mTempLine{}; alignas(16) std::array mTempSamples; }; alignas(16) std::array mEarlySamples{}; alignas(16) std::array mLateSamples{}; std::array mOrderScales{}; bool mUpmixOutput{false}; void MixOutPlain(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) { ASSUME(todo > 0); /* When not upsampling, the panning gains convert to B-Format and pan * at the same time. */ for(size_t c{0u};c < NUM_LINES;c++) { const al::span tmpspan{mEarlySamples[c].data(), todo}; MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c], pipeline.mEarly.TargetGains[c], todo, 0); } for(size_t c{0u};c < NUM_LINES;c++) { const al::span tmpspan{mLateSamples[c].data(), todo}; MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c], pipeline.mLate.TargetGains[c], todo, 0); } } void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) { ASSUME(todo > 0); auto DoMixRow = [](const al::span OutBuffer, const al::span Gains, const float *InSamples, const size_t InStride) { std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f); for(const float gain : Gains) { const float *RESTRICT input{al::assume_aligned<16>(InSamples)}; InSamples += InStride; if(!(std::fabs(gain) > GainSilenceThreshold)) continue; auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), mix_sample); } }; /* When upsampling, the B-Format conversion needs to be done separately * so the proper HF scaling can be applied to each B-Format channel. * The panning gains then pan and upsample the B-Format channels. */ const al::span tmpspan{al::assume_aligned<16>(mTempLine.data()), todo}; for(size_t c{0u};c < NUM_LINES;c++) { DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size()); /* Apply scaling to the B-Format's HF response to "upsample" it to * higher-order output. */ const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; pipeline.mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale); MixSamples(tmpspan, samplesOut, pipeline.mEarly.CurrentGains[c], pipeline.mEarly.TargetGains[c], todo, 0); } for(size_t c{0u};c < NUM_LINES;c++) { DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size()); const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; pipeline.mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale); MixSamples(tmpspan, samplesOut, pipeline.mLate.CurrentGains[c], pipeline.mLate.TargetGains[c], todo, 0); } } void mixOut(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) { if(mUpmixOutput) MixOutAmbiUp(pipeline, samplesOut, todo); else MixOutPlain(pipeline, samplesOut, todo); } void allocLines(const float frequency); void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ReverbState) }; /************************************** * Device Update * **************************************/ inline float CalcDelayLengthMult(float density) { return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); } /* Calculates the delay line metrics and allocates the shared sample buffer * for all lines given the sample rate (frequency). */ void ReverbState::allocLines(const float frequency) { /* All delay line lengths are calculated to accommodate the full range of * lengths given their respective parameters. */ size_t totalSamples{0u}; /* Multiplier for the maximum density value, i.e. density=1, which is * actually the least density... */ const float multiplier{CalcDelayLengthMult(1.0f)}; /* The modulator's line length is calculated from the maximum modulation * time and depth coefficient, and halfed for the low-to-high frequency * swing. */ constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f}; for(auto &pipeline : mPipelines) { /* The main delay length includes the maximum early reflection delay, * the largest early tap width, the maximum late reverb delay, and the * largest late tap width. Finally, it must also be extended by the * update size (BufferLineSize) for block processing. */ float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier}; totalSamples += pipeline.mEarlyDelayIn.calcLineLength(length, totalSamples, frequency, BufferLineSize); constexpr float LateLineDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) / float{NUM_LINES}}; length = ReverbMaxLateReverbDelay + LateLineDiffAvg*multiplier; totalSamples += pipeline.mLateDelayIn.calcLineLength(length, totalSamples, frequency, BufferLineSize); /* The early vector all-pass line. */ length = EARLY_ALLPASS_LENGTHS.back() * multiplier; totalSamples += pipeline.mEarly.VecAp.Delay.calcLineLength(length, totalSamples, frequency, 0); /* The early reflection line. */ length = EARLY_LINE_LENGTHS.back() * multiplier; totalSamples += pipeline.mEarly.Delay.calcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES); /* The late vector all-pass line. */ length = LATE_ALLPASS_LENGTHS.back() * multiplier; totalSamples += pipeline.mLate.VecAp.Delay.calcLineLength(length, totalSamples, frequency, 0); /* The late delay lines are calculated from the largest maximum density * line length, and the maximum modulation delay. Four additional * samples are needed for resampling the modulator delay. */ length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay; totalSamples += pipeline.mLate.Delay.calcLineLength(length, totalSamples, frequency, 4); } if(totalSamples != mSampleBuffer.size()) decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer); /* Clear the sample buffer. */ std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), decltype(mSampleBuffer)::value_type{}); /* Update all delays to reflect the new sample buffer. */ for(auto &pipeline : mPipelines) { pipeline.mEarlyDelayIn.realizeLineOffset(mSampleBuffer.data()); pipeline.mLateDelayIn.realizeLineOffset(mSampleBuffer.data()); pipeline.mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data()); pipeline.mEarly.Delay.realizeLineOffset(mSampleBuffer.data()); pipeline.mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data()); pipeline.mLate.Delay.realizeLineOffset(mSampleBuffer.data()); } } void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*) { const auto frequency = static_cast(device->Frequency); /* Allocate the delay lines. */ allocLines(frequency); for(auto &pipeline : mPipelines) { /* Clear filters and gain coefficients since the delay lines were all just * cleared (if not reallocated). */ for(auto &filter : pipeline.mFilter) { filter.Lp.clear(); filter.Hp.clear(); } std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f); std::fill(std::begin(pipeline.mEarlyDelayCoeff),std::end(pipeline.mEarlyDelayCoeff), 0.0f); pipeline.mLate.DensityGain = 0.0f; for(auto &t60 : pipeline.mLate.T60) { t60.MidGain = 0.0f; t60.HFFilter.clear(); t60.LFFilter.clear(); } pipeline.mLate.Mod.Index = 0; pipeline.mLate.Mod.Step = 1; pipeline.mLate.Mod.Depth = 0.0f; for(auto &gains : pipeline.mEarly.CurrentGains) std::fill(std::begin(gains), std::end(gains), 0.0f); for(auto &gains : pipeline.mEarly.TargetGains) std::fill(std::begin(gains), std::end(gains), 0.0f); for(auto &gains : pipeline.mLate.CurrentGains) std::fill(std::begin(gains), std::end(gains), 0.0f); for(auto &gains : pipeline.mLate.TargetGains) std::fill(std::begin(gains), std::end(gains), 0.0f); } mPipelineState = DeviceClear; /* Reset offset base. */ mOffset = 0; if(device->mAmbiOrder > 1) { mUpmixOutput = true; mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing); } else { mUpmixOutput = false; mOrderScales.fill(1.0f); } mPipelines[0].mAmbiSplitter[0][0].init(device->mXOverFreq / frequency); for(auto &pipeline : mPipelines) { std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(), pipeline.mAmbiSplitter[0][0]); std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(), pipeline.mAmbiSplitter[0][0]); } } /************************************** * Effect Update * **************************************/ /* Calculate a decay coefficient given the length of each cycle and the time * until the decay reaches -60 dB. */ inline float CalcDecayCoeff(const float length, const float decayTime) { return std::pow(ReverbDecayGain, length/decayTime); } /* Calculate a decay length from a coefficient and the time until the decay * reaches -60 dB. */ inline float CalcDecayLength(const float coeff, const float decayTime) { constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/}; return std::log10(coeff) * decayTime / log10_decaygain; } /* Calculate an attenuation to be applied to the input of any echo models to * compensate for modal density and decay time. */ inline float CalcDensityGain(const float a) { /* The energy of a signal can be obtained by finding the area under the * squared signal. This takes the form of Sum(x_n^2), where x is the * amplitude for the sample n. * * Decaying feedback matches exponential decay of the form Sum(a^n), * where a is the attenuation coefficient, and n is the sample. The area * under this decay curve can be calculated as: 1 / (1 - a). * * Modifying the above equation to find the area under the squared curve * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be * calculated by inverting the square root of this approximation, * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). */ return std::sqrt(1.0f - a*a); } /* Calculate the scattering matrix coefficients given a diffusion factor. */ inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y) { /* The matrix is of order 4, so n is sqrt(4 - 1). */ constexpr float n{al::numbers::sqrt3_v}; const float t{diffusion * std::atan(n)}; /* Calculate the first mixing matrix coefficient. */ *x = std::cos(t); /* Calculate the second mixing matrix coefficient. */ *y = std::sin(t) / n; } /* Calculate the limited HF ratio for use with the late reverb low-pass * filters. */ float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF, const float decayTime) { /* Find the attenuation due to air absorption in dB (converting delay * time to meters using the speed of sound). Then reversing the decay * equation, solve for HF ratio. The delay length is cancelled out of * the equation, so it can be calculated once for all lines. */ float limitRatio{1.0f / SpeedOfSoundMetersPerSec / CalcDecayLength(airAbsorptionGainHF, decayTime)}; /* Using the limit calculated above, apply the upper bound to the HF ratio. */ return minf(limitRatio, hfRatio); } /* Calculates the 3-band T60 damping coefficients for a particular delay line * of specified length, using a combination of two shelf filter sections given * decay times for each band split at two reference frequencies. */ void T60Filter::calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm) { const float mfGain{CalcDecayCoeff(length, mfDecayTime)}; const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain}; const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain}; MidGain = mfGain; LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f); HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f); } /* Update the early reflection line lengths and gain coefficients. */ void EarlyReflections::updateLines(const float density_mult, const float diffusion, const float decayTime, const float frequency) { /* Calculate the all-pass feed-back/forward coefficient. */ VecAp.Coeff = diffusion*diffusion * InvSqrt2; for(size_t i{0u};i < NUM_LINES;i++) { /* Calculate the delay length of each all-pass line. */ float length{EARLY_ALLPASS_LENGTHS[i] * density_mult}; VecAp.Offset[i] = float2uint(length * frequency); /* Calculate the delay length of each delay line. */ length = EARLY_LINE_LENGTHS[i] * density_mult; Offset[i] = float2uint(length * frequency); /* Calculate the gain (coefficient) for each line. */ Coeff[i] = CalcDecayCoeff(length, decayTime); } } /* Update the EAX modulation step and depth. Keep in mind that this kind of * vibrato is additive and not multiplicative as one may expect. The downswing * will sound stronger than the upswing. */ void Modulation::updateModulator(float modTime, float modDepth, float frequency) { /* Modulation is calculated in two parts. * * The modulation time effects the sinus rate, altering the speed of * frequency changes. An index is incremented for each sample with an * appropriate step size to generate an LFO, which will vary the feedback * delay over time. */ Step = maxu(fastf2u(MOD_FRACONE / (frequency * modTime)), 1); /* The modulation depth effects the amount of frequency change over the * range of the sinus. It needs to be scaled by the modulation time so that * a given depth produces a consistent change in frequency over all ranges * of time. Since the depth is applied to a sinus value, it needs to be * halved once for the sinus range and again for the sinus swing in time * (half of it is spent decreasing the frequency, half is spent increasing * it). */ if(modTime >= DefaultModulationTime) { /* To cancel the effects of a long period modulation on the late * reverberation, the amount of pitch should be varied (decreased) * according to the modulation time. The natural form is varying * inversely, in fact resulting in an invariant. */ Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency; } else Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency; } /* Update the late reverb line lengths and T60 coefficients. */ void LateReverb::updateLines(const float density_mult, const float diffusion, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm, const float frequency) { /* Scaling factor to convert the normalized reference frequencies from * representing 0...freq to 0...max_reference. */ constexpr float MaxHFReference{20000.0f}; const float norm_weight_factor{frequency / MaxHFReference}; const float late_allpass_avg{ std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) / float{NUM_LINES}}; /* To compensate for changes in modal density and decay time of the late * reverb signal, the input is attenuated based on the maximal energy of * the outgoing signal. This approximation is used to keep the apparent * energy of the signal equal for all ranges of density and decay time. * * The average length of the delay lines is used to calculate the * attenuation coefficient. */ float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) / float{NUM_LINES} + late_allpass_avg}; length *= density_mult; /* The density gain calculation uses an average decay time weighted by * approximate bandwidth. This attempts to compensate for losses of energy * that reduce decay time due to scattering into highly attenuated bands. */ const float decayTimeWeighted{ lf0norm*norm_weight_factor*lfDecayTime + (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime + (1.0f - hf0norm*norm_weight_factor)*hfDecayTime}; DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted)); /* Calculate the all-pass feed-back/forward coefficient. */ VecAp.Coeff = diffusion*diffusion * InvSqrt2; for(size_t i{0u};i < NUM_LINES;i++) { /* Calculate the delay length of each all-pass line. */ length = LATE_ALLPASS_LENGTHS[i] * density_mult; VecAp.Offset[i] = float2uint(length * frequency); /* Calculate the delay length of each feedback delay line. A cubic * resampler is used for modulation on the feedback delay, which * includes one sample of delay. Reduce by one to compensate. */ length = LATE_LINE_LENGTHS[i] * density_mult; Offset[i] = maxu(float2uint(length*frequency + 0.5f), 1u) - 1u; /* Approximate the absorption that the vector all-pass would exhibit * given the current diffusion so we don't have to process a full T60 * filter for each of its four lines. Also include the average * modulation delay (depth is half the max delay in samples). */ length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult + Mod.Depth/frequency; /* Calculate the T60 damping coefficients for each line. */ T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm); } } /* Update the offsets for the main effect delay line. */ void ReverbPipeline::updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult, const float decayTime, const float frequency) { /* Early reflection taps are decorrelated by means of an average room * reflection approximation described above the definition of the taps. * This approximation is linear and so the above density multiplier can * be applied to adjust the width of the taps. A single-band decay * coefficient is applied to simulate initial attenuation and absorption. * * Late reverb taps are based on the late line lengths to allow a zero- * delay path and offsets that would continue the propagation naturally * into the late lines. */ for(size_t i{0u};i < NUM_LINES;i++) { float length{EARLY_TAP_LENGTHS[i]*density_mult}; mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency); mEarlyDelayCoeff[i] = CalcDecayCoeff(length, decayTime); /* Reduce the late delay tap by the shortest early delay line length to * compensate for the late line input being fed by the delayed early * output. */ length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult + lateDelay; mLateDelayTap[i][1] = float2uint(length * frequency); } } /* Creates a transform matrix given a reverb vector. The vector pans the reverb * reflections toward the given direction, using its magnitude (up to 1) as a * focal strength. This function results in a B-Format transformation matrix * that spatially focuses the signal in the desired direction. */ std::array,4> GetTransformFromVector(const al::span vec) { /* Normalize the panning vector according to the N3D scale, which has an * extra sqrt(3) term on the directional components. Converting from OpenAL * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however * that the reverb panning vectors use left-handed coordinates, unlike the * rest of OpenAL which use right-handed. This is fixed by negating Z, * which cancels out with the B-Format Z negation. */ float norm[3]; float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])}; if(mag > 1.0f) { const float scale{al::numbers::sqrt3_v / mag}; norm[0] = vec[0] * -scale; norm[1] = vec[1] * scale; norm[2] = vec[2] * scale; mag = 1.0f; } else { /* If the magnitude is less than or equal to 1, just apply the sqrt(3) * term. There's no need to renormalize the magnitude since it would * just be reapplied in the matrix. */ norm[0] = vec[0] * -al::numbers::sqrt3_v; norm[1] = vec[1] * al::numbers::sqrt3_v; norm[2] = vec[2] * al::numbers::sqrt3_v; } return std::array,4>{{ {{1.0f, 0.0f, 0.0f, 0.0f}}, {{norm[0], 1.0f-mag, 0.0f, 0.0f}}, {{norm[1], 0.0f, 1.0f-mag, 0.0f}}, {{norm[2], 0.0f, 0.0f, 1.0f-mag}} }}; } /* Update the early and late 3D panning gains. */ void ReverbPipeline::update3DPanning(const al::span ReflectionsPan, const al::span LateReverbPan, const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix) { /* Create matrices that transform a B-Format signal according to the * panning vectors. */ const std::array,4> earlymat{GetTransformFromVector(ReflectionsPan)}; const std::array,4> latemat{GetTransformFromVector(LateReverbPan)}; if(doUpmix) { /* When upsampling, combine the early and late transforms with the * first-order upsample matrix. This results in panning gains that * apply the panning transform to first-order B-Format, which is then * upsampled. */ auto mult_matrix = [](const al::span,4> mtx1) { auto&& mtx2 = AmbiScale::FirstOrderUp; std::array,NUM_LINES> res{}; for(size_t i{0};i < mtx1[0].size();++i) { float *RESTRICT dst{res[i].data()}; for(size_t k{0};k < mtx1.size();++k) { const float *RESTRICT src{mtx2[k].data()}; const float a{mtx1[k][i]}; for(size_t j{0};j < mtx2[0].size();++j) dst[j] += a * src[j]; } } return res; }; auto earlycoeffs = mult_matrix(earlymat); auto latecoeffs = mult_matrix(latemat); for(size_t i{0u};i < NUM_LINES;i++) ComputePanGains(mainMix, earlycoeffs[i], earlyGain, mEarly.TargetGains[i]); for(size_t i{0u};i < NUM_LINES;i++) ComputePanGains(mainMix, latecoeffs[i], lateGain, mLate.TargetGains[i]); } else { /* When not upsampling, combine the early and late A-to-B-Format * conversions with their respective transform. This results panning * gains that convert A-Format to B-Format, which is then panned. */ auto mult_matrix = [](const al::span,4> mtx1, const al::span,4> mtx2) { std::array,NUM_LINES> res{}; for(size_t i{0};i < mtx1[0].size();++i) { float *RESTRICT dst{res[i].data()}; for(size_t k{0};k < mtx1.size();++k) { const float a{mtx1[k][i]}; for(size_t j{0};j < mtx2.size();++j) dst[j] += a * mtx2[j][k]; } } return res; }; auto earlycoeffs = mult_matrix(EarlyA2B, earlymat); auto latecoeffs = mult_matrix(LateA2B, latemat); for(size_t i{0u};i < NUM_LINES;i++) ComputePanGains(mainMix, earlycoeffs[i], earlyGain, mEarly.TargetGains[i]); for(size_t i{0u};i < NUM_LINES;i++) ComputePanGains(mainMix, latecoeffs[i], lateGain, mLate.TargetGains[i]); } } void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, const EffectProps *props, const EffectTarget target) { const DeviceBase *Device{Context->mDevice}; const auto frequency = static_cast(Device->Frequency); /* If the HF limit parameter is flagged, calculate an appropriate limit * based on the air absorption parameter. */ float hfRatio{props->Reverb.DecayHFRatio}; if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, props->Reverb.DecayTime); /* Calculate the LF/HF decay times. */ constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f}; const float lfDecayTime{clampf(props->Reverb.DecayTime*props->Reverb.DecayLFRatio, MinDecayTime, MaxDecayTime)}; const float hfDecayTime{clampf(props->Reverb.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)}; /* Determine if a full update is required. */ const bool fullUpdate{mPipelineState == DeviceClear || /* Density is essentially a master control for the feedback delays, so * changes the offsets of many delay lines. */ mParams.Density != props->Reverb.Density || /* Diffusion and decay times influences the decay rate (gain) of the * late reverb T60 filter. */ mParams.Diffusion != props->Reverb.Diffusion || mParams.DecayTime != props->Reverb.DecayTime || mParams.HFDecayTime != hfDecayTime || mParams.LFDecayTime != lfDecayTime || /* Modulation time and depth both require fading the modulation delay. */ mParams.ModulationTime != props->Reverb.ModulationTime || mParams.ModulationDepth != props->Reverb.ModulationDepth || /* HF/LF References control the weighting used to calculate the density * gain. */ mParams.HFReference != props->Reverb.HFReference || mParams.LFReference != props->Reverb.LFReference}; if(fullUpdate) { mParams.Density = props->Reverb.Density; mParams.Diffusion = props->Reverb.Diffusion; mParams.DecayTime = props->Reverb.DecayTime; mParams.HFDecayTime = hfDecayTime; mParams.LFDecayTime = lfDecayTime; mParams.ModulationTime = props->Reverb.ModulationTime; mParams.ModulationDepth = props->Reverb.ModulationDepth; mParams.HFReference = props->Reverb.HFReference; mParams.LFReference = props->Reverb.LFReference; mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal; mCurrentPipeline ^= 1; } auto &pipeline = mPipelines[mCurrentPipeline]; /* Update early and late 3D panning. */ mOutTarget = target.Main->Buffer; const float gain{props->Reverb.Gain * Slot->Gain * ReverbBoost}; pipeline.update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, mUpmixOutput, target.Main); /* Calculate the master filters */ float hf0norm{minf(props->Reverb.HFReference/frequency, 0.49f)}; pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f); float lf0norm{minf(props->Reverb.LFReference/frequency, 0.49f)}; pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f); for(size_t i{1u};i < NUM_LINES;i++) { pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp); pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp); } /* The density-based room size (delay length) multiplier. */ const float density_mult{CalcDelayLengthMult(props->Reverb.Density)}; /* Update the main effect delay and associated taps. */ pipeline.updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, density_mult, props->Reverb.DecayTime, frequency); if(fullUpdate) { /* Update the early lines. */ pipeline.mEarly.updateLines(density_mult, props->Reverb.Diffusion, props->Reverb.DecayTime, frequency); /* Get the mixing matrix coefficients. */ CalcMatrixCoeffs(props->Reverb.Diffusion, &pipeline.mMixX, &pipeline.mMixY); /* Update the modulator rate and depth. */ pipeline.mLate.Mod.updateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth, frequency); /* Update the late lines. */ pipeline.mLate.updateLines(density_mult, props->Reverb.Diffusion, lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency); } /* Calculate the gain at the start of the late reverb stage, and the gain * difference from the decay target (0.001, or -60dB). */ const float decayBase{props->Reverb.ReflectionsGain * props->Reverb.LateReverbGain}; const float decayDiff{ReverbDecayGain / decayBase}; if(decayDiff < 1.0f) { /* Given the DecayTime (the amount of time for the late reverb to decay * by -60dB), calculate the time to decay to -60dB from the start of * the late reverb. */ const float diffTime{std::log10(decayDiff)*(20.0f / -60.0f) * props->Reverb.DecayTime}; const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay + diffTime) * frequency}; /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to * avoid excessive double-processing. */ pipeline.mFadeSampleCount = static_cast(minf(decaySamples, 100'000.0f)); } else { /* Otherwise, if the late reverb already starts at -60dB or less, only * include the time to get to the late reverb. */ const float decaySamples{(props->Reverb.ReflectionsDelay + props->Reverb.LateReverbDelay) * frequency}; pipeline.mFadeSampleCount = static_cast(minf(decaySamples, 100'000.0f)); } } /************************************** * Effect Processing * **************************************/ /* Applies a scattering matrix to the 4-line (vector) input. This is used * for both the below vector all-pass model and to perform modal feed-back * delay network (FDN) mixing. * * The matrix is derived from a skew-symmetric matrix to form a 4D rotation * matrix with a single unitary rotational parameter: * * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 * [ -a, d, c, -b ] * [ -b, -c, d, a ] * [ -c, b, -a, d ] * * The rotation is constructed from the effect's diffusion parameter, * yielding: * * 1 = x^2 + 3 y^2 * * Where a, b, and c are the coefficient y with differing signs, and d is the * coefficient x. The final matrix is thus: * * [ x, y, -y, y ] n = sqrt(matrix_order - 1) * [ -y, x, y, y ] t = diffusion_parameter * atan(n) * [ y, -y, x, y ] x = cos(t) * [ -y, -y, -y, x ] y = sin(t) / n * * Any square orthogonal matrix with an order that is a power of two will * work (where ^T is transpose, ^-1 is inverse): * * M^T = M^-1 * * Using that knowledge, finding an appropriate matrix can be accomplished * naively by searching all combinations of: * * M = D + S - S^T * * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) * whose combination of signs are being iterated. */ inline auto VectorPartialScatter(const std::array &RESTRICT in, const float xCoeff, const float yCoeff) -> std::array { return std::array{{ xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]), xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]), xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]), xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ) }}; } /* Utilizes the above, but also applies a geometric reflection on the input * channels. */ void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float xCoeff, const float yCoeff, const al::span in, const size_t count) { ASSUME(count > 0); for(size_t i{0u};i < count;) { offset &= delay.Mask; size_t td{minz(delay.Mask+1 - offset, count-i)}; do { std::array src{in[0][i], in[1][i], in[2][i], in[3][i]}; std::array f{ ( src[1] + src[2] + src[3] - src[0]) * 0.5f, (src[0] + src[2] + src[3] - src[1]) * 0.5f, (src[0] + src[1] + src[3] - src[2]) * 0.5f, (src[0] + src[1] + src[2] - src[3]) * 0.5f }; ++i; delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff); } while(--td); } } /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass * filter to the 4-line input. * * It works by vectorizing a regular all-pass filter and replacing the delay * element with a scattering matrix (like the one above) and a diagonal * matrix of delay elements. */ void VecAllpass::process(const al::span samples, size_t offset, const float xCoeff, const float yCoeff, const size_t todo) { const DelayLineI delay{Delay}; const float feedCoeff{Coeff}; ASSUME(todo > 0); size_t vap_offset[NUM_LINES]; for(size_t j{0u};j < NUM_LINES;j++) vap_offset[j] = offset - Offset[j]; for(size_t i{0u};i < todo;) { for(size_t j{0u};j < NUM_LINES;j++) vap_offset[j] &= delay.Mask; offset &= delay.Mask; size_t maxoff{offset}; for(size_t j{0u};j < NUM_LINES;j++) maxoff = maxz(maxoff, vap_offset[j]); size_t td{minz(delay.Mask+1 - maxoff, todo - i)}; do { std::array f; for(size_t j{0u};j < NUM_LINES;j++) { const float input{samples[j][i]}; const float out{delay.Line[vap_offset[j]++][j] - feedCoeff*input}; f[j] = input + feedCoeff*out; samples[j][i] = out; } ++i; delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff); } while(--td); } } /* This generates early reflections. * * This is done by obtaining the primary reflections (those arriving from the * same direction as the source) from the main delay line. These are * attenuated and all-pass filtered (based on the diffusion parameter). * * The early lines are then reflected about the origin to create the secondary * reflections (those arriving from the opposite direction as the source). * * The early response is then completed by combining the primary reflections * with the delayed and attenuated output from the early lines. * * Finally, the early response is reflected, scattered (based on diffusion), * and fed into the late reverb section of the main delay line. */ void ReverbPipeline::processEarly(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples) { const DelayLineI early_delay{mEarly.Delay}; const DelayLineI in_delay{mEarlyDelayIn}; const float mixX{mMixX}; const float mixY{mMixY}; ASSUME(samplesToDo > 0); for(size_t base{0};base < samplesToDo;) { const size_t todo{minz(samplesToDo-base, MAX_UPDATE_SAMPLES)}; /* First, load decorrelated samples from the main delay line as the * primary reflections. */ const float fadeStep{1.0f / static_cast(todo)}; for(size_t j{0u};j < NUM_LINES;j++) { size_t early_delay_tap0{offset - mEarlyDelayTap[j][0]}; size_t early_delay_tap1{offset - mEarlyDelayTap[j][1]}; const float coeff{mEarlyDelayCoeff[j]}; const float coeffStep{early_delay_tap0 != early_delay_tap1 ? coeff*fadeStep : 0.0f}; float fadeCount{0.0f}; for(size_t i{0u};i < todo;) { early_delay_tap0 &= in_delay.Mask; early_delay_tap1 &= in_delay.Mask; const size_t max_tap{maxz(early_delay_tap0, early_delay_tap1)}; size_t td{minz(in_delay.Mask+1 - max_tap, todo-i)}; do { const float fade0{coeff - coeffStep*fadeCount}; const float fade1{coeffStep*fadeCount}; fadeCount += 1.0f; tempSamples[j][i++] = in_delay.Line[early_delay_tap0++][j]*fade0 + in_delay.Line[early_delay_tap1++][j]*fade1; } while(--td); } mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1]; } /* Apply a vector all-pass, to help color the initial reflections. * Don't apply diffusion-based scattering since these are still the * first reflections. */ mEarly.VecAp.process(tempSamples, offset, 1.0f, 0.0f, todo); /* Apply a delay and bounce to generate secondary reflections, combine * with the primary reflections and write out the result for mixing. */ early_delay.writeReflected(offset, tempSamples, todo); for(size_t j{0u};j < NUM_LINES;j++) { size_t feedb_tap{offset - mEarly.Offset[j]}; const float feedb_coeff{mEarly.Coeff[j]}; float *RESTRICT out{al::assume_aligned<16>(outSamples[j].data() + base)}; for(size_t i{0u};i < todo;) { feedb_tap &= early_delay.Mask; size_t td{minz(early_delay.Mask+1 - feedb_tap, todo - i)}; do { float sample{early_delay.Line[feedb_tap++][j]}; out[i] = (tempSamples[j][i] + sample*feedb_coeff) * 0.5f; tempSamples[j][i] = sample; ++i; } while(--td); } } /* Finally, write the result to the late delay line input for the late * reverb stage to pick up at the appropriate time, applying a scatter * and bounce to improve the initial diffusion in the late reverb. */ VectorScatterRevDelayIn(mLateDelayIn, offset, mixX, mixY, tempSamples, todo); base += todo; offset += todo; } } void Modulation::calcDelays(size_t todo) { uint idx{Index}; const uint step{Step}; const float depth{Depth}; for(size_t i{0};i < todo;++i) { idx += step; const float x{static_cast(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE)}; /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape * and stays within [-1...+1], it needn't be perfect. */ const float lfo{!(idx&(MOD_FRACONE>>1)) ? ((-16.0f * x * x) + (8.0f * x)) : ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f)}; ModDelays[i] = (lfo+1.0f) * depth; } Index = idx; } /* This generates the reverb tail using a modified feed-back delay network * (FDN). * * Results from the early reflections are mixed with the output from the * modulated late delay lines. * * The late response is then completed by T60 and all-pass filtering the mix. * * Finally, the lines are reversed (so they feed their opposite directions) * and scattered with the FDN matrix before re-feeding the delay lines. */ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples) { const DelayLineI late_delay{mLate.Delay}; const DelayLineI in_delay{mLateDelayIn}; const float mixX{mMixX}; const float mixY{mMixY}; ASSUME(samplesToDo > 0); for(size_t base{0};base < samplesToDo;) { const size_t todo{minz(samplesToDo-base, minz(mLate.Offset[0], MAX_UPDATE_SAMPLES))}; ASSUME(todo > 0); /* First, calculate the modulated delays for the late feedback. */ mLate.Mod.calcDelays(todo); /* Next, load decorrelated samples from the main and feedback delay * lines. Filter the signal to apply its frequency-dependent decay. */ const float fadeStep{1.0f / static_cast(todo)}; for(size_t j{0u};j < NUM_LINES;j++) { size_t late_delay_tap0{offset - mLateDelayTap[j][0]}; size_t late_delay_tap1{offset - mLateDelayTap[j][1]}; size_t late_feedb_tap{offset - mLate.Offset[j]}; const float midGain{mLate.T60[j].MidGain}; const float densityGain{mLate.DensityGain}; const float densityStep{late_delay_tap0 != late_delay_tap1 ? densityGain*fadeStep : 0.0f}; float fadeCount{0.0f}; for(size_t i{0u};i < todo;) { late_delay_tap0 &= in_delay.Mask; late_delay_tap1 &= in_delay.Mask; size_t td{minz(todo-i, in_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))}; do { /* Calculate the read offset and offset between it and the * next sample. */ const float fdelay{mLate.Mod.ModDelays[i]}; const size_t idelay{float2uint(fdelay * float{gCubicTable.sTableSteps})}; const size_t delay{late_feedb_tap - (idelay>>gCubicTable.sTableBits)}; const size_t delayoffset{idelay & gCubicTable.sTableMask}; ++late_feedb_tap; /* Get the samples around by the delayed offset. */ const float out0{late_delay.Line[(delay ) & late_delay.Mask][j]}; const float out1{late_delay.Line[(delay-1) & late_delay.Mask][j]}; const float out2{late_delay.Line[(delay-2) & late_delay.Mask][j]}; const float out3{late_delay.Line[(delay-3) & late_delay.Mask][j]}; /* The output is obtained by interpolating the four samples * that were acquired above, and combined with the main * delay tap. */ const float out{out0*gCubicTable.getCoeff0(delayoffset) + out1*gCubicTable.getCoeff1(delayoffset) + out2*gCubicTable.getCoeff2(delayoffset) + out3*gCubicTable.getCoeff3(delayoffset)}; const float fade0{densityGain - densityStep*fadeCount}; const float fade1{densityStep*fadeCount}; fadeCount += 1.0f; tempSamples[j][i] = (out + in_delay.Line[late_delay_tap0++][j]*fade0 + in_delay.Line[late_delay_tap1++][j]*fade1) * midGain; ++i; } while(--td); } mLateDelayTap[j][0] = mLateDelayTap[j][1]; mLate.T60[j].process({tempSamples[j].data(), todo}); } /* Apply a vector all-pass to improve micro-surface diffusion, and * write out the results for mixing. */ mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo); for(size_t j{0u};j < NUM_LINES;j++) std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base); /* Finally, scatter and bounce the results to refeed the feedback buffer. */ VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, tempSamples, todo); base += todo; offset += todo; } } void ReverbState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t offset{mOffset}; ASSUME(samplesToDo > 0); auto &oldpipeline = mPipelines[mCurrentPipeline^1]; auto &pipeline = mPipelines[mCurrentPipeline]; if(mPipelineState >= Fading) { /* Convert B-Format to A-Format for processing. */ const size_t numInput{minz(samplesIn.size(), NUM_LINES)}; const al::span tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo}; for(size_t c{0u};c < NUM_LINES;c++) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) { const float gain{B2A[c][i]}; const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())}; auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(), mix_sample); } /* Band-pass the incoming samples and feed the initial delay line. */ auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp}; filter.process(tmpspan, tmpspan.data()); pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo); } if(mPipelineState == Fading) { /* Give the old pipeline silence if it's still fading out. */ for(size_t c{0u};c < NUM_LINES;c++) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp}; filter.process(tmpspan, tmpspan.data()); oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo); } } } else { /* At the start of a fade, fade in input for the current pipeline, and * fade out input for the old pipeline. */ const size_t numInput{minz(samplesIn.size(), NUM_LINES)}; const al::span tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo}; const float fadeStep{1.0f / static_cast(samplesToDo)}; for(size_t c{0u};c < NUM_LINES;c++) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) { const float gain{B2A[c][i]}; const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())}; auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(), mix_sample); } float stepCount{0.0f}; for(float &sample : tmpspan) { stepCount += 1.0f; sample *= stepCount*fadeStep; } auto&& filter = DualBiquad{pipeline.mFilter[c].Lp, pipeline.mFilter[c].Hp}; filter.process(tmpspan, tmpspan.data()); pipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo); } for(size_t c{0u};c < NUM_LINES;c++) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) { const float gain{B2A[c][i]}; const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())}; auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(tmpspan.begin(), tmpspan.end(), input, tmpspan.begin(), mix_sample); } float stepCount{0.0f}; for(float &sample : tmpspan) { stepCount += 1.0f; sample *= 1.0f - stepCount*fadeStep; } auto&& filter = DualBiquad{oldpipeline.mFilter[c].Lp, oldpipeline.mFilter[c].Hp}; filter.process(tmpspan, tmpspan.data()); oldpipeline.mEarlyDelayIn.write(offset, c, tmpspan.cbegin(), samplesToDo); } mPipelineState = Fading; } /* Process reverb for these samples. and mix them to the output. */ pipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples); pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples); mixOut(pipeline, samplesOut, samplesToDo); if(mPipelineState != Normal) { if(mPipelineState == Cleanup) { size_t numSamples{mSampleBuffer.size()/2}; size_t pipelineOffset{numSamples * (mCurrentPipeline^1)}; std::fill_n(mSampleBuffer.data()+pipelineOffset, numSamples, decltype(mSampleBuffer)::value_type{}); oldpipeline.clear(); mPipelineState = Normal; } else { /* If this is the final mix for this old pipeline, set the target * gains to 0 to ensure a complete fade out, and set the state to * Cleanup so the next invocation cleans up the delay buffers and * filters. */ if(samplesToDo >= oldpipeline.mFadeSampleCount) { for(auto &gains : oldpipeline.mEarly.TargetGains) std::fill(std::begin(gains), std::end(gains), 0.0f); for(auto &gains : oldpipeline.mLate.TargetGains) std::fill(std::begin(gains), std::end(gains), 0.0f); oldpipeline.mFadeSampleCount = 0; mPipelineState = Cleanup; } else oldpipeline.mFadeSampleCount -= samplesToDo; /* Process the old reverb for these samples. */ oldpipeline.processEarly(offset, samplesToDo, mTempSamples, mEarlySamples); oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples); mixOut(oldpipeline, samplesOut, samplesToDo); } } mOffset = offset + samplesToDo; } struct ReverbStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ReverbState{}}; } }; struct StdReverbStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ReverbState{}}; } }; } // namespace EffectStateFactory *ReverbStateFactory_getFactory() { static ReverbStateFactory ReverbFactory{}; return &ReverbFactory; } EffectStateFactory *StdReverbStateFactory_getFactory() { static StdReverbStateFactory ReverbFactory{}; return &ReverbFactory; }