#include "config.h" #include "bformatdec.h" #include #include #include #include #include #include #include "AL/al.h" #include "almalloc.h" #include "alu.h" #include "ambdec.h" #include "filters/splitter.h" #include "opthelpers.h" namespace { constexpr std::array Ambi3DDecoderHFScale{{ 1.00000000e+00f, 1.00000000e+00f }}; constexpr std::array Ambi3DDecoderHFScale2O{{ 7.45355990e-01f, 1.00000000e+00f, 1.00000000e+00f }}; constexpr std::array Ambi3DDecoderHFScale3O{{ 5.89792205e-01f, 8.79693856e-01f, 1.00000000e+00f, 1.00000000e+00f }}; inline auto GetDecoderHFScales(ALuint order) noexcept -> const std::array& { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale; } inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array& { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa; if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D; return AmbiScale::FromN3D; } } // namespace BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const ALuint inchans, const ALuint srate, const ALuint (&chanmap)[MAX_OUTPUT_CHANNELS]) : mChannelDec{inchans} { mDualBand = allow_2band && (conf->FreqBands == 2); const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0}; const std::array &coeff_scale = GetAmbiScales(conf->CoeffScale); if(!mDualBand) { for(size_t j{0},k{0};j < mChannelDec.size();++j) { const size_t acn{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1u<HFOrderGain[order] / coeff_scale[acn]}; for(size_t i{0u};i < conf->Speakers.size();++i) { const size_t chanidx{chanmap[i]}; mChannelDec[j].mGains.Single[chanidx] = conf->HFMatrix[i][k] * gain; } ++k; } } else { mChannelDec[0].mXOver.init(conf->XOverFreq / static_cast(srate)); for(size_t j{1};j < mChannelDec.size();++j) mChannelDec[j].mXOver = mChannelDec[0].mXOver; const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)}; for(size_t j{0},k{0};j < mChannelDec.size();++j) { const size_t acn{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1u<HFOrderGain[order] * ratio / coeff_scale[acn]}; const float lfGain{conf->LFOrderGain[order] / ratio / coeff_scale[acn]}; for(size_t i{0u};i < conf->Speakers.size();++i) { const size_t chanidx{chanmap[i]}; mChannelDec[j].mGains.Dual[sHFBand][chanidx] = conf->HFMatrix[i][k] * hfGain; mChannelDec[j].mGains.Dual[sLFBand][chanidx] = conf->LFMatrix[i][k] * lfGain; } ++k; } } } BFormatDec::BFormatDec(const ALuint inchans, const al::span chancoeffs) : mChannelDec{inchans} { for(size_t j{0};j < mChannelDec.size();++j) { float *outcoeffs{mChannelDec[j].mGains.Single}; for(const ChannelDec &incoeffs : chancoeffs) *(outcoeffs++) = incoeffs[j]; } } void BFormatDec::process(const al::span OutBuffer, const FloatBufferLine *InSamples, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); if(mDualBand) { const al::span hfSamples{mSamples[sHFBand].data(), SamplesToDo}; const al::span lfSamples{mSamples[sLFBand].data(), SamplesToDo}; for(auto &chandec : mChannelDec) { chandec.mXOver.process({InSamples->data(), SamplesToDo}, mSamples[sHFBand].data(), mSamples[sLFBand].data()); MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sHFBand], chandec.mGains.Dual[sHFBand], 0, 0); MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sLFBand], chandec.mGains.Dual[sLFBand], 0, 0); ++InSamples; } } else { for(auto &chandec : mChannelDec) { MixSamples({InSamples->data(), SamplesToDo}, OutBuffer, chandec.mGains.Single, chandec.mGains.Single, 0, 0); ++InSamples; } } } auto BFormatDec::GetHFOrderScales(const ALuint in_order, const ALuint out_order) noexcept -> std::array { std::array ret{}; assert(out_order >= in_order); const auto &target = GetDecoderHFScales(out_order); const auto &input = GetDecoderHFScales(in_order); for(size_t i{0};i < in_order+1;++i) ret[i] = input[i] / target[i]; return ret; }