/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "buffer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "albit.h" #include "albyte.h" #include "alc/context.h" #include "alc/device.h" #include "alc/inprogext.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "atomic.h" #include "core/except.h" #include "core/logging.h" #include "core/voice.h" #include "opthelpers.h" #ifdef ALSOFT_EAX #include "eax/globals.h" #include "eax/x_ram.h" #endif // ALSOFT_EAX namespace { constexpr int MaxAdpcmChannels{2}; /* IMA ADPCM Stepsize table */ constexpr int IMAStep_size[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442, 11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794, 32767 }; /* IMA4 ADPCM Codeword decode table */ constexpr int IMA4Codeword[16] = { 1, 3, 5, 7, 9, 11, 13, 15, -1,-3,-5,-7,-9,-11,-13,-15, }; /* IMA4 ADPCM Step index adjust decode table */ constexpr int IMA4Index_adjust[16] = { -1,-1,-1,-1, 2, 4, 6, 8, -1,-1,-1,-1, 2, 4, 6, 8 }; /* MSADPCM Adaption table */ constexpr int MSADPCMAdaption[16] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; /* MSADPCM Adaption Coefficient tables */ constexpr int MSADPCMAdaptionCoeff[7][2] = { { 256, 0 }, { 512, -256 }, { 0, 0 }, { 192, 64 }, { 240, 0 }, { 460, -208 }, { 392, -232 } }; void DecodeIMA4Block(int16_t *dst, const al::byte *src, size_t numchans, size_t align) { int sample[MaxAdpcmChannels]{}; int index[MaxAdpcmChannels]{}; ALuint code[MaxAdpcmChannels]{}; for(size_t c{0};c < numchans;c++) { sample[c] = src[0] | (src[1]<<8); sample[c] = (sample[c]^0x8000) - 32768; src += 2; index[c] = src[0] | (src[1]<<8); index[c] = clampi((index[c]^0x8000) - 32768, 0, 88); src += 2; *(dst++) = static_cast(sample[c]); } for(size_t i{1};i < align;i++) { if((i&7) == 1) { for(size_t c{0};c < numchans;c++) { code[c] = ALuint{src[0]} | (ALuint{src[1]}<< 8) | (ALuint{src[2]}<<16) | (ALuint{src[3]}<<24); src += 4; } } for(size_t c{0};c < numchans;c++) { const ALuint nibble{code[c]&0xf}; code[c] >>= 4; sample[c] += IMA4Codeword[nibble] * IMAStep_size[index[c]] / 8; sample[c] = clampi(sample[c], -32768, 32767); index[c] += IMA4Index_adjust[nibble]; index[c] = clampi(index[c], 0, 88); *(dst++) = static_cast(sample[c]); } } } void DecodeMSADPCMBlock(int16_t *dst, const al::byte *src, size_t numchans, size_t align) { uint8_t blockpred[MaxAdpcmChannels]{}; int delta[MaxAdpcmChannels]{}; int16_t samples[MaxAdpcmChannels][2]{}; for(size_t c{0};c < numchans;c++) { blockpred[c] = std::min(src[0], 6); ++src; } for(size_t c{0};c < numchans;c++) { delta[c] = src[0] | (src[1]<<8); delta[c] = (delta[c]^0x8000) - 32768; src += 2; } for(size_t c{0};c < numchans;c++) { samples[c][0] = static_cast(src[0] | (src[1]<<8)); src += 2; } for(size_t c{0};c < numchans;c++) { samples[c][1] = static_cast(src[0] | (src[1]<<8)); src += 2; } /* Second sample is written first. */ for(size_t c{0};c < numchans;c++) *(dst++) = samples[c][1]; for(size_t c{0};c < numchans;c++) *(dst++) = samples[c][0]; int num{0}; for(size_t i{2};i < align;i++) { for(size_t c{0};c < numchans;c++) { /* Read the nibble (first is in the upper bits). */ al::byte nibble; if(!(num++ & 1)) nibble = *src >> 4; else nibble = *(src++) & 0x0f; int pred{(samples[c][0]*MSADPCMAdaptionCoeff[blockpred[c]][0] + samples[c][1]*MSADPCMAdaptionCoeff[blockpred[c]][1]) / 256}; pred += ((nibble^0x08) - 0x08) * delta[c]; pred = clampi(pred, -32768, 32767); samples[c][1] = samples[c][0]; samples[c][0] = static_cast(pred); delta[c] = (MSADPCMAdaption[nibble] * delta[c]) / 256; delta[c] = maxi(16, delta[c]); *(dst++) = static_cast(pred); } } } void Convert_int16_ima4(int16_t *dst, const al::byte *src, size_t numchans, size_t len, size_t align) { assert(numchans <= MaxAdpcmChannels); const size_t byte_align{((align-1)/2 + 4) * numchans}; len /= align; while(len--) { DecodeIMA4Block(dst, src, numchans, align); src += byte_align; dst += align*numchans; } } void Convert_int16_msadpcm(int16_t *dst, const al::byte *src, size_t numchans, size_t len, size_t align) { assert(numchans <= MaxAdpcmChannels); const size_t byte_align{((align-2)/2 + 7) * numchans}; len /= align; while(len--) { DecodeMSADPCMBlock(dst, src, numchans, align); src += byte_align; dst += align*numchans; } } ALuint BytesFromUserFmt(UserFmtType type) noexcept { switch(type) { case UserFmtUByte: return sizeof(uint8_t); case UserFmtShort: return sizeof(int16_t); case UserFmtFloat: return sizeof(float); case UserFmtDouble: return sizeof(double); case UserFmtMulaw: return sizeof(uint8_t); case UserFmtAlaw: return sizeof(uint8_t); case UserFmtIMA4: break; /* not handled here */ case UserFmtMSADPCM: break; /* not handled here */ } return 0; } ALuint ChannelsFromUserFmt(UserFmtChannels chans, ALuint ambiorder) noexcept { switch(chans) { case UserFmtMono: return 1; case UserFmtStereo: return 2; case UserFmtRear: return 2; case UserFmtQuad: return 4; case UserFmtX51: return 6; case UserFmtX61: return 7; case UserFmtX71: return 8; case UserFmtBFormat2D: return (ambiorder*2) + 1; case UserFmtBFormat3D: return (ambiorder+1) * (ambiorder+1); case UserFmtUHJ2: return 2; case UserFmtUHJ3: return 3; case UserFmtUHJ4: return 4; } return 0; } al::optional AmbiLayoutFromEnum(ALenum layout) { switch(layout) { case AL_FUMA_SOFT: return AmbiLayout::FuMa; case AL_ACN_SOFT: return AmbiLayout::ACN; } return al::nullopt; } ALenum EnumFromAmbiLayout(AmbiLayout layout) { switch(layout) { case AmbiLayout::FuMa: return AL_FUMA_SOFT; case AmbiLayout::ACN: return AL_ACN_SOFT; } throw std::runtime_error{"Invalid AmbiLayout: "+std::to_string(int(layout))}; } al::optional AmbiScalingFromEnum(ALenum scale) { switch(scale) { case AL_FUMA_SOFT: return AmbiScaling::FuMa; case AL_SN3D_SOFT: return AmbiScaling::SN3D; case AL_N3D_SOFT: return AmbiScaling::N3D; } return al::nullopt; } ALenum EnumFromAmbiScaling(AmbiScaling scale) { switch(scale) { case AmbiScaling::FuMa: return AL_FUMA_SOFT; case AmbiScaling::SN3D: return AL_SN3D_SOFT; case AmbiScaling::N3D: return AL_N3D_SOFT; case AmbiScaling::UHJ: break; } throw std::runtime_error{"Invalid AmbiScaling: "+std::to_string(int(scale))}; } al::optional FmtFromUserFmt(UserFmtChannels chans) { switch(chans) { case UserFmtMono: return FmtMono; case UserFmtStereo: return FmtStereo; case UserFmtRear: return FmtRear; case UserFmtQuad: return FmtQuad; case UserFmtX51: return FmtX51; case UserFmtX61: return FmtX61; case UserFmtX71: return FmtX71; case UserFmtBFormat2D: return FmtBFormat2D; case UserFmtBFormat3D: return FmtBFormat3D; case UserFmtUHJ2: return FmtUHJ2; case UserFmtUHJ3: return FmtUHJ3; case UserFmtUHJ4: return FmtUHJ4; } return al::nullopt; } al::optional FmtFromUserFmt(UserFmtType type) { switch(type) { case UserFmtUByte: return FmtUByte; case UserFmtShort: return FmtShort; case UserFmtFloat: return FmtFloat; case UserFmtDouble: return FmtDouble; case UserFmtMulaw: return FmtMulaw; case UserFmtAlaw: return FmtAlaw; case UserFmtIMA4: return FmtIMA4; case UserFmtMSADPCM: return FmtMSADPCM; } return al::nullopt; } #ifdef ALSOFT_EAX bool eax_x_ram_check_availability(const ALCdevice &device, const ALbuffer &buffer, const ALuint newsize) noexcept { ALuint freemem{device.eax_x_ram_free_size}; /* If the buffer is currently in "hardware", add its memory to the free * pool since it'll be "replaced". */ if(buffer.eax_x_ram_is_hardware) freemem += buffer.OriginalSize; return freemem >= newsize; } void eax_x_ram_apply(ALCdevice &device, ALbuffer &buffer) noexcept { if(buffer.eax_x_ram_is_hardware) return; if(device.eax_x_ram_free_size >= buffer.OriginalSize) { device.eax_x_ram_free_size -= buffer.OriginalSize; buffer.eax_x_ram_is_hardware = true; } } void eax_x_ram_clear(ALCdevice& al_device, ALbuffer& al_buffer) { if(al_buffer.eax_x_ram_is_hardware) al_device.eax_x_ram_free_size += al_buffer.OriginalSize; al_buffer.eax_x_ram_is_hardware = false; } #endif // ALSOFT_EAX constexpr ALbitfieldSOFT INVALID_STORAGE_MASK{~unsigned(AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT | AL_MAP_PERSISTENT_BIT_SOFT | AL_PRESERVE_DATA_BIT_SOFT)}; constexpr ALbitfieldSOFT MAP_READ_WRITE_FLAGS{AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT}; constexpr ALbitfieldSOFT INVALID_MAP_FLAGS{~unsigned(AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT | AL_MAP_PERSISTENT_BIT_SOFT)}; bool EnsureBuffers(ALCdevice *device, size_t needed) { size_t count{std::accumulate(device->BufferList.cbegin(), device->BufferList.cend(), size_t{0}, [](size_t cur, const BufferSubList &sublist) noexcept -> size_t { return cur + static_cast(al::popcount(sublist.FreeMask)); })}; while(needed > count) { if(device->BufferList.size() >= 1<<25) [[unlikely]] return false; device->BufferList.emplace_back(); auto sublist = device->BufferList.end() - 1; sublist->FreeMask = ~0_u64; sublist->Buffers = static_cast(al_calloc(alignof(ALbuffer), sizeof(ALbuffer)*64)); if(!sublist->Buffers) [[unlikely]] { device->BufferList.pop_back(); return false; } count += 64; } return true; } ALbuffer *AllocBuffer(ALCdevice *device) { auto sublist = std::find_if(device->BufferList.begin(), device->BufferList.end(), [](const BufferSubList &entry) noexcept -> bool { return entry.FreeMask != 0; }); auto lidx = static_cast(std::distance(device->BufferList.begin(), sublist)); auto slidx = static_cast(al::countr_zero(sublist->FreeMask)); ASSUME(slidx < 64); ALbuffer *buffer{al::construct_at(sublist->Buffers + slidx)}; /* Add 1 to avoid buffer ID 0. */ buffer->id = ((lidx<<6) | slidx) + 1; sublist->FreeMask &= ~(1_u64 << slidx); return buffer; } void FreeBuffer(ALCdevice *device, ALbuffer *buffer) { #ifdef ALSOFT_EAX eax_x_ram_clear(*device, *buffer); #endif // ALSOFT_EAX const ALuint id{buffer->id - 1}; const size_t lidx{id >> 6}; const ALuint slidx{id & 0x3f}; al::destroy_at(buffer); device->BufferList[lidx].FreeMask |= 1_u64 << slidx; } inline ALbuffer *LookupBuffer(ALCdevice *device, ALuint id) { const size_t lidx{(id-1) >> 6}; const ALuint slidx{(id-1) & 0x3f}; if(lidx >= device->BufferList.size()) [[unlikely]] return nullptr; BufferSubList &sublist = device->BufferList[lidx]; if(sublist.FreeMask & (1_u64 << slidx)) [[unlikely]] return nullptr; return sublist.Buffers + slidx; } ALuint SanitizeAlignment(UserFmtType type, ALuint align) { if(align == 0) { if(type == UserFmtIMA4) { /* Here is where things vary: * nVidia and Apple use 64+1 sample frames per block -> block_size=36 bytes per channel * Most PC sound software uses 2040+1 sample frames per block -> block_size=1024 bytes per channel */ return 65; } if(type == UserFmtMSADPCM) return 64; return 1; } if(type == UserFmtIMA4) { /* IMA4 block alignment must be a multiple of 8, plus 1. */ if((align&7) == 1) return static_cast(align); return 0; } if(type == UserFmtMSADPCM) { /* MSADPCM block alignment must be a multiple of 2. */ if((align&1) == 0) return static_cast(align); return 0; } return static_cast(align); } const ALchar *NameFromUserFmtType(UserFmtType type) { switch(type) { case UserFmtUByte: return "UInt8"; case UserFmtShort: return "Int16"; case UserFmtFloat: return "Float32"; case UserFmtDouble: return "Float64"; case UserFmtMulaw: return "muLaw"; case UserFmtAlaw: return "aLaw"; case UserFmtIMA4: return "IMA4 ADPCM"; case UserFmtMSADPCM: return "MSADPCM"; } return ""; } /** Loads the specified data into the buffer, using the specified format. */ void LoadData(ALCcontext *context, ALbuffer *ALBuf, ALsizei freq, ALuint size, UserFmtChannels SrcChannels, UserFmtType SrcType, const al::byte *SrcData, ALbitfieldSOFT access) { if(ReadRef(ALBuf->ref) != 0 || ALBuf->MappedAccess != 0) [[unlikely]] return context->setError(AL_INVALID_OPERATION, "Modifying storage for in-use buffer %u", ALBuf->id); /* Currently no channel configurations need to be converted. */ auto DstChannels = FmtFromUserFmt(SrcChannels); if(!DstChannels) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Invalid format"); const auto DstType = FmtFromUserFmt(SrcType); if(!DstType) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Invalid format"); const ALuint unpackalign{ALBuf->UnpackAlign}; const ALuint align{SanitizeAlignment(SrcType, unpackalign)}; if(align < 1) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Invalid unpack alignment %u for %s samples", unpackalign, NameFromUserFmtType(SrcType)); const ALuint ambiorder{IsBFormat(*DstChannels) ? ALBuf->UnpackAmbiOrder : (IsUHJ(*DstChannels) ? 1 : 0)}; if((access&AL_PRESERVE_DATA_BIT_SOFT)) { /* Can only preserve data with the same format and alignment. */ if(ALBuf->mChannels != *DstChannels || ALBuf->OriginalType != SrcType) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Preserving data of mismatched format"); if(ALBuf->mBlockAlign != align) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Preserving data of mismatched alignment"); if(ALBuf->mAmbiOrder != ambiorder) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Preserving data of mismatched order"); } /* Convert the input/source size in bytes to blocks using the unpack block * alignment. */ const ALuint SrcBlockSize{ChannelsFromUserFmt(SrcChannels, ambiorder) * ((SrcType == UserFmtIMA4) ? (align-1)/2 + 4 : (SrcType == UserFmtMSADPCM) ? (align-2)/2 + 7 : (align * BytesFromUserFmt(SrcType)))}; if((size%SrcBlockSize) != 0) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Data size %d is not a multiple of frame size %d (%d unpack alignment)", size, SrcBlockSize, align); const ALuint blocks{size / SrcBlockSize}; if(blocks > std::numeric_limits::max()/align) [[unlikely]] return context->setError(AL_OUT_OF_MEMORY, "Buffer size overflow, %d blocks x %d samples per block", blocks, align); if(blocks > std::numeric_limits::max()/SrcBlockSize) [[unlikely]] return context->setError(AL_OUT_OF_MEMORY, "Buffer size overflow, %d frames x %d bytes per frame", blocks, SrcBlockSize); /* Convert the sample frames to the number of bytes needed for internal * storage. */ const ALuint NumChannels{ChannelsFromFmt(*DstChannels, ambiorder)}; const ALuint DstBlockSize{NumChannels * ((*DstType == FmtIMA4) ? (align-1)/2 + 4 : (*DstType == FmtMSADPCM) ? (align-2)/2 + 7 : (align * BytesFromFmt(*DstType)))}; const size_t newsize{static_cast(blocks) * DstBlockSize}; #ifdef ALSOFT_EAX if(ALBuf->eax_x_ram_mode == AL_STORAGE_HARDWARE) { ALCdevice &device = *context->mALDevice; if(!eax_x_ram_check_availability(device, *ALBuf, size)) return context->setError(AL_OUT_OF_MEMORY, "Out of X-RAM memory (avail: %u, needed: %u)", device.eax_x_ram_free_size, size); } #endif /* This could reallocate only when increasing the size or the new size is * less than half the current, but then the buffer's AL_SIZE would not be * very reliable for accounting buffer memory usage, and reporting the real * size could cause problems for apps that use AL_SIZE to try to get the * buffer's play length. */ if(newsize != ALBuf->mData.size()) { auto newdata = al::vector(newsize, al::byte{}); if((access&AL_PRESERVE_DATA_BIT_SOFT)) { const size_t tocopy{minz(newdata.size(), ALBuf->mData.size())}; std::copy_n(ALBuf->mData.begin(), tocopy, newdata.begin()); } newdata.swap(ALBuf->mData); } #ifdef ALSOFT_EAX eax_x_ram_clear(*context->mALDevice, *ALBuf); #endif if(SrcData != nullptr && !ALBuf->mData.empty()) std::copy_n(SrcData, blocks*DstBlockSize, ALBuf->mData.begin()); ALBuf->mBlockAlign = (SrcType == UserFmtIMA4 || SrcType == UserFmtMSADPCM) ? align : 1; ALBuf->OriginalSize = size; ALBuf->OriginalType = SrcType; ALBuf->Access = access; ALBuf->mSampleRate = static_cast(freq); ALBuf->mChannels = *DstChannels; ALBuf->mType = *DstType; ALBuf->mAmbiOrder = ambiorder; ALBuf->mCallback = nullptr; ALBuf->mUserData = nullptr; ALBuf->mSampleLen = blocks * align; ALBuf->mLoopStart = 0; ALBuf->mLoopEnd = ALBuf->mSampleLen; #ifdef ALSOFT_EAX if(eax_g_is_enabled && ALBuf->eax_x_ram_mode != AL_STORAGE_ACCESSIBLE) eax_x_ram_apply(*context->mALDevice, *ALBuf); #endif } /** Prepares the buffer to use the specified callback, using the specified format. */ void PrepareCallback(ALCcontext *context, ALbuffer *ALBuf, ALsizei freq, UserFmtChannels SrcChannels, UserFmtType SrcType, ALBUFFERCALLBACKTYPESOFT callback, void *userptr) { if(ReadRef(ALBuf->ref) != 0 || ALBuf->MappedAccess != 0) [[unlikely]] return context->setError(AL_INVALID_OPERATION, "Modifying callback for in-use buffer %u", ALBuf->id); /* Currently no channel configurations need to be converted. */ const auto DstChannels = FmtFromUserFmt(SrcChannels); if(!DstChannels) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Invalid format"); /* Formats that need conversion aren't supported with callbacks. */ const auto DstType = FmtFromUserFmt(SrcType); if(!DstType) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Unsupported callback format"); const ALuint ambiorder{IsBFormat(*DstChannels) ? ALBuf->UnpackAmbiOrder : (IsUHJ(*DstChannels) ? 1 : 0)}; const ALuint unpackalign{ALBuf->UnpackAlign}; const ALuint align{SanitizeAlignment(SrcType, unpackalign)}; const ALuint BlockSize{ChannelsFromFmt(*DstChannels, ambiorder) * ((SrcType == UserFmtIMA4) ? (align-1)/2 + 4 : (SrcType == UserFmtMSADPCM) ? (align-2)/2 + 7 : (align * BytesFromFmt(*DstType)))}; /* The maximum number of samples a callback buffer may need to store is a * full mixing line * max pitch * channel count, since it may need to hold * a full line's worth of sample frames before downsampling. An additional * MaxResamplerEdge is needed for "future" samples during resampling (the * voice will hold a history for the past samples). */ static constexpr size_t line_size{DeviceBase::MixerLineSize*MaxPitch + MaxResamplerEdge}; const size_t line_blocks{(line_size + align-1) / align}; using BufferVectorType = decltype(ALBuf->mData); BufferVectorType(line_blocks*BlockSize).swap(ALBuf->mData); #ifdef ALSOFT_EAX eax_x_ram_clear(*context->mALDevice, *ALBuf); #endif ALBuf->mCallback = callback; ALBuf->mUserData = userptr; ALBuf->OriginalType = SrcType; ALBuf->OriginalSize = 0; ALBuf->mBlockAlign = 1; ALBuf->Access = 0; ALBuf->mSampleRate = static_cast(freq); ALBuf->mChannels = *DstChannels; ALBuf->mType = *DstType; ALBuf->mAmbiOrder = ambiorder; ALBuf->mSampleLen = 0; ALBuf->mLoopStart = 0; ALBuf->mLoopEnd = ALBuf->mSampleLen; } struct DecompResult { UserFmtChannels channels; UserFmtType type; }; al::optional DecomposeUserFormat(ALenum format) { struct FormatMap { ALenum format; UserFmtChannels channels; UserFmtType type; }; static const std::array UserFmtList{{ { AL_FORMAT_MONO8, UserFmtMono, UserFmtUByte }, { AL_FORMAT_MONO16, UserFmtMono, UserFmtShort }, { AL_FORMAT_MONO_FLOAT32, UserFmtMono, UserFmtFloat }, { AL_FORMAT_MONO_DOUBLE_EXT, UserFmtMono, UserFmtDouble }, { AL_FORMAT_MONO_IMA4, UserFmtMono, UserFmtIMA4 }, { AL_FORMAT_MONO_MSADPCM_SOFT, UserFmtMono, UserFmtMSADPCM }, { AL_FORMAT_MONO_MULAW, UserFmtMono, UserFmtMulaw }, { AL_FORMAT_MONO_ALAW_EXT, UserFmtMono, UserFmtAlaw }, { AL_FORMAT_STEREO8, UserFmtStereo, UserFmtUByte }, { AL_FORMAT_STEREO16, UserFmtStereo, UserFmtShort }, { AL_FORMAT_STEREO_FLOAT32, UserFmtStereo, UserFmtFloat }, { AL_FORMAT_STEREO_DOUBLE_EXT, UserFmtStereo, UserFmtDouble }, { AL_FORMAT_STEREO_IMA4, UserFmtStereo, UserFmtIMA4 }, { AL_FORMAT_STEREO_MSADPCM_SOFT, UserFmtStereo, UserFmtMSADPCM }, { AL_FORMAT_STEREO_MULAW, UserFmtStereo, UserFmtMulaw }, { AL_FORMAT_STEREO_ALAW_EXT, UserFmtStereo, UserFmtAlaw }, { AL_FORMAT_REAR8, UserFmtRear, UserFmtUByte }, { AL_FORMAT_REAR16, UserFmtRear, UserFmtShort }, { AL_FORMAT_REAR32, UserFmtRear, UserFmtFloat }, { AL_FORMAT_REAR_MULAW, UserFmtRear, UserFmtMulaw }, { AL_FORMAT_QUAD8_LOKI, UserFmtQuad, UserFmtUByte }, { AL_FORMAT_QUAD16_LOKI, UserFmtQuad, UserFmtShort }, { AL_FORMAT_QUAD8, UserFmtQuad, UserFmtUByte }, { AL_FORMAT_QUAD16, UserFmtQuad, UserFmtShort }, { AL_FORMAT_QUAD32, UserFmtQuad, UserFmtFloat }, { AL_FORMAT_QUAD_MULAW, UserFmtQuad, UserFmtMulaw }, { AL_FORMAT_51CHN8, UserFmtX51, UserFmtUByte }, { AL_FORMAT_51CHN16, UserFmtX51, UserFmtShort }, { AL_FORMAT_51CHN32, UserFmtX51, UserFmtFloat }, { AL_FORMAT_51CHN_MULAW, UserFmtX51, UserFmtMulaw }, { AL_FORMAT_61CHN8, UserFmtX61, UserFmtUByte }, { AL_FORMAT_61CHN16, UserFmtX61, UserFmtShort }, { AL_FORMAT_61CHN32, UserFmtX61, UserFmtFloat }, { AL_FORMAT_61CHN_MULAW, UserFmtX61, UserFmtMulaw }, { AL_FORMAT_71CHN8, UserFmtX71, UserFmtUByte }, { AL_FORMAT_71CHN16, UserFmtX71, UserFmtShort }, { AL_FORMAT_71CHN32, UserFmtX71, UserFmtFloat }, { AL_FORMAT_71CHN_MULAW, UserFmtX71, UserFmtMulaw }, { AL_FORMAT_BFORMAT2D_8, UserFmtBFormat2D, UserFmtUByte }, { AL_FORMAT_BFORMAT2D_16, UserFmtBFormat2D, UserFmtShort }, { AL_FORMAT_BFORMAT2D_FLOAT32, UserFmtBFormat2D, UserFmtFloat }, { AL_FORMAT_BFORMAT2D_MULAW, UserFmtBFormat2D, UserFmtMulaw }, { AL_FORMAT_BFORMAT3D_8, UserFmtBFormat3D, UserFmtUByte }, { AL_FORMAT_BFORMAT3D_16, UserFmtBFormat3D, UserFmtShort }, { AL_FORMAT_BFORMAT3D_FLOAT32, UserFmtBFormat3D, UserFmtFloat }, { AL_FORMAT_BFORMAT3D_MULAW, UserFmtBFormat3D, UserFmtMulaw }, { AL_FORMAT_UHJ2CHN8_SOFT, UserFmtUHJ2, UserFmtUByte }, { AL_FORMAT_UHJ2CHN16_SOFT, UserFmtUHJ2, UserFmtShort }, { AL_FORMAT_UHJ2CHN_FLOAT32_SOFT, UserFmtUHJ2, UserFmtFloat }, { AL_FORMAT_UHJ3CHN8_SOFT, UserFmtUHJ3, UserFmtUByte }, { AL_FORMAT_UHJ3CHN16_SOFT, UserFmtUHJ3, UserFmtShort }, { AL_FORMAT_UHJ3CHN_FLOAT32_SOFT, UserFmtUHJ3, UserFmtFloat }, { AL_FORMAT_UHJ4CHN8_SOFT, UserFmtUHJ4, UserFmtUByte }, { AL_FORMAT_UHJ4CHN16_SOFT, UserFmtUHJ4, UserFmtShort }, { AL_FORMAT_UHJ4CHN_FLOAT32_SOFT, UserFmtUHJ4, UserFmtFloat }, }}; for(const auto &fmt : UserFmtList) { if(fmt.format == format) return al::make_optional({fmt.channels, fmt.type}); } return al::nullopt; } } // namespace AL_API void AL_APIENTRY alGenBuffers(ALsizei n, ALuint *buffers) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; if(n < 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Generating %d buffers", n); if(n <= 0) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(!EnsureBuffers(device, static_cast(n))) { context->setError(AL_OUT_OF_MEMORY, "Failed to allocate %d buffer%s", n, (n==1)?"":"s"); return; } if(n == 1) [[likely]] { /* Special handling for the easy and normal case. */ ALbuffer *buffer{AllocBuffer(device)}; buffers[0] = buffer->id; } else { /* Store the allocated buffer IDs in a separate local list, to avoid * modifying the user storage in case of failure. */ al::vector ids; ids.reserve(static_cast(n)); do { ALbuffer *buffer{AllocBuffer(device)}; ids.emplace_back(buffer->id); } while(--n); std::copy(ids.begin(), ids.end(), buffers); } } END_API_FUNC AL_API void AL_APIENTRY alDeleteBuffers(ALsizei n, const ALuint *buffers) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; if(n < 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Deleting %d buffers", n); if(n <= 0) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; /* First try to find any buffers that are invalid or in-use. */ auto validate_buffer = [device, &context](const ALuint bid) -> bool { if(!bid) return true; ALbuffer *ALBuf{LookupBuffer(device, bid)}; if(!ALBuf) [[unlikely]] { context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", bid); return false; } if(ReadRef(ALBuf->ref) != 0) [[unlikely]] { context->setError(AL_INVALID_OPERATION, "Deleting in-use buffer %u", bid); return false; } return true; }; const ALuint *buffers_end = buffers + n; auto invbuf = std::find_if_not(buffers, buffers_end, validate_buffer); if(invbuf != buffers_end) [[unlikely]] return; /* All good. Delete non-0 buffer IDs. */ auto delete_buffer = [device](const ALuint bid) -> void { ALbuffer *buffer{bid ? LookupBuffer(device, bid) : nullptr}; if(buffer) FreeBuffer(device, buffer); }; std::for_each(buffers, buffers_end, delete_buffer); } END_API_FUNC AL_API ALboolean AL_APIENTRY alIsBuffer(ALuint buffer) START_API_FUNC { ContextRef context{GetContextRef()}; if(context) [[likely]] { ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(!buffer || LookupBuffer(device, buffer)) return AL_TRUE; } return AL_FALSE; } END_API_FUNC AL_API void AL_APIENTRY alBufferData(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq) START_API_FUNC { alBufferStorageSOFT(buffer, format, data, size, freq, 0); } END_API_FUNC AL_API void AL_APIENTRY alBufferStorageSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq, ALbitfieldSOFT flags) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(size < 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Negative storage size %d", size); else if(freq < 1) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid sample rate %d", freq); else if((flags&INVALID_STORAGE_MASK) != 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid storage flags 0x%x", flags&INVALID_STORAGE_MASK); else if((flags&AL_MAP_PERSISTENT_BIT_SOFT) && !(flags&MAP_READ_WRITE_FLAGS)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Declaring persistently mapped storage without read or write access"); else { auto usrfmt = DecomposeUserFormat(format); if(!usrfmt) [[unlikely]] context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format); else { LoadData(context.get(), albuf, freq, static_cast(size), usrfmt->channels, usrfmt->type, static_cast(data), flags); } } } END_API_FUNC AL_API void* AL_APIENTRY alMapBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length, ALbitfieldSOFT access) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return nullptr; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if((access&INVALID_MAP_FLAGS) != 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid map flags 0x%x", access&INVALID_MAP_FLAGS); else if(!(access&MAP_READ_WRITE_FLAGS)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Mapping buffer %u without read or write access", buffer); else { ALbitfieldSOFT unavailable = (albuf->Access^access) & access; if(ReadRef(albuf->ref) != 0 && !(access&AL_MAP_PERSISTENT_BIT_SOFT)) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Mapping in-use buffer %u without persistent mapping", buffer); else if(albuf->MappedAccess != 0) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Mapping already-mapped buffer %u", buffer); else if((unavailable&AL_MAP_READ_BIT_SOFT)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Mapping buffer %u for reading without read access", buffer); else if((unavailable&AL_MAP_WRITE_BIT_SOFT)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Mapping buffer %u for writing without write access", buffer); else if((unavailable&AL_MAP_PERSISTENT_BIT_SOFT)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Mapping buffer %u persistently without persistent access", buffer); else if(offset < 0 || length <= 0 || static_cast(offset) >= albuf->OriginalSize || static_cast(length) > albuf->OriginalSize - static_cast(offset)) [[unlikely]] context->setError(AL_INVALID_VALUE, "Mapping invalid range %d+%d for buffer %u", offset, length, buffer); else { void *retval{albuf->mData.data() + offset}; albuf->MappedAccess = access; albuf->MappedOffset = offset; albuf->MappedSize = length; return retval; } } return nullptr; } END_API_FUNC AL_API void AL_APIENTRY alUnmapBufferSOFT(ALuint buffer) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(albuf->MappedAccess == 0) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Unmapping unmapped buffer %u", buffer); else { albuf->MappedAccess = 0; albuf->MappedOffset = 0; albuf->MappedSize = 0; } } END_API_FUNC AL_API void AL_APIENTRY alFlushMappedBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!(albuf->MappedAccess&AL_MAP_WRITE_BIT_SOFT)) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Flushing buffer %u while not mapped for writing", buffer); else if(offset < albuf->MappedOffset || length <= 0 || offset >= albuf->MappedOffset+albuf->MappedSize || length > albuf->MappedOffset+albuf->MappedSize-offset) [[unlikely]] context->setError(AL_INVALID_VALUE, "Flushing invalid range %d+%d on buffer %u", offset, length, buffer); else { /* FIXME: Need to use some method of double-buffering for the mixer and * app to hold separate memory, which can be safely transfered * asynchronously. Currently we just say the app shouldn't write where * OpenAL's reading, and hope for the best... */ std::atomic_thread_fence(std::memory_order_seq_cst); } } END_API_FUNC AL_API void AL_APIENTRY alBufferSubDataSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei offset, ALsizei length) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] return context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); auto usrfmt = DecomposeUserFormat(format); if(!usrfmt) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format); const ALuint unpack_align{albuf->UnpackAlign}; const ALuint align{SanitizeAlignment(usrfmt->type, unpack_align)}; if(align < 1) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Invalid unpack alignment %u", unpack_align); if(al::to_underlying(usrfmt->channels) != al::to_underlying(albuf->mChannels) || usrfmt->type != albuf->OriginalType) [[unlikely]] return context->setError(AL_INVALID_ENUM, "Unpacking data with mismatched format"); if(align != albuf->mBlockAlign) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Unpacking data with alignment %u does not match original alignment %u", align, albuf->mBlockAlign); if(albuf->isBFormat() && albuf->UnpackAmbiOrder != albuf->mAmbiOrder) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Unpacking data with mismatched ambisonic order"); if(albuf->MappedAccess != 0) [[unlikely]] return context->setError(AL_INVALID_OPERATION, "Unpacking data into mapped buffer %u", buffer); const ALuint num_chans{albuf->channelsFromFmt()}; const ALuint byte_align{ (albuf->OriginalType == UserFmtIMA4) ? ((align-1)/2 + 4) * num_chans : (albuf->OriginalType == UserFmtMSADPCM) ? ((align-2)/2 + 7) * num_chans : (align * albuf->bytesFromFmt() * num_chans)}; if(offset < 0 || length < 0 || static_cast(offset) > albuf->OriginalSize || static_cast(length) > albuf->OriginalSize-static_cast(offset)) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Invalid data sub-range %d+%d on buffer %u", offset, length, buffer); if((static_cast(offset)%byte_align) != 0) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Sub-range offset %d is not a multiple of frame size %d (%d unpack alignment)", offset, byte_align, align); if((static_cast(length)%byte_align) != 0) [[unlikely]] return context->setError(AL_INVALID_VALUE, "Sub-range length %d is not a multiple of frame size %d (%d unpack alignment)", length, byte_align, align); const size_t samplen{static_cast(length)/byte_align * align}; void *dst = albuf->mData.data() + offset; if(usrfmt->type == UserFmtIMA4 && albuf->mType == FmtShort) { Convert_int16_ima4(static_cast(dst), static_cast(data), num_chans, samplen, align); } else if(usrfmt->type == UserFmtMSADPCM && albuf->mType == FmtShort) { Convert_int16_msadpcm(static_cast(dst), static_cast(data), num_chans, samplen, align); } else { assert(al::to_underlying(usrfmt->type) == al::to_underlying(albuf->mType)); memcpy(dst, data, static_cast(length)); } } END_API_FUNC AL_API void AL_APIENTRY alBufferSamplesSOFT(ALuint /*buffer*/, ALuint /*samplerate*/, ALenum /*internalformat*/, ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, const ALvoid* /*data*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; context->setError(AL_INVALID_OPERATION, "alBufferSamplesSOFT not supported"); } END_API_FUNC AL_API void AL_APIENTRY alBufferSubSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/, ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, const ALvoid* /*data*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; context->setError(AL_INVALID_OPERATION, "alBufferSubSamplesSOFT not supported"); } END_API_FUNC AL_API void AL_APIENTRY alGetBufferSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/, ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, ALvoid* /*data*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; context->setError(AL_INVALID_OPERATION, "alGetBufferSamplesSOFT not supported"); } END_API_FUNC AL_API ALboolean AL_APIENTRY alIsBufferFormatSupportedSOFT(ALenum /*format*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return AL_FALSE; context->setError(AL_INVALID_OPERATION, "alIsBufferFormatSupportedSOFT not supported"); return AL_FALSE; } END_API_FUNC AL_API void AL_APIENTRY alBufferf(ALuint buffer, ALenum param, ALfloat /*value*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBuffer3f(ALuint buffer, ALenum param, ALfloat /*value1*/, ALfloat /*value2*/, ALfloat /*value3*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBufferfv(ALuint buffer, ALenum param, const ALfloat *values) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!values) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBufferi(ALuint buffer, ALenum param, ALint value) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else switch(param) { case AL_UNPACK_BLOCK_ALIGNMENT_SOFT: if(value < 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid unpack block alignment %d", value); else albuf->UnpackAlign = static_cast(value); break; case AL_PACK_BLOCK_ALIGNMENT_SOFT: if(value < 0) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid pack block alignment %d", value); else albuf->PackAlign = static_cast(value); break; case AL_AMBISONIC_LAYOUT_SOFT: if(ReadRef(albuf->ref) != 0) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's ambisonic layout", buffer); else if(value != AL_FUMA_SOFT && value != AL_ACN_SOFT) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic layout %04x", value); else albuf->mAmbiLayout = AmbiLayoutFromEnum(value).value(); break; case AL_AMBISONIC_SCALING_SOFT: if(ReadRef(albuf->ref) != 0) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's ambisonic scaling", buffer); else if(value != AL_FUMA_SOFT && value != AL_SN3D_SOFT && value != AL_N3D_SOFT) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic scaling %04x", value); else albuf->mAmbiScaling = AmbiScalingFromEnum(value).value(); break; case AL_UNPACK_AMBISONIC_ORDER_SOFT: if(value < 1 || value > 14) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic order %d", value); else albuf->UnpackAmbiOrder = static_cast(value); break; default: context->setError(AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBuffer3i(ALuint buffer, ALenum param, ALint /*value1*/, ALint /*value2*/, ALint /*value3*/) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBufferiv(ALuint buffer, ALenum param, const ALint *values) START_API_FUNC { if(values) { switch(param) { case AL_UNPACK_BLOCK_ALIGNMENT_SOFT: case AL_PACK_BLOCK_ALIGNMENT_SOFT: case AL_AMBISONIC_LAYOUT_SOFT: case AL_AMBISONIC_SCALING_SOFT: case AL_UNPACK_AMBISONIC_ORDER_SOFT: alBufferi(buffer, param, values[0]); return; } } ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!values) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { case AL_LOOP_POINTS_SOFT: if(ReadRef(albuf->ref) != 0) [[unlikely]] context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's loop points", buffer); else if(values[0] < 0 || values[0] >= values[1] || static_cast(values[1]) > albuf->mSampleLen) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid loop point range %d -> %d on buffer %u", values[0], values[1], buffer); else { albuf->mLoopStart = static_cast(values[0]); albuf->mLoopEnd = static_cast(values[1]); } break; default: context->setError(AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferf(ALuint buffer, ALenum param, ALfloat *value) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBuffer3f(ALuint buffer, ALenum param, ALfloat *value1, ALfloat *value2, ALfloat *value3) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value1 || !value2 || !value3) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferfv(ALuint buffer, ALenum param, ALfloat *values) START_API_FUNC { switch(param) { case AL_SEC_LENGTH_SOFT: alGetBufferf(buffer, param, values); return; } ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!values) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferi(ALuint buffer, ALenum param, ALint *value) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { case AL_FREQUENCY: *value = static_cast(albuf->mSampleRate); break; case AL_BITS: *value = (albuf->mType == FmtIMA4 || albuf->mType == FmtMSADPCM) ? 4 : static_cast(albuf->bytesFromFmt() * 8); break; case AL_CHANNELS: *value = static_cast(albuf->channelsFromFmt()); break; case AL_SIZE: *value = static_cast(albuf->mSampleLen / albuf->mBlockAlign * albuf->blockSizeFromFmt()); break; case AL_UNPACK_BLOCK_ALIGNMENT_SOFT: *value = static_cast(albuf->UnpackAlign); break; case AL_PACK_BLOCK_ALIGNMENT_SOFT: *value = static_cast(albuf->PackAlign); break; case AL_AMBISONIC_LAYOUT_SOFT: *value = EnumFromAmbiLayout(albuf->mAmbiLayout); break; case AL_AMBISONIC_SCALING_SOFT: *value = EnumFromAmbiScaling(albuf->mAmbiScaling); break; case AL_UNPACK_AMBISONIC_ORDER_SOFT: *value = static_cast(albuf->UnpackAmbiOrder); break; default: context->setError(AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBuffer3i(ALuint buffer, ALenum param, ALint *value1, ALint *value2, ALint *value3) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value1 || !value2 || !value3) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferiv(ALuint buffer, ALenum param, ALint *values) START_API_FUNC { switch(param) { case AL_FREQUENCY: case AL_BITS: case AL_CHANNELS: case AL_SIZE: case AL_INTERNAL_FORMAT_SOFT: case AL_BYTE_LENGTH_SOFT: case AL_SAMPLE_LENGTH_SOFT: case AL_UNPACK_BLOCK_ALIGNMENT_SOFT: case AL_PACK_BLOCK_ALIGNMENT_SOFT: case AL_AMBISONIC_LAYOUT_SOFT: case AL_AMBISONIC_SCALING_SOFT: case AL_UNPACK_AMBISONIC_ORDER_SOFT: alGetBufferi(buffer, param, values); return; } ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!values) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { case AL_LOOP_POINTS_SOFT: values[0] = static_cast(albuf->mLoopStart); values[1] = static_cast(albuf->mLoopEnd); break; default: context->setError(AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alBufferCallbackSOFT(ALuint buffer, ALenum format, ALsizei freq, ALBUFFERCALLBACKTYPESOFT callback, ALvoid *userptr) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(freq < 1) [[unlikely]] context->setError(AL_INVALID_VALUE, "Invalid sample rate %d", freq); else if(callback == nullptr) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL callback"); else { auto usrfmt = DecomposeUserFormat(format); if(!usrfmt) [[unlikely]] context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format); else PrepareCallback(context.get(), albuf, freq, usrfmt->channels, usrfmt->type, callback, userptr); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferPtrSOFT(ALuint buffer, ALenum param, ALvoid **value) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; ALbuffer *albuf = LookupBuffer(device, buffer); if(!albuf) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { case AL_BUFFER_CALLBACK_FUNCTION_SOFT: *value = reinterpret_cast(albuf->mCallback); break; case AL_BUFFER_CALLBACK_USER_PARAM_SOFT: *value = albuf->mUserData; break; default: context->setError(AL_INVALID_ENUM, "Invalid buffer pointer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBuffer3PtrSOFT(ALuint buffer, ALenum param, ALvoid **value1, ALvoid **value2, ALvoid **value3) START_API_FUNC { ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!value1 || !value2 || !value3) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer 3-pointer property 0x%04x", param); } } END_API_FUNC AL_API void AL_APIENTRY alGetBufferPtrvSOFT(ALuint buffer, ALenum param, ALvoid **values) START_API_FUNC { switch(param) { case AL_BUFFER_CALLBACK_FUNCTION_SOFT: case AL_BUFFER_CALLBACK_USER_PARAM_SOFT: alGetBufferPtrSOFT(buffer, param, values); return; } ContextRef context{GetContextRef()}; if(!context) [[unlikely]] return; ALCdevice *device{context->mALDevice.get()}; std::lock_guard _{device->BufferLock}; if(LookupBuffer(device, buffer) == nullptr) [[unlikely]] context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer); else if(!values) [[unlikely]] context->setError(AL_INVALID_VALUE, "NULL pointer"); else switch(param) { default: context->setError(AL_INVALID_ENUM, "Invalid buffer pointer-vector property 0x%04x", param); } } END_API_FUNC BufferSubList::~BufferSubList() { uint64_t usemask{~FreeMask}; while(usemask) { const int idx{al::countr_zero(usemask)}; al::destroy_at(Buffers+idx); usemask &= ~(1_u64 << idx); } FreeMask = ~usemask; al_free(Buffers); Buffers = nullptr; } #ifdef ALSOFT_EAX FORCE_ALIGN ALboolean AL_APIENTRY EAXSetBufferMode(ALsizei n, const ALuint* buffers, ALint value) START_API_FUNC { #define EAX_PREFIX "[EAXSetBufferMode] " const auto context = ContextRef{GetContextRef()}; if(!context) { ERR(EAX_PREFIX "%s\n", "No current context."); return ALC_FALSE; } if(!eax_g_is_enabled) { context->setError(AL_INVALID_OPERATION, EAX_PREFIX "%s", "EAX not enabled."); return ALC_FALSE; } switch(value) { case AL_STORAGE_AUTOMATIC: case AL_STORAGE_HARDWARE: case AL_STORAGE_ACCESSIBLE: break; default: context->setError(AL_INVALID_ENUM, EAX_PREFIX "Unsupported X-RAM mode 0x%x", value); return ALC_FALSE; } if(n == 0) return ALC_TRUE; if(n < 0) { context->setError(AL_INVALID_VALUE, EAX_PREFIX "Buffer count %d out of range", n); return ALC_FALSE; } if(!buffers) { context->setError(AL_INVALID_VALUE, EAX_PREFIX "%s", "Null AL buffers"); return ALC_FALSE; } auto device = context->mALDevice.get(); std::lock_guard device_lock{device->BufferLock}; size_t total_needed{0}; // Validate the buffers. // for(auto i = 0;i < n;++i) { const auto buffer = buffers[i]; if(buffer == AL_NONE) continue; const auto al_buffer = LookupBuffer(device, buffer); if(!al_buffer) [[unlikely]] { ERR(EAX_PREFIX "Invalid buffer ID %u.\n", buffer); return ALC_FALSE; } /* TODO: Is the store location allowed to change for in-use buffers, or * only when not set/queued on a source? */ if(value == AL_STORAGE_HARDWARE && !al_buffer->eax_x_ram_is_hardware) { /* FIXME: This doesn't account for duplicate buffers. When the same * buffer ID is specified multiple times in the provided list, it * counts each instance as more memory that needs to fit in X-RAM. */ if(std::numeric_limits::max()-al_buffer->OriginalSize < total_needed) [[unlikely]] { context->setError(AL_OUT_OF_MEMORY, EAX_PREFIX "Buffer size overflow (%u + %zu)\n", al_buffer->OriginalSize, total_needed); return ALC_FALSE; } total_needed += al_buffer->OriginalSize; } } if(total_needed > device->eax_x_ram_free_size) { context->setError(AL_INVALID_ENUM, EAX_PREFIX "Out of X-RAM memory (need: %zu, avail: %u)", total_needed, device->eax_x_ram_free_size); return ALC_FALSE; } // Update the mode. // for(auto i = 0;i < n;++i) { const auto buffer = buffers[i]; if(buffer == AL_NONE) continue; const auto al_buffer = LookupBuffer(device, buffer); assert(al_buffer); if(value != AL_STORAGE_ACCESSIBLE) eax_x_ram_apply(*device, *al_buffer); else eax_x_ram_clear(*device, *al_buffer); al_buffer->eax_x_ram_mode = value; } return AL_TRUE; #undef EAX_PREFIX } END_API_FUNC FORCE_ALIGN ALenum AL_APIENTRY EAXGetBufferMode(ALuint buffer, ALint* pReserved) START_API_FUNC { #define EAX_PREFIX "[EAXGetBufferMode] " const auto context = ContextRef{GetContextRef()}; if(!context) { ERR(EAX_PREFIX "%s\n", "No current context."); return AL_NONE; } if(!eax_g_is_enabled) { context->setError(AL_INVALID_OPERATION, EAX_PREFIX "%s", "EAX not enabled."); return AL_NONE; } if(pReserved) { context->setError(AL_INVALID_VALUE, EAX_PREFIX "%s", "Non-null reserved parameter"); return AL_NONE; } auto device = context->mALDevice.get(); std::lock_guard device_lock{device->BufferLock}; const auto al_buffer = LookupBuffer(device, buffer); if(!al_buffer) { context->setError(AL_INVALID_NAME, EAX_PREFIX "Invalid buffer ID %u", buffer); return AL_NONE; } return al_buffer->eax_x_ram_mode; #undef EAX_PREFIX } END_API_FUNC #endif // ALSOFT_EAX