aboutsummaryrefslogtreecommitdiffstats
path: root/alc
diff options
context:
space:
mode:
Diffstat (limited to 'alc')
-rw-r--r--alc/effects/reverb.cpp129
1 files changed, 94 insertions, 35 deletions
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
index 97639b3b..fc6dc9dd 100644
--- a/alc/effects/reverb.cpp
+++ b/alc/effects/reverb.cpp
@@ -104,21 +104,21 @@ alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
};
/* Converts A-Format to B-Format for early reflections. */
-alignas(16) constexpr float EarlyA2B[NUM_LINES][NUM_LINES]{
- { 0.5f, 0.5f, 0.5f, 0.5f },
- { 0.5f, -0.5f, 0.5f, -0.5f },
- { 0.5f, -0.5f, -0.5f, 0.5f },
- { 0.5f, 0.5f, -0.5f, -0.5f }
-};
+alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
+ {{ 0.5f, 0.5f, 0.5f, 0.5f }},
+ {{ 0.5f, -0.5f, 0.5f, -0.5f }},
+ {{ 0.5f, -0.5f, -0.5f, 0.5f }},
+ {{ 0.5f, 0.5f, -0.5f, -0.5f }}
+}};
/* Converts A-Format to B-Format for late reverb. */
constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
-alignas(16) constexpr float LateA2B[NUM_LINES][NUM_LINES]{
- { 0.5f, 0.5f, 0.5f, 0.5f },
- { InvSqrt2, -InvSqrt2, 0.0f, 0.0f },
- { 0.0f, 0.0f, InvSqrt2, -InvSqrt2 },
- { 0.5f, 0.5f, -0.5f, -0.5f }
-};
+alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
+ {{ 0.5f, 0.5f, 0.5f, 0.5f }},
+ {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }},
+ {{ 0.0f, 0.0f, InvSqrt2, -InvSqrt2 }},
+ {{ 0.5f, 0.5f, -0.5f, -0.5f }}
+}};
/* The all-pass and delay lines have a variable length dependent on the
* effect's density parameter, which helps alter the perceived environment
@@ -460,7 +460,7 @@ struct ReverbState final : public EffectState {
std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
- static void DoMixRow(const al::span<float> OutBuffer, const al::span<const float> Gains,
+ static void DoMixRow(const al::span<float> OutBuffer, const al::span<const float,4> Gains,
const float *InSamples, const size_t InStride)
{
std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
@@ -486,17 +486,18 @@ struct ReverbState final : public EffectState {
{
ASSUME(todo > 0);
- /* Convert back to B-Format, and mix the results to output. */
- const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
+ /* When not upsampling, the panning gains convert to B-Format and pan
+ * at the same time.
+ */
for(size_t c{0u};c < NUM_LINES;c++)
{
- DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
+ const al::span<float> tmpspan{mEarlySamples[c].data(), todo};
MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], counter,
offset);
}
for(size_t c{0u};c < NUM_LINES;c++)
{
- DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
+ const al::span<float> tmpspan{mLateSamples[c].data(), todo};
MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], counter,
offset);
}
@@ -507,6 +508,10 @@ struct ReverbState final : public EffectState {
{
ASSUME(todo > 0);
+ /* When upsampling, the B-Format conversion needs to be done separately
+ * so the proper HF scaling can be applied to each B-Format channel.
+ * The panning gains then pan and upsample the B-Format channels.
+ */
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
for(size_t c{0u};c < NUM_LINES;c++)
{
@@ -949,7 +954,7 @@ void ReverbState::updateDelayLine(const float earlyDelay, const float lateDelay,
* focal strength. This function results in a B-Format transformation matrix
* that spatially focuses the signal in the desired direction.
*/
-alu::Matrix GetTransformFromVector(const float *vec)
+std::array<std::array<float,4>,4> GetTransformFromVector(const float *vec)
{
/* Normalize the panning vector according to the N3D scale, which has an
* extra sqrt(3) term on the directional components. Converting from OpenAL
@@ -978,12 +983,12 @@ alu::Matrix GetTransformFromVector(const float *vec)
norm[2] = vec[2] * al::numbers::sqrt3_v<float>;
}
- return alu::Matrix{
- 1.0f, 0.0f, 0.0f, 0.0f,
- norm[0], 1.0f-mag, 0.0f, 0.0f,
- norm[1], 0.0f, 1.0f-mag, 0.0f,
- norm[2], 0.0f, 0.0f, 1.0f-mag
- };
+ return std::array<std::array<float,4>,4>{{
+ {{1.0f, 0.0f, 0.0f, 0.0f}},
+ {{norm[0], 1.0f-mag, 0.0f, 0.0f}},
+ {{norm[1], 0.0f, 1.0f-mag, 0.0f}},
+ {{norm[2], 0.0f, 0.0f, 1.0f-mag}}
+ }};
}
/* Update the early and late 3D panning gains. */
@@ -993,21 +998,75 @@ void ReverbState::update3DPanning(const float *ReflectionsPan, const float *Late
/* Create matrices that transform a B-Format signal according to the
* panning vectors.
*/
- const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)};
- const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)};
+ const std::array<std::array<float,4>,4> earlymat{GetTransformFromVector(ReflectionsPan)};
+ const std::array<std::array<float,4>,4> latemat{GetTransformFromVector(LateReverbPan)};
- mOutTarget = target.Main->Buffer;
- for(size_t i{0u};i < NUM_LINES;i++)
+ if(mUpmixOutput)
{
- const float coeffs[MaxAmbiChannels]{earlymat[0][i], earlymat[1][i], earlymat[2][i],
- earlymat[3][i]};
- ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]);
+ /* When upsampling, combine the early and late transforms with the
+ * first-order upsample matrix. This results in panning gains that
+ * apply the panning transform to first-order B-Format, which is then
+ * upsampled.
+ */
+ auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
+ {
+ auto&& mtx2 = AmbiScale::FirstOrderUp;
+ std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
+
+ for(size_t i{0};i < mtx1[0].size();++i)
+ {
+ for(size_t j{0};j < mtx2[0].size();++j)
+ {
+ double sum{0.0};
+ for(size_t k{0};k < mtx1.size();++k)
+ sum += double{mtx1[k][i]} * mtx2[k][j];
+ res[i][j] = static_cast<float>(sum);
+ }
+ }
+
+ return res;
+ };
+ auto earlycoeffs = mult_matrix(earlymat);
+ auto latecoeffs = mult_matrix(latemat);
+
+ mOutTarget = target.Main->Buffer;
+ for(size_t i{0u};i < NUM_LINES;i++)
+ ComputePanGains(target.Main, earlycoeffs[i].data(), earlyGain, mEarly.PanGain[i]);
+ for(size_t i{0u};i < NUM_LINES;i++)
+ ComputePanGains(target.Main, latecoeffs[i].data(), lateGain, mLate.PanGain[i]);
}
- for(size_t i{0u};i < NUM_LINES;i++)
+ else
{
- const float coeffs[MaxAmbiChannels]{latemat[0][i], latemat[1][i], latemat[2][i],
- latemat[3][i]};
- ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]);
+ /* When not upsampling, combine the early and late A-to-B-Format
+ * conversions with their respective transform. This results panning
+ * gains that convert A-Format to B-Format, which is then panned.
+ */
+ auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
+ const al::span<const std::array<float,4>,4> mtx2)
+ {
+ std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
+
+ for(size_t i{0};i < mtx1[0].size();++i)
+ {
+ for(size_t j{0};j < mtx2.size();++j)
+ {
+ double sum{0.0};
+ for(size_t k{0};k < mtx1.size();++k)
+ sum += double{mtx1[k][i]} * mtx2[j][k];
+ res[i][j] = static_cast<float>(sum);
+ }
+ }
+
+ return res;
+ };
+ auto earlycoeffs = mult_matrix(EarlyA2B, earlymat);
+ auto latecoeffs = mult_matrix(LateA2B, latemat);
+
+ mOutTarget = target.Main->Buffer;
+ for(size_t i{0u};i < NUM_LINES;i++)
+ ComputePanGains(target.Main, earlycoeffs[i].data(), earlyGain, mEarly.PanGain[i]);
+ for(size_t i{0u};i < NUM_LINES;i++)
+ ComputePanGains(target.Main, latecoeffs[i].data(), lateGain, mLate.PanGain[i]);
}
}