aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--utils/makemhr/loadsofa.cpp649
-rw-r--r--utils/makemhr/loadsofa.h4
-rw-r--r--utils/makemhr/makemhr.cpp11
-rw-r--r--utils/makemhr/makemhr.h2
4 files changed, 662 insertions, 4 deletions
diff --git a/utils/makemhr/loadsofa.cpp b/utils/makemhr/loadsofa.cpp
index a60526a8..9ab88045 100644
--- a/utils/makemhr/loadsofa.cpp
+++ b/utils/makemhr/loadsofa.cpp
@@ -1,4 +1,653 @@
+/*
+ * HRTF utility for producing and demonstrating the process of creating an
+ * OpenAL Soft compatible HRIR data set.
+ *
+ * Copyright (C) 2018-2019 Christopher Fitzgerald
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
+ */
+
+#include <memory>
+#include <algorithm>
#include "mysofa.h"
#include "loadsofa.h"
+
+
+static const char *SofaErrorStr(int err)
+{
+ switch(err)
+ {
+ case MYSOFA_OK: return "OK";
+ case MYSOFA_INVALID_FORMAT: return "Invalid format";
+ case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
+ case MYSOFA_INTERNAL_ERROR: return "Internal error";
+ case MYSOFA_NO_MEMORY: return "Out of memory";
+ case MYSOFA_READ_ERROR: return "Read error";
+ }
+ return "Unknown";
+}
+
+
+/* Produces a sorted array of unique elements from a particular axis of the
+ * triplets array. The filters are used to focus on particular coordinates
+ * of other axes as necessary. The epsilons are used to constrain the
+ * equality of unique elements.
+ */
+static uint GetUniquelySortedElems(const uint m, const float *triplets, const int axis,
+ const double *const (&filters)[3], const double (&epsilons)[3], float *elems)
+{
+ uint count{0u};
+ for(uint i{0u};i < 3*m;i += 3)
+ {
+ const float elem{triplets[i + axis]};
+
+ uint j;
+ for(j = 0;j < 3;j++)
+ {
+ if(filters[j] && std::fabs(triplets[i + j] - *filters[j]) > epsilons[j])
+ break;
+ }
+ if(j < 3)
+ continue;
+
+ for(j = 0;j < count;j++)
+ {
+ const float delta{elem - elems[j]};
+
+ if(delta > epsilons[axis])
+ continue;
+
+ if(delta >= -epsilons[axis])
+ break;
+
+ for(uint k{count};k > j;k--)
+ elems[k] = elems[k - 1];
+
+ elems[j] = elem;
+ count++;
+ break;
+ }
+
+ if(j >= count)
+ elems[count++] = elem;
+ }
+
+ return count;
+}
+
+/* Given a list of elements, this will produce the smallest step size that
+ * can uniformly cover a fair portion of the list. Ideally this will be over
+ * half, but in degenerate cases this can fall to a minimum of 5 (the lower
+ * limit on elevations necessary to build a layout).
+ */
+static float GetUniformStepSize(const double epsilon, const uint m, const float *elems)
+{
+ auto steps = std::vector<float>(m, 0.0f);
+ auto counts = std::vector<uint>(m, 0u);
+ float step{0.0f};
+ uint count{0u};
+
+ for(uint stride{1u};stride < m/2;stride++)
+ {
+ for(uint i{0u};i < m-stride;i++)
+ {
+ const float step{elems[i + stride] - elems[i]};
+
+ uint j;
+ for(j = 0;j < count;j++)
+ {
+ if(std::fabs(step - steps[j]) < epsilon)
+ {
+ counts[j]++;
+ break;
+ }
+ }
+
+ if(j >= count)
+ {
+ steps[j] = step;
+ counts[j] = 1;
+ count++;
+ }
+ }
+
+ for(uint i{1u};i < count;i++)
+ {
+ if(counts[i] > counts[0])
+ {
+ steps[0] = steps[i];
+ counts[0] = counts[i];
+ }
+ }
+
+ count = 1;
+
+ if(counts[0] > m/2)
+ {
+ step = steps[0];
+ return step;
+ }
+ }
+
+ if(counts[0] > 5)
+ step = steps[0];
+ return step;
+}
+
+/* Attempts to produce a compatible layout. Most data sets tend to be
+ * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
+ * This will remove outliers and produce a maximally dense layout when
+ * possible. Those sets that contain purely random measurements or use
+ * different major axes will fail.
+ */
+static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
+{
+ std::vector<float> aers(3*m, 0.0f);
+ std::vector<float> elems(m, 0.0f);
+
+ for(uint i{0u};i < 3*m;i += 3)
+ {
+ aers[i] = xyzs[i];
+ aers[i + 1] = xyzs[i + 1];
+ aers[i + 2] = xyzs[i + 2];
+ mysofa_c2s(&aers[i]);
+ }
+
+ const uint fdCount{GetUniquelySortedElems(m, aers.data(), 2,
+ (const double*[3]){ nullptr, nullptr, nullptr }, (const double[3]){ 0.1, 0.1, 0.001 },
+ elems.data())};
+ if(fdCount > MAX_FD_COUNT)
+ {
+ fprintf(stdout, "Incompatible layout (inumerable radii).\n");
+ return false;
+ }
+
+ double distances[MAX_FD_COUNT]{};
+ uint evCounts[MAX_FD_COUNT]{};
+ uint evStarts[MAX_FD_COUNT]{};
+ auto azCounts = std::vector<uint>(MAX_FD_COUNT * MAX_EV_COUNT);
+ for(uint fi{0u};fi < fdCount;fi++)
+ {
+ distances[fi] = elems[fi];
+ if(fi > 0 && distances[fi] <= distances[fi-1])
+ {
+ fprintf(stderr, "Distances must increase.\n");
+ return 0;
+ }
+ }
+ if(distances[0] < hData->mRadius)
+ {
+ fprintf(stderr, "Distance cannot start below head radius.\n");
+ return 0;
+ }
+
+ for(uint fi{0u};fi < fdCount;fi++)
+ {
+ const double dist{distances[fi]};
+ uint evCount{GetUniquelySortedElems(m, aers.data(), 1,
+ (const double*[3]){ nullptr, nullptr, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
+ elems.data())};
+
+ if(evCount > MAX_EV_COUNT)
+ {
+ fprintf(stderr, "Incompatible layout (innumerable elevations).\n");
+ return false;
+ }
+
+ float step{GetUniformStepSize(0.1, evCount, elems.data())};
+ if(step <= 0.0f)
+ {
+ fprintf(stderr, "Incompatible layout (non-uniform elevations).\n");
+ return false;
+ }
+
+ uint evStart{0u};
+ for(uint ei{0u};ei < evCount;ei++)
+ {
+ float ev{90.0f + elems[ei]};
+ float eif{std::round(ev / step)};
+
+ if(std::fabs(eif - (uint)eif) < (0.1f / step))
+ {
+ evStart = static_cast<uint>(eif);
+ break;
+ }
+ }
+
+ evCount = static_cast<uint>(std::round(180.0f / step)) + 1;
+ if(evCount < 5)
+ {
+ fprintf(stderr, "Incompatible layout (too few uniform elevations).\n");
+ return false;
+ }
+
+ evCounts[fi] = evCount;
+ evStarts[fi] = evStart;
+
+ for(uint ei{evStart};ei < evCount;ei++)
+ {
+ const double ev{-90.0 + ei*180.0/(evCount - 1)};
+ const uint azCount{GetUniquelySortedElems(m, aers.data(), 0,
+ (const double*[3]){ nullptr, &ev, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
+ elems.data())};
+
+ if(azCount > MAX_AZ_COUNT)
+ {
+ fprintf(stderr, "Incompatible layout (innumerable azimuths).\n");
+ return false;
+ }
+
+ if(ei > 0 && ei < (evCount - 1))
+ {
+ step = GetUniformStepSize(0.1, azCount, elems.data());
+ if(step <= 0.0f)
+ {
+ fprintf(stderr, "Incompatible layout (non-uniform azimuths).\n");
+ return false;
+ }
+
+ azCounts[fi*MAX_EV_COUNT + ei] = static_cast<uint>(std::round(360.0f / step));
+ }
+ else if(azCount != 1)
+ {
+ fprintf(stderr, "Incompatible layout (non-singular poles).\n");
+ return false;
+ }
+ else
+ {
+ azCounts[fi*MAX_EV_COUNT + ei] = 1;
+ }
+ }
+
+ for(uint ei{0u};ei < evStart;ei++)
+ azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1];
+ }
+ return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0;
+}
+
+
+bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
+{
+ const char *srate_dim{nullptr};
+ const char *srate_units{nullptr};
+ MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
+ MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
+ while(srate_attrs)
+ {
+ if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
+ {
+ if(srate_dim)
+ {
+ fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
+ return false;
+ }
+ srate_dim = srate_attrs->value;
+ }
+ else if(std::string{"Units"} == srate_attrs->name)
+ {
+ if(srate_units)
+ {
+ fprintf(stderr, "Duplicate SampleRate.Units\n");
+ return false;
+ }
+ srate_units = srate_attrs->value;
+ }
+ else
+ fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
+ srate_attrs->value);
+ srate_attrs = srate_attrs->next;
+ }
+ if(!srate_dim)
+ {
+ fprintf(stderr, "Missing sample rate dimensions\n");
+ return false;
+ }
+ if(srate_dim != std::string{"I"})
+ {
+ fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
+ return false;
+ }
+ if(!srate_units)
+ {
+ fprintf(stderr, "Missing sample rate unit type\n");
+ return false;
+ }
+ if(srate_units != std::string{"hertz"})
+ {
+ fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
+ return false;
+ }
+ /* I dimensions guarantees 1 element, so just extract it. */
+ hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
+ if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
+ {
+ fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
+ MIN_RATE, MAX_RATE);
+ return false;
+ }
+ return true;
+}
+
+bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
+{
+ const char *delay_dim{nullptr};
+ MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
+ MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
+ while(delay_attrs)
+ {
+ if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
+ {
+ if(delay_dim)
+ {
+ fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
+ return false;
+ }
+ delay_dim = delay_attrs->value;
+ }
+ else
+ fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
+ delay_attrs->value);
+ delay_attrs = delay_attrs->next;
+ }
+ if(!delay_dim)
+ {
+ fprintf(stderr, "Missing delay dimensions\n");
+ /*return false;*/
+ }
+ else if(delay_dim != std::string{"I,R"})
+ {
+ fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
+ return false;
+ }
+ else if(hData->mChannelType == CT_STEREO)
+ {
+ /* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
+ * so we can ignore this as long as it's equal.
+ */
+ if(delay_array->values[0] != delay_array->values[1])
+ {
+ fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
+ delay_array->values[1]);
+ return false;
+ }
+ }
+ return true;
+}
+
+bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
+{
+ const char *ir_dim{nullptr};
+ MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
+ MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
+ while(ir_attrs)
+ {
+ if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
+ {
+ if(ir_dim)
+ {
+ fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
+ return false;
+ }
+ ir_dim = ir_attrs->value;
+ }
+ else
+ fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
+ ir_attrs->value);
+ ir_attrs = ir_attrs->next;
+ }
+ if(!ir_dim)
+ {
+ fprintf(stderr, "Missing IR dimensions\n");
+ /*return false;*/
+ }
+ else if(ir_dim != std::string{"M,R,N"})
+ {
+ fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
+ return false;
+ }
+ return true;
+}
+
+
+/* Calculate the onset time of a HRIR. */
+static double CalcHrirOnset(const uint rate, const uint n, const double *hrir)
+{
+ std::vector<double> upsampled(10 * n);
+ {
+ ResamplerT rs;
+ ResamplerSetup(&rs, rate, 10 * rate);
+ ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
+ }
+
+ double mag{0.0};
+ for(uint i{0u};i < 10*n;i++)
+ mag = std::max(std::abs(upsampled[i]), mag);
+
+ mag *= 0.15;
+ uint i{0u};
+ for(;i < 10*n;i++)
+ {
+ if(std::abs(upsampled[i]) >= mag)
+ break;
+ }
+ return static_cast<double>(i) / (10*rate);
+}
+
+/* Calculate the magnitude response of a HRIR. */
+static void CalcHrirMagnitude(const uint points, const uint n, const double *hrir, double *mag)
+{
+ const uint m{1u + (n / 2u)};
+ auto h = std::vector<complex_d>(n);
+ auto r = std::vector<double>(n);
+
+ uint i{0u};
+ for(;i < points;i++)
+ h[i] = complex_d{hrir[i], 0.0};
+ for(;i < n;i++)
+ h[i] = complex_d{0.0, 0.0};
+ FftForward(n, h.data());
+ MagnitudeResponse(n, h.data(), r.data());
+ std::copy_n(r.begin(), m, mag);
+}
+
+
+struct MySofaHrtfDeleter {
+ void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); }
+};
+using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaHrtfDeleter>;
+
+bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
+ const ChannelModeT chanMode, HrirDataT *hData)
+{
+ int err;
+ MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
+ if(!sofaHrtf)
+ {
+ fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
+ return false;
+ }
+
+ err = mysofa_check(sofaHrtf.get());
+ if(err != MYSOFA_OK)
+/* NOTE: Some valid SOFA files are failing this check.
+ {
+ fprintf(stdout, "Error: Malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
+ return false;
+ }
+*/
+ fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
+ SofaErrorStr(err));
+
+ mysofa_tocartesian(sofaHrtf.get());
+
+ /* Make sure emitter and receiver counts are sane. */
+ if(sofaHrtf->E != 1)
+ {
+ fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
+ return false;
+ }
+ if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
+ {
+ fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
+ return false;
+ }
+ /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
+ if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
+ hData->mChannelType = CT_STEREO;
+ else
+ hData->mChannelType = CT_MONO;
+
+ /* Check and set the FFT and IR size. */
+ if(fftSize > 0 && sofaHrtf->N > fftSize)
+ {
+ fprintf(stderr, "Sample points exceeds the FFT size.\n");
+ return false;
+ }
+ if(sofaHrtf->N < truncSize)
+ {
+ fprintf(stderr, "Sample points is below the truncation size.\n");
+ return false;
+ }
+ hData->mIrPoints = sofaHrtf->N;
+ hData->mFftSize = fftSize;
+ hData->mIrSize = 1 + (fftSize / 2);
+ if(sofaHrtf->N > hData->mIrSize)
+ hData->mIrSize = sofaHrtf->N;
+
+ /* Assume a default head radius of 9cm. */
+ hData->mRadius = 0.09;
+
+ if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData) ||
+ !CheckIrData(sofaHrtf.get()))
+ return false;
+ if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
+ return false;
+
+ const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
+ hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
+ double *hrirs = hData->mHrirsBase.data();
+ auto hrir = std::vector<double>(hData->mFftSize);
+ for(uint si{0u};si < sofaHrtf->M;si++)
+ {
+ printf("\rLoading HRIRs... %d of %d", si+1, sofaHrtf->M);
+ fflush(stdout);
+
+ float aer[3]{
+ sofaHrtf->SourcePosition.values[3*si],
+ sofaHrtf->SourcePosition.values[3*si + 1],
+ sofaHrtf->SourcePosition.values[3*si + 2]
+ };
+ mysofa_c2s(aer);
+
+ if(std::fabs(aer[1]) >= 89.999f)
+ aer[0] = 0.0f;
+ else
+ aer[0] = std::fmod(360.0f - aer[0], 360.0f);
+
+ uint fi{0u};
+ for(;fi < hData->mFdCount;++fi)
+ {
+ double delta = aer[2] - hData->mFds[fi].mDistance;
+ if(std::abs(delta) < 0.001) break;
+ }
+ if(fi >= hData->mFdCount)
+ continue;
+
+ double ef{(90.0+aer[1]) * (hData->mFds[fi].mEvCount-1) / 180.0};
+ auto ei = static_cast<int>(std::round(ef));
+ ef = (ef-ei) * 180.0f / (hData->mFds[fi].mEvCount-1);
+ if(std::abs(ef) >= 0.1) continue;
+
+ double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f};
+ auto ai = static_cast<int>(std::round(af));
+ af = (af-ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount;
+ ai %= hData->mFds[fi].mEvs[ei].mAzCount;
+ if(std::abs(af) >= 0.1) continue;
+
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ if(azd->mIrs[0] != nullptr)
+ {
+ fprintf(stderr, "Multiple definitions of [ %d, %d, %d ].\n", fi, ei, ai);
+ return 0;
+ }
+
+ for(uint ti{0u};ti < channels;++ti)
+ {
+ std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
+ hData->mIrPoints, hrir.begin());
+ azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
+ azd->mDelays[ti] = CalcHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data());
+ CalcHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), azd->mIrs[ti]);
+ }
+
+ // TODO: Since some SOFA files contain minimum phase HRIRs,
+ // it would be beneficial to check for per-measurement delays
+ // (when available) to reconstruct the HRTDs.
+ }
+ sofaHrtf = nullptr;
+ printf("\n");
+
+ for(uint fi{0u};fi < hData->mFdCount;fi++)
+ {
+ uint ei{0u};
+ for(;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ uint ai{0u};
+ for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
+ if(azd.mIrs[0] != nullptr) break;
+ }
+ if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
+ break;
+ }
+ if(ei >= hData->mFds[fi].mEvCount)
+ {
+ fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
+ return false;
+ }
+ hData->mFds[fi].mEvStart = ei;
+ for(;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
+ if(azd.mIrs[0] == nullptr)
+ {
+ fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
+ return false;
+ }
+ }
+ }
+ }
+ for(uint fi{0u};fi < hData->mFdCount;fi++)
+ {
+ for(uint ei{0u};ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
+ for(uint ti{0u};ti < channels;ti++)
+ azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
+ }
+ }
+ }
+
+ return true;
+}
diff --git a/utils/makemhr/loadsofa.h b/utils/makemhr/loadsofa.h
index 9a73bd72..93bf1704 100644
--- a/utils/makemhr/loadsofa.h
+++ b/utils/makemhr/loadsofa.h
@@ -3,4 +3,8 @@
#include "makemhr.h"
+
+bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
+ const ChannelModeT chanMode, HrirDataT *hData);
+
#endif /* LOADSOFA_H */
diff --git a/utils/makemhr/makemhr.cpp b/utils/makemhr/makemhr.cpp
index 6824c542..4406384a 100644
--- a/utils/makemhr/makemhr.cpp
+++ b/utils/makemhr/makemhr.cpp
@@ -1475,7 +1475,9 @@ static void CalculateHrtds(const HeadModelT model, const double radius, HrirData
}
// Allocate and configure dynamic HRIR structures.
-int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
+int PrepareHrirData(const uint fdCount, const double (&distances)[MAX_FD_COUNT],
+ const uint (&evCounts)[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT],
+ HrirDataT *hData)
{
uint evTotal = 0, azTotal = 0, fi, ei, ai;
@@ -1566,8 +1568,11 @@ static int ProcessDefinition(const char *inName, const uint outRate, const Chann
startbytes[3] == 'F')
{
fclose(fp);
- fprintf(stderr, "Error: Direct SOFA input not yet supported\n");
- return 0;
+ fp = nullptr;
+
+ fprintf(stdout, "Reading HRTF data from %s...\n", inName);
+ if(!LoadSofaFile(inName, fftSize, truncSize, chanMode, &hData))
+ return 0;
}
}
if(fp != nullptr)
diff --git a/utils/makemhr/makemhr.h b/utils/makemhr/makemhr.h
index 047813d8..24520bd2 100644
--- a/utils/makemhr/makemhr.h
+++ b/utils/makemhr/makemhr.h
@@ -102,7 +102,7 @@ struct HrirDataT {
};
-int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData);
+int PrepareHrirData(const uint fdCount, const double (&distances)[MAX_FD_COUNT], const uint (&evCounts)[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData);
void MagnitudeResponse(const uint n, const complex_d *in, double *out);
void FftForward(const uint n, complex_d *inout);
void FftInverse(const uint n, complex_d *inout);