diff options
-rw-r--r-- | CMakeLists.txt | 17 | ||||
-rw-r--r-- | utils/makemhr/loadsofa.cpp | 260 | ||||
-rw-r--r-- | utils/sofa-info.cpp | 270 | ||||
-rw-r--r-- | utils/sofa-support.cpp | 292 | ||||
-rw-r--r-- | utils/sofa-support.h | 30 |
5 files changed, 355 insertions, 514 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 4bc0aeeb..1d847fe9 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1393,6 +1393,15 @@ IF(ALSOFT_UTILS) find_package(MySOFA) if(MYSOFA_FOUND) + set(SOFA_SUPPORT_SRCS + utils/sofa-support.cpp + utils/sofa-support.h) + add_library(sofa-support STATIC EXCLUDE_FROM_ALL ${SOFA_SUPPORT_SRCS}) + target_compile_definitions(sofa-support PRIVATE ${CPP_DEFS}) + target_include_directories(sofa-support PUBLIC ${OpenAL_SOURCE_DIR}/common) + target_compile_options(sofa-support PRIVATE ${C_FLAGS}) + target_link_libraries(sofa-support PUBLIC common MySOFA::MySOFA PRIVATE ${LINKER_FLAGS}) + set(MAKEMHR_SRCS utils/makemhr/loaddef.cpp utils/makemhr/loaddef.h @@ -1406,17 +1415,17 @@ IF(ALSOFT_UTILS) add_executable(makemhr ${MAKEMHR_SRCS}) target_compile_definitions(makemhr PRIVATE ${CPP_DEFS}) target_include_directories(makemhr - PRIVATE ${OpenAL_SOURCE_DIR}/common ${OpenAL_BINARY_DIR}) + PRIVATE ${OpenAL_BINARY_DIR} ${OpenAL_SOURCE_DIR}/utils) target_compile_options(makemhr PRIVATE ${C_FLAGS}) - target_link_libraries(makemhr PRIVATE common ${LINKER_FLAGS} MySOFA::MySOFA) + target_link_libraries(makemhr PRIVATE ${LINKER_FLAGS} sofa-support) set(UTIL_TARGETS ${UTIL_TARGETS} makemhr) set(SOFAINFO_SRCS utils/sofa-info.cpp) add_executable(sofa-info ${SOFAINFO_SRCS}) target_compile_definitions(sofa-info PRIVATE ${CPP_DEFS}) - target_include_directories(sofa-info PRIVATE ${OpenAL_SOURCE_DIR}/common) + target_include_directories(sofa-info PRIVATE ${OpenAL_SOURCE_DIR}/utils) target_compile_options(sofa-info PRIVATE ${C_FLAGS}) - target_link_libraries(sofa-info PRIVATE ${LINKER_FLAGS} MySOFA::MySOFA) + target_link_libraries(sofa-info PRIVATE ${LINKER_FLAGS} sofa-support) endif() IF(ALSOFT_INSTALL) diff --git a/utils/makemhr/loadsofa.cpp b/utils/makemhr/loadsofa.cpp index 886bd6ff..81df8aa4 100644 --- a/utils/makemhr/loadsofa.cpp +++ b/utils/makemhr/loadsofa.cpp @@ -24,11 +24,10 @@ #include "loadsofa.h" #include <algorithm> -#include <array> #include <atomic> +#include <chrono> #include <cmath> #include <cstdio> -#include <functional> #include <future> #include <iterator> #include <memory> @@ -37,148 +36,13 @@ #include <vector> #include "makemhr.h" +#include "polyphase_resampler.h" +#include "sofa-support.h" #include "mysofa.h" -using namespace std::placeholders; - -using double3 = std::array<double,3>; - -static const char *SofaErrorStr(int err) -{ - switch(err) - { - case MYSOFA_OK: return "OK"; - case MYSOFA_INVALID_FORMAT: return "Invalid format"; - case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; - case MYSOFA_INTERNAL_ERROR: return "Internal error"; - case MYSOFA_NO_MEMORY: return "Out of memory"; - case MYSOFA_READ_ERROR: return "Read error"; - } - return "Unknown"; -} - - -/* Produces a sorted array of unique elements from a particular axis of the - * triplets array. The filters are used to focus on particular coordinates - * of other axes as necessary. The epsilons are used to constrain the - * equality of unique elements. - */ -static std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, - const uint axis, const double *const (&filters)[3], const double (&epsilons)[3]) -{ - std::vector<double> elems; - for(const double3 &aer : aers) - { - const double elem{aer[axis]}; - - uint j; - for(j = 0;j < 3;j++) - { - if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) - break; - } - if(j < 3) - continue; - - auto iter = elems.begin(); - for(;iter != elems.end();++iter) - { - const double delta{elem - *iter}; - if(delta > epsilons[axis]) continue; - if(delta >= -epsilons[axis]) break; - - iter = elems.emplace(iter, elem); - break; - } - if(iter == elems.end()) - elems.emplace_back(elem); - } - return elems; -} - -/* Given a list of azimuths, this will produce the smallest step size that can - * uniformly cover the list. Ideally this will be over half, but in degenerate - * cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Get the maximum count possible, given the first two elements. It would - * be impossible to have more than this since the first element must be - * included. - */ - uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))}; - count = std::min(count, uint{MAX_AZ_COUNT}); - - for(;count >= 5;--count) - { - /* Given the stepping value for this number of elements, check each - * multiple to ensure there's a matching element. - */ - const double step{360.0 / count}; - bool good{true}; - size_t idx{1u}; - for(uint mult{1u};mult < count && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - return step; - } - return 0.0; -} - -/* Given a list of elevations, this will produce the smallest step size that - * can uniformly cover the list. Ideally this will be over half, but in - * degenerate cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformElevStep(const double epsilon, std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Reverse the elevations so it increments starting with -90 (flipped from - * +90). This makes it easier to work out a proper stepping value. - */ - std::reverse(elems.begin(), elems.end()); - for(auto &v : elems) v *= -1.0; - - uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))}; - count = std::min(count, uint{MAX_EV_COUNT-1u}); - - double ret{0.0}; - for(;count >= 5;--count) - { - const double step{180.0 / count}; - bool good{true}; - size_t idx{1u}; - /* Elevations don't need to match all multiples if there's not enough - * elements to check. Missing elevations can be synthesized. - */ - for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - { - ret = step; - break; - } - } - /* Re-reverse the elevations to restore the correct order. */ - for(auto &v : elems) v *= -1.0; - std::reverse(elems.begin(), elems.end()); - - return ret; -} +using uint = unsigned int; /* Attempts to produce a compatible layout. Most data sets tend to be * uniform and have the same major axis as used by OpenAL Soft's HRTF model. @@ -190,16 +54,8 @@ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData) { fprintf(stdout, "Detecting compatible layout...\n"); - auto aers = std::vector<double3>(m, double3{}); - for(uint i{0u};i < m;++i) - { - float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; - mysofa_c2s(&vals[0]); - aers[i] = {vals[0], vals[1], vals[2]}; - } - - auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); - if(radii.size() > MAX_FD_COUNT) + auto fds = GetCompatibleLayout(m, xyzs); + if(fds.size() > MAX_FD_COUNT) { fprintf(stdout, "Incompatible layout (inumerable radii).\n"); return false; @@ -209,104 +65,24 @@ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData) uint evCounts[MAX_FD_COUNT]{}; auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u); - auto dist_end = std::copy_if(radii.cbegin(), radii.cend(), std::begin(distances), - std::bind(std::greater_equal<double>{}, _1, hData->mRadius)); - auto fdCount = static_cast<uint>(std::distance(std::begin(distances), dist_end)); - - uint ir_total{0u}; - for(uint fi{0u};fi < fdCount;) + uint fi{0u}, ir_total{0u}; + for(const auto &field : fds) { - const double dist{distances[fi]}; - auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, - {0.1, 0.1, 0.001}); - - /* Remove elevations that don't have a valid set of azimuths. */ - auto invalid_elev = [&dist,&aers](const double ev) -> bool - { - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - if(std::abs(ev) > 89.999) - return azims.size() != 1; - if(azims.empty() || !(std::abs(azims[0]) < 0.1)) - return true; - return GetUniformAzimStep(0.1, azims) <= 0.0; - }; - elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); - - double step{GetUniformElevStep(0.1, elevs)}; - if(step <= 0.0) - { - fprintf(stdout, "Non-uniform elevations on field distance %f.\n", dist); - std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]); - --fdCount; - continue; - } - - uint evStart{0u}; - for(uint ei{0u};ei < elevs.size();ei++) - { - if(!(elevs[ei] < 0.0)) - { - fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); - return false; - } - - double eif{(90.0+elevs[ei]) / step}; - const double ev_start{std::round(eif)}; + distances[fi] = field.mDistance; + evCounts[fi] = field.mEvCount; - if(std::abs(eif - ev_start) < (0.1/step)) - { - evStart = static_cast<uint>(ev_start); - break; - } - } - - const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1; - if(evCount < 5) + for(uint ei{0u};ei < field.mEvStart;ei++) + azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1]; + for(uint ei{field.mEvStart};ei < field.mEvCount;ei++) { - fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); - std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]); - --fdCount; - continue; - } - evCounts[fi] = evCount; - - for(uint ei{evStart};ei < evCount;ei++) - { - const double ev{-90.0 + ei*180.0/(evCount - 1)}; - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - uint azCount; - if(ei == 0 || ei == (evCount-1)) - { - if(azims.size() != 1) - { - fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); - return false; - } - azCount = 1u; - } - else - { - step = GetUniformAzimStep(0.1, azims); - if(step <= 0.0) - { - fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", - ev, dist); - return false; - } - azCount = static_cast<uint>(std::round(360.0 / step)); - } - azCounts[fi*MAX_EV_COUNT + ei] = azCount; - ir_total += azCount; + azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei]; + ir_total += field.mAzCounts[ei]; } - for(uint ei{0u};ei < evStart;ei++) - azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1]; ++fi; } fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m); - return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0; + return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0; } @@ -575,10 +351,6 @@ static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData) return load_future.get(); } -struct MySofaHrtfDeleter { - void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); } -}; -using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaHrtfDeleter>; bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData) diff --git a/utils/sofa-info.cpp b/utils/sofa-info.cpp index 81136334..6ab71306 100644 --- a/utils/sofa-info.cpp +++ b/utils/sofa-info.cpp @@ -23,46 +23,16 @@ #include <stdio.h> -#include <algorithm> -#include <array> -#include <cmath> #include <memory> #include <vector> -#include <mysofa.h> - +#include "sofa-support.h" #include "win_main_utf8.h" +#include "mysofa.h" -using uint = unsigned int; -using double3 = std::array<double,3>; - -struct MySofaDeleter { - void operator()(MYSOFA_HRTF *sofa) { mysofa_free(sofa); } -}; -using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaDeleter>; - -// Per-field measurement info. -struct HrirFdT { - double mDistance{0.0}; - uint mEvCount{0u}; - uint mEvStart{0u}; - std::vector<uint> mAzCounts; -}; -static const char *SofaErrorStr(int err) -{ - switch(err) - { - case MYSOFA_OK: return "OK"; - case MYSOFA_INVALID_FORMAT: return "Invalid format"; - case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; - case MYSOFA_INTERNAL_ERROR: return "Internal error"; - case MYSOFA_NO_MEMORY: return "Out of memory"; - case MYSOFA_READ_ERROR: return "Read error"; - } - return "Unknown"; -} +using uint = unsigned int; static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *attribute) { @@ -76,131 +46,10 @@ static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *att static void PrintSofaArray(const char *prefix, struct MYSOFA_ARRAY *array) { PrintSofaAttributes(prefix, array->attributes); - for(uint i{0u};i < array->elements;i++) fprintf(stdout, "%s[%u]: %.6f\n", prefix, i, array->values[i]); } -/* Produces a sorted array of unique elements from a particular axis of the - * triplets array. The filters are used to focus on particular coordinates - * of other axes as necessary. The epsilons are used to constrain the - * equality of unique elements. - */ -static std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, - const uint axis, const double *const (&filters)[3], const double (&epsilons)[3]) -{ - std::vector<double> elems; - for(const double3 &aer : aers) - { - const double elem{aer[axis]}; - - uint j; - for(j = 0;j < 3;j++) - { - if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) - break; - } - if(j < 3) - continue; - - auto iter = elems.begin(); - for(;iter != elems.end();++iter) - { - const double delta{elem - *iter}; - if(delta > epsilons[axis]) continue; - if(delta >= -epsilons[axis]) break; - - iter = elems.emplace(iter, elem); - break; - } - if(iter == elems.end()) - elems.emplace_back(elem); - } - return elems; -} - -/* Given a list of azimuths, this will produce the smallest step size that can - * uniformly cover the list. Ideally this will be over half, but in degenerate - * cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Get the maximum count possible, given the first two elements. It would - * be impossible to have more than this since the first element must be - * included. - */ - uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))}; - count = std::min(count, 255u); - - for(;count >= 5;--count) - { - /* Given the stepping value for this number of elements, check each - * multiple to ensure there's a matching element. - */ - const double step{360.0 / count}; - bool good{true}; - size_t idx{1u}; - for(uint mult{1u};mult < count && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - return step; - } - return 0.0; -} - -/* Given a list of elevations, this will produce the smallest step size that - * can uniformly cover the list. Ideally this will be over half, but in - * degenerate cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformElevStep(const double epsilon, std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Reverse the elevations so it increments starting with -90 (flipped from - * +90). This makes it easier to work out a proper stepping value. - */ - std::reverse(elems.begin(), elems.end()); - for(auto &v : elems) v *= -1.0; - - uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))}; - count = std::min(count, 255u); - - double ret{0.0}; - for(;count >= 5;--count) - { - const double step{180.0 / count}; - bool good{true}; - size_t idx{1u}; - /* Elevations don't need to match all multiples if there's not enough - * elements to check. Missing elevations can be synthesized. - */ - for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - { - ret = step; - break; - } - } - /* Re-reverse the elevations to restore the correct order. */ - for(auto &v : elems) v *= -1.0; - std::reverse(elems.begin(), elems.end()); - - return ret; -} - /* Attempts to produce a compatible layout. Most data sets tend to be * uniform and have the same major axis as used by OpenAL Soft's HRTF model. * This will remove outliers and produce a maximally dense layout when @@ -211,118 +60,7 @@ static void PrintCompatibleLayout(const uint m, const float *xyzs) { fputc('\n', stdout); - auto aers = std::vector<double3>(m, double3{}); - for(uint i{0u};i < m;++i) - { - float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; - mysofa_c2s(&vals[0]); - aers[i] = {vals[0], vals[1], vals[2]}; - } - - auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); - - auto fds = std::vector<HrirFdT>(radii.size()); - for(size_t fi{0u};fi < radii.size();fi++) - fds[fi].mDistance = radii[fi]; - - for(uint fi{0u};fi < fds.size();) - { - const double dist{fds[fi].mDistance}; - auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001}); - - /* Remove elevations that don't have a valid set of azimuths. */ - auto invalid_elev = [&dist,&aers](const double ev) -> bool - { - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - if(std::abs(ev) > 89.999) - return azims.size() != 1; - if(azims.empty() || !(std::abs(azims[0]) < 0.1)) - return true; - return GetUniformAzimStep(0.1, azims) <= 0.0; - }; - elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); - - double step{GetUniformElevStep(0.1, elevs)}; - if(step <= 0.0) - { - if(elevs.empty()) - fprintf(stdout, "No usable elevations on field distance %f.\n", dist); - else - { - fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist, - elevs[0]); - for(size_t ei{1u};ei < elevs.size();++ei) - fprintf(stdout, ", %+.2f", elevs[ei]); - fputc('\n', stdout); - } - fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi)); - continue; - } - - uint evStart{0u}; - for(uint ei{0u};ei < elevs.size();ei++) - { - if(!(elevs[ei] < 0.0)) - { - fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); - return; - } - - double eif{(90.0+elevs[ei]) / step}; - const double ev_start{std::round(eif)}; - - if(std::abs(eif - ev_start) < (0.1/step)) - { - evStart = static_cast<uint>(ev_start); - break; - } - } - - const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1; - if(evCount < 5) - { - fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); - fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi)); - continue; - } - - fds[fi].mEvCount = evCount; - fds[fi].mEvStart = evStart; - fds[fi].mAzCounts.resize(evCount); - auto &azCounts = fds[fi].mAzCounts; - - for(uint ei{evStart};ei < evCount;ei++) - { - double ev{-90.0 + ei*180.0/(evCount - 1)}; - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - if(ei == 0 || ei == (evCount-1)) - { - if(azims.size() != 1) - { - fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); - return; - } - azCounts[ei] = 1; - } - else - { - step = GetUniformAzimStep(0.1, azims); - if(step <= 0.0) - { - fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", - ev, dist); - return; - } - azCounts[ei] = static_cast<uint>(std::round(360.0f / step)); - } - } - - for(uint ei{0u};ei < evStart;ei++) - azCounts[ei] = azCounts[evCount - ei - 1]; - ++fi; - } + auto fds = GetCompatibleLayout(m, xyzs); if(fds.empty()) { fprintf(stdout, "No compatible field layouts in SOFA file.\n"); diff --git a/utils/sofa-support.cpp b/utils/sofa-support.cpp new file mode 100644 index 00000000..e37789d5 --- /dev/null +++ b/utils/sofa-support.cpp @@ -0,0 +1,292 @@ +/* + * SOFA utility methods for inspecting SOFA file metrics and determining HRTF + * utility compatible layouts. + * + * Copyright (C) 2018-2019 Christopher Fitzgerald + * Copyright (C) 2019 Christopher Robinson + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + */ + +#include "sofa-support.h" + +#include <stdio.h> + +#include <algorithm> +#include <array> +#include <cmath> +#include <utility> +#include <vector> + +#include "mysofa.h" + + +namespace { + +using uint = unsigned int; +using double3 = std::array<double,3>; + + +/* Produces a sorted array of unique elements from a particular axis of the + * triplets array. The filters are used to focus on particular coordinates + * of other axes as necessary. The epsilons are used to constrain the + * equality of unique elements. + */ +std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const uint axis, + const double *const (&filters)[3], const double (&epsilons)[3]) +{ + std::vector<double> elems; + for(const double3 &aer : aers) + { + const double elem{aer[axis]}; + + uint j; + for(j = 0;j < 3;j++) + { + if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) + break; + } + if(j < 3) + continue; + + auto iter = elems.begin(); + for(;iter != elems.end();++iter) + { + const double delta{elem - *iter}; + if(delta > epsilons[axis]) continue; + if(delta >= -epsilons[axis]) break; + + iter = elems.emplace(iter, elem); + break; + } + if(iter == elems.end()) + elems.emplace_back(elem); + } + return elems; +} + +/* Given a list of azimuths, this will produce the smallest step size that can + * uniformly cover the list. Ideally this will be over half, but in degenerate + * cases this can fall to a minimum of 5 (the lower limit). + */ +double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems) +{ + if(elems.size() < 5) return 0.0; + + /* Get the maximum count possible, given the first two elements. It would + * be impossible to have more than this since the first element must be + * included. + */ + uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))}; + count = std::min(count, 255u); + + for(;count >= 5;--count) + { + /* Given the stepping value for this number of elements, check each + * multiple to ensure there's a matching element. + */ + const double step{360.0 / count}; + bool good{true}; + size_t idx{1u}; + for(uint mult{1u};mult < count && good;++mult) + { + const double target{step*mult + elems[0]}; + while(idx < elems.size() && target-elems[idx] > epsilon) + ++idx; + good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); + } + if(good) + return step; + } + return 0.0; +} + +/* Given a list of elevations, this will produce the smallest step size that + * can uniformly cover the list. Ideally this will be over half, but in + * degenerate cases this can fall to a minimum of 5 (the lower limit). + */ +double GetUniformElevStep(const double epsilon, std::vector<double> &elems) +{ + if(elems.size() < 5) return 0.0; + + /* Reverse the elevations so it increments starting with -90 (flipped from + * +90). This makes it easier to work out a proper stepping value. + */ + std::reverse(elems.begin(), elems.end()); + for(auto &v : elems) v *= -1.0; + + uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))}; + count = std::min(count, 255u); + + double ret{0.0}; + for(;count >= 5;--count) + { + const double step{180.0 / count}; + bool good{true}; + size_t idx{1u}; + /* Elevations don't need to match all multiples if there's not enough + * elements to check. Missing elevations can be synthesized. + */ + for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) + { + const double target{step*mult + elems[0]}; + while(idx < elems.size() && target-elems[idx] > epsilon) + ++idx; + good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); + } + if(good) + { + ret = step; + break; + } + } + /* Re-reverse the elevations to restore the correct order. */ + for(auto &v : elems) v *= -1.0; + std::reverse(elems.begin(), elems.end()); + + return ret; +} + +} // namespace + + +const char *SofaErrorStr(int err) +{ + switch(err) + { + case MYSOFA_OK: return "OK"; + case MYSOFA_INVALID_FORMAT: return "Invalid format"; + case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; + case MYSOFA_INTERNAL_ERROR: return "Internal error"; + case MYSOFA_NO_MEMORY: return "Out of memory"; + case MYSOFA_READ_ERROR: return "Read error"; + } + return "Unknown"; +} + +std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs) +{ + auto aers = std::vector<double3>(m, double3{}); + for(size_t i{0u};i < m;++i) + { + float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; + mysofa_c2s(&vals[0]); + aers[i] = {vals[0], vals[1], vals[2]}; + } + + auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); + std::vector<SofaField> fds; + fds.reserve(radii.size()); + + for(const double dist : radii) + { + auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001}); + + /* Remove elevations that don't have a valid set of azimuths. */ + auto invalid_elev = [&dist,&aers](const double ev) -> bool + { + auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); + + if(std::abs(ev) > 89.999) + return azims.size() != 1; + if(azims.empty() || !(std::abs(azims[0]) < 0.1)) + return true; + return GetUniformAzimStep(0.1, azims) <= 0.0; + }; + elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); + + double step{GetUniformElevStep(0.1, elevs)}; + if(step <= 0.0) + { + if(elevs.empty()) + fprintf(stdout, "No usable elevations on field distance %f.\n", dist); + else + { + fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist, + elevs[0]); + for(size_t ei{1u};ei < elevs.size();++ei) + fprintf(stdout, ", %+.2f", elevs[ei]); + fputc('\n', stdout); + } + continue; + } + + uint evStart{0u}; + for(uint ei{0u};ei < elevs.size();ei++) + { + if(!(elevs[ei] < 0.0)) + { + fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); + return fds; + } + + double eif{(90.0+elevs[ei]) / step}; + const double ev_start{std::round(eif)}; + + if(std::abs(eif - ev_start) < (0.1/step)) + { + evStart = static_cast<uint>(ev_start); + break; + } + } + + const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1; + if(evCount < 5) + { + fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); + continue; + } + + SofaField field{}; + field.mDistance = dist; + field.mEvCount = evCount; + field.mEvStart = evStart; + field.mAzCounts.resize(evCount, 0u); + auto &azCounts = field.mAzCounts; + + for(uint ei{evStart};ei < evCount;ei++) + { + double ev{-90.0 + ei*180.0/(evCount - 1)}; + auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); + + if(ei == 0 || ei == (evCount-1)) + { + if(azims.size() != 1) + { + fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); + return fds; + } + azCounts[ei] = 1; + } + else + { + step = GetUniformAzimStep(0.1, azims); + if(step <= 0.0) + { + fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", + ev, dist); + return fds; + } + azCounts[ei] = static_cast<uint>(std::round(360.0f / step)); + } + } + + fds.emplace_back(std::move(field)); + } + + return fds; +} diff --git a/utils/sofa-support.h b/utils/sofa-support.h new file mode 100644 index 00000000..1229f49d --- /dev/null +++ b/utils/sofa-support.h @@ -0,0 +1,30 @@ +#ifndef UTILS_SOFA_SUPPORT_H +#define UTILS_SOFA_SUPPORT_H + +#include <cstddef> +#include <memory> +#include <vector> + +#include "mysofa.h" + + +struct MySofaDeleter { + void operator()(MYSOFA_HRTF *sofa) { mysofa_free(sofa); } +}; +using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaDeleter>; + +// Per-field measurement info. +struct SofaField { + using uint = unsigned int; + + double mDistance{0.0}; + uint mEvCount{0u}; + uint mEvStart{0u}; + std::vector<uint> mAzCounts; +}; + +const char *SofaErrorStr(int err); + +std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs); + +#endif /* UTILS_SOFA_SUPPORT_H */ |