aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/alu.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2018-11-16 20:32:19 -0800
committerChris Robinson <[email protected]>2018-11-16 20:32:19 -0800
commit53373a43b8984aea6a7e2107b264d208c00a5f53 (patch)
tree0d9326fd52f7818adc007f76acd452e3e6a03246 /Alc/alu.cpp
parent317acd6ae2f110c76fd1e019a3066c8c45b64921 (diff)
Convert ALu.c to C++
Required changes to bsincgen to generate C++-friendly structures.
Diffstat (limited to 'Alc/alu.cpp')
-rw-r--r--Alc/alu.cpp1884
1 files changed, 1884 insertions, 0 deletions
diff --git a/Alc/alu.cpp b/Alc/alu.cpp
new file mode 100644
index 00000000..df857b80
--- /dev/null
+++ b/Alc/alu.cpp
@@ -0,0 +1,1884 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 1999-2007 by authors.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>
+#include <assert.h>
+
+#include "alMain.h"
+#include "alSource.h"
+#include "alBuffer.h"
+#include "alListener.h"
+#include "alAuxEffectSlot.h"
+#include "alu.h"
+#include "bs2b.h"
+#include "hrtf.h"
+#include "mastering.h"
+#include "uhjfilter.h"
+#include "bformatdec.h"
+#include "static_assert.h"
+#include "ringbuffer.h"
+#include "filters/splitter.h"
+
+#include "mixer/defs.h"
+#include "fpu_modes.h"
+#include "cpu_caps.h"
+#include "bsinc_inc.h"
+
+
+/* Cone scalar */
+ALfloat ConeScale = 1.0f;
+
+/* Localized Z scalar for mono sources */
+ALfloat ZScale = 1.0f;
+
+/* Force default speed of sound for distance-related reverb decay. */
+ALboolean OverrideReverbSpeedOfSound = AL_FALSE;
+
+const aluMatrixf IdentityMatrixf = {{
+ { 1.0f, 0.0f, 0.0f, 0.0f },
+ { 0.0f, 1.0f, 0.0f, 0.0f },
+ { 0.0f, 0.0f, 1.0f, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 1.0f },
+}};
+
+
+static void ClearArray(ALfloat f[MAX_OUTPUT_CHANNELS])
+{
+ size_t i;
+ for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
+ f[i] = 0.0f;
+}
+
+struct ChanMap {
+ enum Channel channel;
+ ALfloat angle;
+ ALfloat elevation;
+};
+
+static HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_C;
+
+
+void DeinitVoice(ALvoice *voice)
+{
+ al_free(ATOMIC_EXCHANGE_PTR_SEQ(&voice->Update, static_cast<ALvoiceProps*>(nullptr)));
+}
+
+
+static inline HrtfDirectMixerFunc SelectHrtfMixer(void)
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return MixDirectHrtf_Neon;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixDirectHrtf_SSE;
+#endif
+
+ return MixDirectHrtf_C;
+}
+
+
+/* This RNG method was created based on the math found in opusdec. It's quick,
+ * and starting with a seed value of 22222, is suitable for generating
+ * whitenoise.
+ */
+static inline ALuint dither_rng(ALuint *seed)
+{
+ *seed = (*seed * 96314165) + 907633515;
+ return *seed;
+}
+
+
+static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
+{
+ outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
+ outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
+ outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
+}
+
+static inline ALfloat aluDotproduct(const aluVector *vec1, const aluVector *vec2)
+{
+ return vec1->v[0]*vec2->v[0] + vec1->v[1]*vec2->v[1] + vec1->v[2]*vec2->v[2];
+}
+
+static ALfloat aluNormalize(ALfloat *vec)
+{
+ ALfloat length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
+ if(length > FLT_EPSILON)
+ {
+ ALfloat inv_length = 1.0f/length;
+ vec[0] *= inv_length;
+ vec[1] *= inv_length;
+ vec[2] *= inv_length;
+ return length;
+ }
+ vec[0] = vec[1] = vec[2] = 0.0f;
+ return 0.0f;
+}
+
+static void aluMatrixfFloat3(ALfloat *vec, ALfloat w, const aluMatrixf *mtx)
+{
+ ALfloat v[4] = { vec[0], vec[1], vec[2], w };
+
+ vec[0] = v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0];
+ vec[1] = v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1];
+ vec[2] = v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2];
+}
+
+static aluVector aluMatrixfVector(const aluMatrixf *mtx, const aluVector *vec)
+{
+ aluVector v;
+ v.v[0] = vec->v[0]*mtx->m[0][0] + vec->v[1]*mtx->m[1][0] + vec->v[2]*mtx->m[2][0] + vec->v[3]*mtx->m[3][0];
+ v.v[1] = vec->v[0]*mtx->m[0][1] + vec->v[1]*mtx->m[1][1] + vec->v[2]*mtx->m[2][1] + vec->v[3]*mtx->m[3][1];
+ v.v[2] = vec->v[0]*mtx->m[0][2] + vec->v[1]*mtx->m[1][2] + vec->v[2]*mtx->m[2][2] + vec->v[3]*mtx->m[3][2];
+ v.v[3] = vec->v[0]*mtx->m[0][3] + vec->v[1]*mtx->m[1][3] + vec->v[2]*mtx->m[2][3] + vec->v[3]*mtx->m[3][3];
+ return v;
+}
+
+
+void aluInit(void)
+{
+ MixDirectHrtf = SelectHrtfMixer();
+}
+
+
+static void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
+{
+ AsyncEvent evt = ASYNC_EVENT(EventType_SourceStateChange);
+ ALbitfieldSOFT enabledevt;
+ size_t strpos;
+ ALuint scale;
+
+ enabledevt = ATOMIC_LOAD(&context->EnabledEvts, almemory_order_acquire);
+ if(!(enabledevt&EventType_SourceStateChange)) return;
+
+ evt.u.user.type = AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT;
+ evt.u.user.id = id;
+ evt.u.user.param = AL_STOPPED;
+
+ /* Normally snprintf would be used, but this is called from the mixer and
+ * that function's not real-time safe, so we have to construct it manually.
+ */
+ strcpy(evt.u.user.msg, "Source ID "); strpos = 10;
+ scale = 1000000000;
+ while(scale > 0 && scale > id)
+ scale /= 10;
+ while(scale > 0)
+ {
+ evt.u.user.msg[strpos++] = '0' + ((id/scale)%10);
+ scale /= 10;
+ }
+ strcpy(evt.u.user.msg+strpos, " state changed to AL_STOPPED");
+
+ if(ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1) == 1)
+ alsem_post(&context->EventSem);
+}
+
+
+static void ProcessHrtf(ALCdevice *device, ALsizei SamplesToDo)
+{
+ DirectHrtfState *state;
+ int lidx, ridx;
+ ALsizei c;
+
+ if(device->AmbiUp)
+ ambiup_process(device->AmbiUp,
+ device->Dry.Buffer, device->Dry.NumChannels, device->FOAOut.Buffer,
+ SamplesToDo
+ );
+
+ lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ state = device->Hrtf;
+ for(c = 0;c < device->Dry.NumChannels;c++)
+ {
+ MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
+ device->Dry.Buffer[c], state->Offset, state->IrSize,
+ state->Chan[c].Coeffs, state->Chan[c].Values, SamplesToDo
+ );
+ }
+ state->Offset += SamplesToDo;
+}
+
+static void ProcessAmbiDec(ALCdevice *device, ALsizei SamplesToDo)
+{
+ if(device->Dry.Buffer != device->FOAOut.Buffer)
+ bformatdec_upSample(device->AmbiDecoder,
+ device->Dry.Buffer, device->FOAOut.Buffer, device->FOAOut.NumChannels,
+ SamplesToDo
+ );
+ bformatdec_process(device->AmbiDecoder,
+ device->RealOut.Buffer, device->RealOut.NumChannels, device->Dry.Buffer,
+ SamplesToDo
+ );
+}
+
+static void ProcessAmbiUp(ALCdevice *device, ALsizei SamplesToDo)
+{
+ ambiup_process(device->AmbiUp,
+ device->RealOut.Buffer, device->RealOut.NumChannels, device->FOAOut.Buffer,
+ SamplesToDo
+ );
+}
+
+static void ProcessUhj(ALCdevice *device, ALsizei SamplesToDo)
+{
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ /* Encode to stereo-compatible 2-channel UHJ output. */
+ EncodeUhj2(device->Uhj_Encoder,
+ device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
+ device->Dry.Buffer, SamplesToDo
+ );
+}
+
+static void ProcessBs2b(ALCdevice *device, ALsizei SamplesToDo)
+{
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ assert(lidx != -1 && ridx != -1);
+
+ /* Apply binaural/crossfeed filter */
+ bs2b_cross_feed(device->Bs2b, device->RealOut.Buffer[lidx],
+ device->RealOut.Buffer[ridx], SamplesToDo);
+}
+
+void aluSelectPostProcess(ALCdevice *device)
+{
+ if(device->HrtfHandle)
+ device->PostProcess = ProcessHrtf;
+ else if(device->AmbiDecoder)
+ device->PostProcess = ProcessAmbiDec;
+ else if(device->AmbiUp)
+ device->PostProcess = ProcessAmbiUp;
+ else if(device->Uhj_Encoder)
+ device->PostProcess = ProcessUhj;
+ else if(device->Bs2b)
+ device->PostProcess = ProcessBs2b;
+ else
+ device->PostProcess = NULL;
+}
+
+
+/* Prepares the interpolator for a given rate (determined by increment).
+ *
+ * With a bit of work, and a trade of memory for CPU cost, this could be
+ * modified for use with an interpolated increment for buttery-smooth pitch
+ * changes.
+ */
+void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
+{
+ ALfloat sf = 0.0f;
+ ALsizei si = BSINC_SCALE_COUNT-1;
+
+ if(increment > FRACTIONONE)
+ {
+ sf = (ALfloat)FRACTIONONE / increment;
+ sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
+ si = float2int(sf);
+ /* The interpolation factor is fit to this diagonally-symmetric curve
+ * to reduce the transition ripple caused by interpolating different
+ * scales of the sinc function.
+ */
+ sf = 1.0f - cosf(asinf(sf - si));
+ }
+
+ state->sf = sf;
+ state->m = table->m[si];
+ state->l = (state->m/2) - 1;
+ state->filter = table->Tab + table->filterOffset[si];
+}
+
+
+static bool CalcContextParams(ALCcontext *Context)
+{
+ ALlistener *Listener = Context->Listener;
+ struct ALcontextProps *props;
+
+ props = static_cast<ALcontextProps*>(ATOMIC_EXCHANGE_PTR(&Context->Update,
+ static_cast<ALcontextProps*>(nullptr), almemory_order_acq_rel));
+ if(!props) return false;
+
+ Listener->Params.MetersPerUnit = props->MetersPerUnit;
+
+ Listener->Params.DopplerFactor = props->DopplerFactor;
+ Listener->Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
+ if(!OverrideReverbSpeedOfSound)
+ Listener->Params.ReverbSpeedOfSound = Listener->Params.SpeedOfSound *
+ Listener->Params.MetersPerUnit;
+
+ Listener->Params.SourceDistanceModel = props->SourceDistanceModel;
+ Listener->Params.DistanceModel = props->DistanceModel;
+
+ ATOMIC_REPLACE_HEAD(struct ALcontextProps*, &Context->FreeContextProps, props);
+ return true;
+}
+
+static bool CalcListenerParams(ALCcontext *Context)
+{
+ ALlistener *Listener = Context->Listener;
+ ALfloat N[3], V[3], U[3], P[3];
+ struct ALlistenerProps *props;
+ aluVector vel;
+
+ props = static_cast<ALlistenerProps*>(ATOMIC_EXCHANGE_PTR(&Listener->Update,
+ static_cast<ALlistenerProps*>(nullptr), almemory_order_acq_rel));
+ if(!props) return false;
+
+ /* AT then UP */
+ N[0] = props->Forward[0];
+ N[1] = props->Forward[1];
+ N[2] = props->Forward[2];
+ aluNormalize(N);
+ V[0] = props->Up[0];
+ V[1] = props->Up[1];
+ V[2] = props->Up[2];
+ aluNormalize(V);
+ /* Build and normalize right-vector */
+ aluCrossproduct(N, V, U);
+ aluNormalize(U);
+
+ aluMatrixfSet(&Listener->Params.Matrix,
+ U[0], V[0], -N[0], 0.0,
+ U[1], V[1], -N[1], 0.0,
+ U[2], V[2], -N[2], 0.0,
+ 0.0, 0.0, 0.0, 1.0
+ );
+
+ P[0] = props->Position[0];
+ P[1] = props->Position[1];
+ P[2] = props->Position[2];
+ aluMatrixfFloat3(P, 1.0, &Listener->Params.Matrix);
+ aluMatrixfSetRow(&Listener->Params.Matrix, 3, -P[0], -P[1], -P[2], 1.0f);
+
+ aluVectorSet(&vel, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
+ Listener->Params.Velocity = aluMatrixfVector(&Listener->Params.Matrix, &vel);
+
+ Listener->Params.Gain = props->Gain * Context->GainBoost;
+
+ ATOMIC_REPLACE_HEAD(struct ALlistenerProps*, &Context->FreeListenerProps, props);
+ return true;
+}
+
+static bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context, bool force)
+{
+ struct ALeffectslotProps *props;
+ ALeffectState *state;
+
+ props = static_cast<ALeffectslotProps*>(ATOMIC_EXCHANGE_PTR(&slot->Update,
+ static_cast<ALeffectslotProps*>(nullptr), almemory_order_acq_rel));
+ if(!props && !force) return false;
+
+ if(props)
+ {
+ slot->Params.Gain = props->Gain;
+ slot->Params.AuxSendAuto = props->AuxSendAuto;
+ slot->Params.EffectType = props->Type;
+ slot->Params.EffectProps = props->Props;
+ if(IsReverbEffect(props->Type))
+ {
+ slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
+ slot->Params.DecayTime = props->Props.Reverb.DecayTime;
+ slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
+ slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
+ slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
+ slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
+ }
+ else
+ {
+ slot->Params.RoomRolloff = 0.0f;
+ slot->Params.DecayTime = 0.0f;
+ slot->Params.DecayLFRatio = 0.0f;
+ slot->Params.DecayHFRatio = 0.0f;
+ slot->Params.DecayHFLimit = AL_FALSE;
+ slot->Params.AirAbsorptionGainHF = 1.0f;
+ }
+
+ state = props->State;
+
+ if(state == slot->Params.EffectState)
+ {
+ /* If the effect state is the same as current, we can decrement its
+ * count safely to remove it from the update object (it can't reach
+ * 0 refs since the current params also hold a reference).
+ */
+ DecrementRef(&state->Ref);
+ props->State = NULL;
+ }
+ else
+ {
+ /* Otherwise, replace it and send off the old one with a release
+ * event.
+ */
+ AsyncEvent evt = ASYNC_EVENT(EventType_ReleaseEffectState);
+ evt.u.EffectState = slot->Params.EffectState;
+
+ slot->Params.EffectState = state;
+ props->State = NULL;
+
+ if(LIKELY(ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1) != 0))
+ alsem_post(&context->EventSem);
+ else
+ {
+ /* If writing the event failed, the queue was probably full.
+ * Store the old state in the property object where it can
+ * eventually be cleaned up sometime later (not ideal, but
+ * better than blocking or leaking).
+ */
+ props->State = evt.u.EffectState;
+ }
+ }
+
+ ATOMIC_REPLACE_HEAD(struct ALeffectslotProps*, &context->FreeEffectslotProps, props);
+ }
+ else
+ state = slot->Params.EffectState;
+
+ V(state,update)(context, slot, &slot->Params.EffectProps);
+ return true;
+}
+
+
+static const struct ChanMap MonoMap[1] = {
+ { FrontCenter, 0.0f, 0.0f }
+}, RearMap[2] = {
+ { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
+}, QuadMap[4] = {
+ { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
+ { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
+}, X51Map[6] = {
+ { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
+}, X61Map[7] = {
+ { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
+ { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
+}, X71Map[8] = {
+ { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
+ { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
+ { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
+ { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
+ { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
+};
+
+static void CalcPanningAndFilters(ALvoice *voice, const ALfloat Azi, const ALfloat Elev,
+ const ALfloat Distance, const ALfloat Spread,
+ const ALfloat DryGain, const ALfloat DryGainHF,
+ const ALfloat DryGainLF, const ALfloat *WetGain,
+ const ALfloat *WetGainLF, const ALfloat *WetGainHF,
+ ALeffectslot **SendSlots, const ALbuffer *Buffer,
+ const struct ALvoiceProps *props, const ALlistener *Listener,
+ const ALCdevice *Device)
+{
+ struct ChanMap StereoMap[2] = {
+ { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
+ { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
+ };
+ bool DirectChannels = props->DirectChannels;
+ const ALsizei NumSends = Device->NumAuxSends;
+ const ALuint Frequency = Device->Frequency;
+ const struct ChanMap *chans = NULL;
+ ALsizei num_channels = 0;
+ bool isbformat = false;
+ ALfloat downmix_gain = 1.0f;
+ ALsizei c, i;
+
+ switch(Buffer->FmtChannels)
+ {
+ case FmtMono:
+ chans = MonoMap;
+ num_channels = 1;
+ /* Mono buffers are never played direct. */
+ DirectChannels = false;
+ break;
+
+ case FmtStereo:
+ /* Convert counter-clockwise to clockwise. */
+ StereoMap[0].angle = -props->StereoPan[0];
+ StereoMap[1].angle = -props->StereoPan[1];
+
+ chans = StereoMap;
+ num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
+ break;
+
+ case FmtRear:
+ chans = RearMap;
+ num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
+ break;
+
+ case FmtQuad:
+ chans = QuadMap;
+ num_channels = 4;
+ downmix_gain = 1.0f / 4.0f;
+ break;
+
+ case FmtX51:
+ chans = X51Map;
+ num_channels = 6;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 5.0f;
+ break;
+
+ case FmtX61:
+ chans = X61Map;
+ num_channels = 7;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 6.0f;
+ break;
+
+ case FmtX71:
+ chans = X71Map;
+ num_channels = 8;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 7.0f;
+ break;
+
+ case FmtBFormat2D:
+ num_channels = 3;
+ isbformat = true;
+ DirectChannels = false;
+ break;
+
+ case FmtBFormat3D:
+ num_channels = 4;
+ isbformat = true;
+ DirectChannels = false;
+ break;
+ }
+
+ for(c = 0;c < num_channels;c++)
+ {
+ memset(&voice->Direct.Params[c].Hrtf.Target, 0,
+ sizeof(voice->Direct.Params[c].Hrtf.Target));
+ ClearArray(voice->Direct.Params[c].Gains.Target);
+ }
+ for(i = 0;i < NumSends;i++)
+ {
+ for(c = 0;c < num_channels;c++)
+ ClearArray(voice->Send[i].Params[c].Gains.Target);
+ }
+
+ voice->Flags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
+ if(isbformat)
+ {
+ /* Special handling for B-Format sources. */
+
+ if(Distance > FLT_EPSILON)
+ {
+ /* Panning a B-Format sound toward some direction is easy. Just pan
+ * the first (W) channel as a normal mono sound and silence the
+ * others.
+ */
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
+ ALfloat w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (mdist * (ALfloat)Device->Frequency);
+ ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+ /* Clamp w0 for really close distances, to prevent excessive
+ * bass.
+ */
+ w0 = minf(w0, w1*4.0f);
+
+ /* Only need to adjust the first channel of a B-Format source. */
+ NfcFilterAdjust(&voice->Direct.Params[0].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ /* A scalar of 1.5 for plain stereo results in +/-60 degrees being
+ * moved to +/-90 degrees for direct right and left speaker
+ * responses.
+ */
+ CalcAngleCoeffs((Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(Azi, 1.5f) : Azi,
+ Elev, Spread, coeffs);
+
+ /* NOTE: W needs to be scaled by sqrt(2) due to FuMa normalization. */
+ ComputePanGains(&Device->Dry, coeffs, DryGain*SQRTF_2,
+ voice->Direct.Params[0].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels, coeffs,
+ WetGain[i]*SQRTF_2, voice->Send[i].Params[0].Gains.Target
+ );
+ }
+ }
+ else
+ {
+ /* Local B-Format sources have their XYZ channels rotated according
+ * to the orientation.
+ */
+ ALfloat N[3], V[3], U[3];
+ aluMatrixf matrix;
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
+ * is what we want for FOA input. The first channel may have
+ * been previously re-adjusted if panned, so reset it.
+ */
+ NfcFilterAdjust(&voice->Direct.Params[0].NFCtrlFilter, 0.0f);
+
+ voice->Direct.ChannelsPerOrder[0] = 1;
+ voice->Direct.ChannelsPerOrder[1] = mini(voice->Direct.Channels-1, 3);
+ for(i = 2;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = 0;
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ /* AT then UP */
+ N[0] = props->Orientation[0][0];
+ N[1] = props->Orientation[0][1];
+ N[2] = props->Orientation[0][2];
+ aluNormalize(N);
+ V[0] = props->Orientation[1][0];
+ V[1] = props->Orientation[1][1];
+ V[2] = props->Orientation[1][2];
+ aluNormalize(V);
+ if(!props->HeadRelative)
+ {
+ const aluMatrixf *lmatrix = &Listener->Params.Matrix;
+ aluMatrixfFloat3(N, 0.0f, lmatrix);
+ aluMatrixfFloat3(V, 0.0f, lmatrix);
+ }
+ /* Build and normalize right-vector */
+ aluCrossproduct(N, V, U);
+ aluNormalize(U);
+
+ /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
+ * matrix is transposed, for the inputs to align on the rows and
+ * outputs on the columns.
+ */
+ aluMatrixfSet(&matrix,
+ // ACN0 ACN1 ACN2 ACN3
+ SQRTF_2, 0.0f, 0.0f, 0.0f, // Ambi W
+ 0.0f, -N[0]*SQRTF_3, N[1]*SQRTF_3, -N[2]*SQRTF_3, // Ambi X
+ 0.0f, U[0]*SQRTF_3, -U[1]*SQRTF_3, U[2]*SQRTF_3, // Ambi Y
+ 0.0f, -V[0]*SQRTF_3, V[1]*SQRTF_3, -V[2]*SQRTF_3 // Ambi Z
+ );
+
+ voice->Direct.Buffer = Device->FOAOut.Buffer;
+ voice->Direct.Channels = Device->FOAOut.NumChannels;
+ for(c = 0;c < num_channels;c++)
+ ComputePanGains(&Device->FOAOut, matrix.m[c], DryGain,
+ voice->Direct.Params[c].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ {
+ for(c = 0;c < num_channels;c++)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ matrix.m[c], WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ }
+ else if(DirectChannels)
+ {
+ /* Direct source channels always play local. Skip the virtual channels
+ * and write inputs to the matching real outputs.
+ */
+ voice->Direct.Buffer = Device->RealOut.Buffer;
+ voice->Direct.Channels = Device->RealOut.NumChannels;
+
+ for(c = 0;c < num_channels;c++)
+ {
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
+ }
+
+ /* Auxiliary sends still use normal channel panning since they mix to
+ * B-Format, which can't channel-match.
+ */
+ for(c = 0;c < num_channels;c++)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ else if(Device->Render_Mode == HrtfRender)
+ {
+ /* Full HRTF rendering. Skip the virtual channels and render to the
+ * real outputs.
+ */
+ voice->Direct.Buffer = Device->RealOut.Buffer;
+ voice->Direct.Channels = Device->RealOut.NumChannels;
+
+ if(Distance > FLT_EPSILON)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ /* Get the HRIR coefficients and delays just once, for the given
+ * source direction.
+ */
+ GetHrtfCoeffs(Device->HrtfHandle, Elev, Azi, Spread,
+ voice->Direct.Params[0].Hrtf.Target.Coeffs,
+ voice->Direct.Params[0].Hrtf.Target.Delay);
+ voice->Direct.Params[0].Hrtf.Target.Gain = DryGain * downmix_gain;
+
+ /* Remaining channels use the same results as the first. */
+ for(c = 1;c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ voice->Direct.Params[c].Hrtf.Target = voice->Direct.Params[0].Hrtf.Target;
+ }
+
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels of the source sends.
+ */
+ CalcAngleCoeffs(Azi, Elev, Spread, coeffs);
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ for(c = 0;c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ ComputePanningGainsBF(Slot->ChanMap,
+ Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
+ voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ else
+ {
+ /* Local sources on HRTF play with each channel panned to its
+ * relative location around the listener, providing "virtual
+ * speaker" responses.
+ */
+ for(c = 0;c < num_channels;c++)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ if(chans[c].channel == LFE)
+ {
+ /* Skip LFE */
+ continue;
+ }
+
+ /* Get the HRIR coefficients and delays for this channel
+ * position.
+ */
+ GetHrtfCoeffs(Device->HrtfHandle,
+ chans[c].elevation, chans[c].angle, Spread,
+ voice->Direct.Params[c].Hrtf.Target.Coeffs,
+ voice->Direct.Params[c].Hrtf.Target.Delay
+ );
+ voice->Direct.Params[c].Hrtf.Target.Gain = DryGain;
+
+ /* Normal panning for auxiliary sends. */
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+
+ voice->Flags |= VOICE_HAS_HRTF;
+ }
+ else
+ {
+ /* Non-HRTF rendering. Use normal panning to the output. */
+
+ if(Distance > FLT_EPSILON)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+ ALfloat w0 = 0.0f;
+
+ /* Calculate NFC filter coefficient if needed. */
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
+ ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+ w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (mdist * (ALfloat)Device->Frequency);
+ /* Clamp w0 for really close distances, to prevent excessive
+ * bass.
+ */
+ w0 = minf(w0, w1*4.0f);
+
+ /* Adjust NFC filters. */
+ for(c = 0;c < num_channels;c++)
+ NfcFilterAdjust(&voice->Direct.Params[c].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels.
+ */
+ CalcAngleCoeffs((Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(Azi, 1.5f) : Azi,
+ Elev, Spread, coeffs);
+
+ for(c = 0;c < num_channels;c++)
+ {
+ /* Special-case LFE */
+ if(chans[c].channel == LFE)
+ {
+ if(Device->Dry.Buffer == Device->RealOut.Buffer)
+ {
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
+ }
+ continue;
+ }
+
+ ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
+ voice->Direct.Params[c].Gains.Target);
+ }
+
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ for(c = 0;c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel != LFE)
+ ComputePanningGainsBF(Slot->ChanMap,
+ Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
+ voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ else
+ {
+ ALfloat w0 = 0.0f;
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* If the source distance is 0, set w0 to w1 to act as a pass-
+ * through. We still want to pass the signal through the
+ * filters so they keep an appropriate history, in case the
+ * source moves away from the listener.
+ */
+ w0 = SPEEDOFSOUNDMETRESPERSEC /
+ (Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
+
+ for(c = 0;c < num_channels;c++)
+ NfcFilterAdjust(&voice->Direct.Params[c].NFCtrlFilter, w0);
+
+ for(i = 0;i < MAX_AMBI_ORDER+1;i++)
+ voice->Direct.ChannelsPerOrder[i] = Device->NumChannelsPerOrder[i];
+ voice->Flags |= VOICE_HAS_NFC;
+ }
+
+ for(c = 0;c < num_channels;c++)
+ {
+ ALfloat coeffs[MAX_AMBI_COEFFS];
+
+ /* Special-case LFE */
+ if(chans[c].channel == LFE)
+ {
+ if(Device->Dry.Buffer == Device->RealOut.Buffer)
+ {
+ int idx = GetChannelIdxByName(&Device->RealOut, chans[c].channel);
+ if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
+ }
+ continue;
+ }
+
+ CalcAngleCoeffs(
+ (Device->Render_Mode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
+ : chans[c].angle,
+ chans[c].elevation, Spread, coeffs
+ );
+
+ ComputePanGains(&Device->Dry, coeffs, DryGain,
+ voice->Direct.Params[c].Gains.Target);
+ for(i = 0;i < NumSends;i++)
+ {
+ const ALeffectslot *Slot = SendSlots[i];
+ if(Slot)
+ ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
+ coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
+ );
+ }
+ }
+ }
+ }
+
+ {
+ ALfloat hfScale = props->Direct.HFReference / Frequency;
+ ALfloat lfScale = props->Direct.LFReference / Frequency;
+ ALfloat gainHF = maxf(DryGainHF, 0.001f); /* Limit -60dB */
+ ALfloat gainLF = maxf(DryGainLF, 0.001f);
+
+ voice->Direct.FilterType = AF_None;
+ if(gainHF != 1.0f) voice->Direct.FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->Direct.FilterType |= AF_HighPass;
+ BiquadFilter_setParams(
+ &voice->Direct.Params[0].LowPass, BiquadType_HighShelf,
+ gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
+ );
+ BiquadFilter_setParams(
+ &voice->Direct.Params[0].HighPass, BiquadType_LowShelf,
+ gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
+ );
+ for(c = 1;c < num_channels;c++)
+ {
+ BiquadFilter_copyParams(&voice->Direct.Params[c].LowPass,
+ &voice->Direct.Params[0].LowPass);
+ BiquadFilter_copyParams(&voice->Direct.Params[c].HighPass,
+ &voice->Direct.Params[0].HighPass);
+ }
+ }
+ for(i = 0;i < NumSends;i++)
+ {
+ ALfloat hfScale = props->Send[i].HFReference / Frequency;
+ ALfloat lfScale = props->Send[i].LFReference / Frequency;
+ ALfloat gainHF = maxf(WetGainHF[i], 0.001f);
+ ALfloat gainLF = maxf(WetGainLF[i], 0.001f);
+
+ voice->Send[i].FilterType = AF_None;
+ if(gainHF != 1.0f) voice->Send[i].FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->Send[i].FilterType |= AF_HighPass;
+ BiquadFilter_setParams(
+ &voice->Send[i].Params[0].LowPass, BiquadType_HighShelf,
+ gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
+ );
+ BiquadFilter_setParams(
+ &voice->Send[i].Params[0].HighPass, BiquadType_LowShelf,
+ gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
+ );
+ for(c = 1;c < num_channels;c++)
+ {
+ BiquadFilter_copyParams(&voice->Send[i].Params[c].LowPass,
+ &voice->Send[i].Params[0].LowPass);
+ BiquadFilter_copyParams(&voice->Send[i].Params[c].HighPass,
+ &voice->Send[i].Params[0].HighPass);
+ }
+ }
+}
+
+static void CalcNonAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
+{
+ const ALCdevice *Device = ALContext->Device;
+ const ALlistener *Listener = ALContext->Listener;
+ ALfloat DryGain, DryGainHF, DryGainLF;
+ ALfloat WetGain[MAX_SENDS];
+ ALfloat WetGainHF[MAX_SENDS];
+ ALfloat WetGainLF[MAX_SENDS];
+ ALeffectslot *SendSlots[MAX_SENDS];
+ ALfloat Pitch;
+ ALsizei i;
+
+ voice->Direct.Buffer = Device->Dry.Buffer;
+ voice->Direct.Channels = Device->Dry.NumChannels;
+ for(i = 0;i < Device->NumAuxSends;i++)
+ {
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->DefaultSlot;
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
+ {
+ SendSlots[i] = NULL;
+ voice->Send[i].Buffer = NULL;
+ voice->Send[i].Channels = 0;
+ }
+ else
+ {
+ voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
+ voice->Send[i].Channels = SendSlots[i]->NumChannels;
+ }
+ }
+
+ /* Calculate the stepping value */
+ Pitch = (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency * props->Pitch;
+ if(Pitch > (ALfloat)MAX_PITCH)
+ voice->Step = MAX_PITCH<<FRACTIONBITS;
+ else
+ voice->Step = maxi(fastf2i(Pitch * FRACTIONONE), 1);
+ if(props->Resampler == BSinc24Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
+ else if(props->Resampler == BSinc12Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
+ voice->Resampler = SelectResampler(props->Resampler);
+
+ /* Calculate gains */
+ DryGain = clampf(props->Gain, props->MinGain, props->MaxGain);
+ DryGain *= props->Direct.Gain * Listener->Params.Gain;
+ DryGain = minf(DryGain, GAIN_MIX_MAX);
+ DryGainHF = props->Direct.GainHF;
+ DryGainLF = props->Direct.GainLF;
+ for(i = 0;i < Device->NumAuxSends;i++)
+ {
+ WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
+ WetGain[i] *= props->Send[i].Gain * Listener->Params.Gain;
+ WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
+ WetGainHF[i] = props->Send[i].GainHF;
+ WetGainLF[i] = props->Send[i].GainLF;
+ }
+
+ CalcPanningAndFilters(voice, 0.0f, 0.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF, WetGain,
+ WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
+}
+
+static void CalcAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
+{
+ const ALCdevice *Device = ALContext->Device;
+ const ALlistener *Listener = ALContext->Listener;
+ const ALsizei NumSends = Device->NumAuxSends;
+ aluVector Position, Velocity, Direction, SourceToListener;
+ ALfloat Distance, ClampedDist, DopplerFactor;
+ ALeffectslot *SendSlots[MAX_SENDS];
+ ALfloat RoomRolloff[MAX_SENDS];
+ ALfloat DecayDistance[MAX_SENDS];
+ ALfloat DecayLFDistance[MAX_SENDS];
+ ALfloat DecayHFDistance[MAX_SENDS];
+ ALfloat DryGain, DryGainHF, DryGainLF;
+ ALfloat WetGain[MAX_SENDS];
+ ALfloat WetGainHF[MAX_SENDS];
+ ALfloat WetGainLF[MAX_SENDS];
+ bool directional;
+ ALfloat ev, az;
+ ALfloat spread;
+ ALfloat Pitch;
+ ALint i;
+
+ /* Set mixing buffers and get send parameters. */
+ voice->Direct.Buffer = Device->Dry.Buffer;
+ voice->Direct.Channels = Device->Dry.NumChannels;
+ for(i = 0;i < NumSends;i++)
+ {
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->DefaultSlot;
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
+ {
+ SendSlots[i] = NULL;
+ RoomRolloff[i] = 0.0f;
+ DecayDistance[i] = 0.0f;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
+ }
+ else if(SendSlots[i]->Params.AuxSendAuto)
+ {
+ RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
+ /* Calculate the distances to where this effect's decay reaches
+ * -60dB.
+ */
+ DecayDistance[i] = SendSlots[i]->Params.DecayTime *
+ Listener->Params.ReverbSpeedOfSound;
+ DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
+ DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
+ if(SendSlots[i]->Params.DecayHFLimit)
+ {
+ ALfloat airAbsorption = SendSlots[i]->Params.AirAbsorptionGainHF;
+ if(airAbsorption < 1.0f)
+ {
+ /* Calculate the distance to where this effect's air
+ * absorption reaches -60dB, and limit the effect's HF
+ * decay distance (so it doesn't take any longer to decay
+ * than the air would allow).
+ */
+ ALfloat absorb_dist = log10f(REVERB_DECAY_GAIN) / log10f(airAbsorption);
+ DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
+ }
+ }
+ }
+ else
+ {
+ /* If the slot's auxiliary send auto is off, the data sent to the
+ * effect slot is the same as the dry path, sans filter effects */
+ RoomRolloff[i] = props->RolloffFactor;
+ DecayDistance[i] = 0.0f;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
+ }
+
+ if(!SendSlots[i])
+ {
+ voice->Send[i].Buffer = NULL;
+ voice->Send[i].Channels = 0;
+ }
+ else
+ {
+ voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
+ voice->Send[i].Channels = SendSlots[i]->NumChannels;
+ }
+ }
+
+ /* Transform source to listener space (convert to head relative) */
+ aluVectorSet(&Position, props->Position[0], props->Position[1], props->Position[2], 1.0f);
+ aluVectorSet(&Direction, props->Direction[0], props->Direction[1], props->Direction[2], 0.0f);
+ aluVectorSet(&Velocity, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
+ if(props->HeadRelative == AL_FALSE)
+ {
+ const aluMatrixf *Matrix = &Listener->Params.Matrix;
+ /* Transform source vectors */
+ Position = aluMatrixfVector(Matrix, &Position);
+ Velocity = aluMatrixfVector(Matrix, &Velocity);
+ Direction = aluMatrixfVector(Matrix, &Direction);
+ }
+ else
+ {
+ const aluVector *lvelocity = &Listener->Params.Velocity;
+ /* Offset the source velocity to be relative of the listener velocity */
+ Velocity.v[0] += lvelocity->v[0];
+ Velocity.v[1] += lvelocity->v[1];
+ Velocity.v[2] += lvelocity->v[2];
+ }
+
+ directional = aluNormalize(Direction.v) > 0.0f;
+ SourceToListener.v[0] = -Position.v[0];
+ SourceToListener.v[1] = -Position.v[1];
+ SourceToListener.v[2] = -Position.v[2];
+ SourceToListener.v[3] = 0.0f;
+ Distance = aluNormalize(SourceToListener.v);
+
+ /* Initial source gain */
+ DryGain = props->Gain;
+ DryGainHF = 1.0f;
+ DryGainLF = 1.0f;
+ for(i = 0;i < NumSends;i++)
+ {
+ WetGain[i] = props->Gain;
+ WetGainHF[i] = 1.0f;
+ WetGainLF[i] = 1.0f;
+ }
+
+ /* Calculate distance attenuation */
+ ClampedDist = Distance;
+
+ switch(Listener->Params.SourceDistanceModel ?
+ props->DistanceModel : Listener->Params.DistanceModel)
+ {
+ case InverseDistanceClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
+ break;
+ /*fall-through*/
+ case InverseDistance:
+ if(!(props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
+ if(dist > 0.0f) DryGain *= props->RefDistance / dist;
+ for(i = 0;i < NumSends;i++)
+ {
+ dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
+ if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
+ }
+ }
+ break;
+
+ case LinearDistanceClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
+ break;
+ /*fall-through*/
+ case LinearDistance:
+ if(!(props->MaxDistance != props->RefDistance))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ DryGain *= maxf(1.0f - attn, 0.0f);
+ for(i = 0;i < NumSends;i++)
+ {
+ attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ WetGain[i] *= maxf(1.0f - attn, 0.0f);
+ }
+ }
+ break;
+
+ case ExponentDistanceClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance)
+ break;
+ /*fall-through*/
+ case ExponentDistance:
+ if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ DryGain *= powf(ClampedDist/props->RefDistance, -props->RolloffFactor);
+ for(i = 0;i < NumSends;i++)
+ WetGain[i] *= powf(ClampedDist/props->RefDistance, -RoomRolloff[i]);
+ }
+ break;
+
+ case DisableDistance:
+ ClampedDist = props->RefDistance;
+ break;
+ }
+
+ /* Calculate directional soundcones */
+ if(directional && props->InnerAngle < 360.0f)
+ {
+ ALfloat ConeVolume;
+ ALfloat ConeHF;
+ ALfloat Angle;
+
+ Angle = acosf(aluDotproduct(&Direction, &SourceToListener));
+ Angle = RAD2DEG(Angle * ConeScale * 2.0f);
+ if(!(Angle > props->InnerAngle))
+ {
+ ConeVolume = 1.0f;
+ ConeHF = 1.0f;
+ }
+ else if(Angle < props->OuterAngle)
+ {
+ ALfloat scale = ( Angle-props->InnerAngle) /
+ (props->OuterAngle-props->InnerAngle);
+ ConeVolume = lerp(1.0f, props->OuterGain, scale);
+ ConeHF = lerp(1.0f, props->OuterGainHF, scale);
+ }
+ else
+ {
+ ConeVolume = props->OuterGain;
+ ConeHF = props->OuterGainHF;
+ }
+
+ DryGain *= ConeVolume;
+ if(props->DryGainHFAuto)
+ DryGainHF *= ConeHF;
+ if(props->WetGainAuto)
+ {
+ for(i = 0;i < NumSends;i++)
+ WetGain[i] *= ConeVolume;
+ }
+ if(props->WetGainHFAuto)
+ {
+ for(i = 0;i < NumSends;i++)
+ WetGainHF[i] *= ConeHF;
+ }
+ }
+
+ /* Apply gain and frequency filters */
+ DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
+ DryGain = minf(DryGain*props->Direct.Gain*Listener->Params.Gain, GAIN_MIX_MAX);
+ DryGainHF *= props->Direct.GainHF;
+ DryGainLF *= props->Direct.GainLF;
+ for(i = 0;i < NumSends;i++)
+ {
+ WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
+ WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener->Params.Gain, GAIN_MIX_MAX);
+ WetGainHF[i] *= props->Send[i].GainHF;
+ WetGainLF[i] *= props->Send[i].GainLF;
+ }
+
+ /* Distance-based air absorption and initial send decay. */
+ if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
+ {
+ ALfloat meters_base = (ClampedDist-props->RefDistance) * props->RolloffFactor *
+ Listener->Params.MetersPerUnit;
+ if(props->AirAbsorptionFactor > 0.0f)
+ {
+ ALfloat hfattn = powf(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor);
+ DryGainHF *= hfattn;
+ for(i = 0;i < NumSends;i++)
+ WetGainHF[i] *= hfattn;
+ }
+
+ if(props->WetGainAuto)
+ {
+ /* Apply a decay-time transformation to the wet path, based on the
+ * source distance in meters. The initial decay of the reverb
+ * effect is calculated and applied to the wet path.
+ */
+ for(i = 0;i < NumSends;i++)
+ {
+ ALfloat gain, gainhf, gainlf;
+
+ if(!(DecayDistance[i] > 0.0f))
+ continue;
+
+ gain = powf(REVERB_DECAY_GAIN, meters_base/DecayDistance[i]);
+ WetGain[i] *= gain;
+ /* Yes, the wet path's air absorption is applied with
+ * WetGainAuto on, rather than WetGainHFAuto.
+ */
+ if(gain > 0.0f)
+ {
+ gainhf = powf(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i]);
+ WetGainHF[i] *= minf(gainhf / gain, 1.0f);
+ gainlf = powf(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i]);
+ WetGainLF[i] *= minf(gainlf / gain, 1.0f);
+ }
+ }
+ }
+ }
+
+
+ /* Initial source pitch */
+ Pitch = props->Pitch;
+
+ /* Calculate velocity-based doppler effect */
+ DopplerFactor = props->DopplerFactor * Listener->Params.DopplerFactor;
+ if(DopplerFactor > 0.0f)
+ {
+ const aluVector *lvelocity = &Listener->Params.Velocity;
+ const ALfloat SpeedOfSound = Listener->Params.SpeedOfSound;
+ ALfloat vss, vls;
+
+ vss = aluDotproduct(&Velocity, &SourceToListener) * DopplerFactor;
+ vls = aluDotproduct(lvelocity, &SourceToListener) * DopplerFactor;
+
+ if(!(vls < SpeedOfSound))
+ {
+ /* Listener moving away from the source at the speed of sound.
+ * Sound waves can't catch it.
+ */
+ Pitch = 0.0f;
+ }
+ else if(!(vss < SpeedOfSound))
+ {
+ /* Source moving toward the listener at the speed of sound. Sound
+ * waves bunch up to extreme frequencies.
+ */
+ Pitch = HUGE_VALF;
+ }
+ else
+ {
+ /* Source and listener movement is nominal. Calculate the proper
+ * doppler shift.
+ */
+ Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
+ }
+ }
+
+ /* Adjust pitch based on the buffer and output frequencies, and calculate
+ * fixed-point stepping value.
+ */
+ Pitch *= (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency;
+ if(Pitch > (ALfloat)MAX_PITCH)
+ voice->Step = MAX_PITCH<<FRACTIONBITS;
+ else
+ voice->Step = maxi(fastf2i(Pitch * FRACTIONONE), 1);
+ if(props->Resampler == BSinc24Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
+ else if(props->Resampler == BSinc12Resampler)
+ BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
+ voice->Resampler = SelectResampler(props->Resampler);
+
+ if(Distance > 0.0f)
+ {
+ /* Clamp Y, in case rounding errors caused it to end up outside of
+ * -1...+1.
+ */
+ ev = asinf(clampf(-SourceToListener.v[1], -1.0f, 1.0f));
+ /* Double negation on Z cancels out; negate once for changing source-
+ * to-listener to listener-to-source, and again for right-handed coords
+ * with -Z in front.
+ */
+ az = atan2f(-SourceToListener.v[0], SourceToListener.v[2]*ZScale);
+ }
+ else
+ ev = az = 0.0f;
+
+ if(props->Radius > Distance)
+ spread = F_TAU - Distance/props->Radius*F_PI;
+ else if(Distance > 0.0f)
+ spread = asinf(props->Radius / Distance) * 2.0f;
+ else
+ spread = 0.0f;
+
+ CalcPanningAndFilters(voice, az, ev, Distance, spread, DryGain, DryGainHF, DryGainLF, WetGain,
+ WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
+}
+
+static void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
+{
+ ALbufferlistitem *BufferListItem;
+ struct ALvoiceProps *props;
+
+ props = static_cast<ALvoiceProps*>(ATOMIC_EXCHANGE_PTR(&voice->Update,
+ static_cast<ALvoiceProps*>(nullptr), almemory_order_acq_rel));
+ if(!props && !force) return;
+
+ if(props)
+ {
+ memcpy(voice->Props, props,
+ FAM_SIZE(struct ALvoiceProps, Send, context->Device->NumAuxSends)
+ );
+
+ ATOMIC_REPLACE_HEAD(struct ALvoiceProps*, &context->FreeVoiceProps, props);
+ }
+ props = voice->Props;
+
+ BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed);
+ while(BufferListItem != NULL)
+ {
+ const ALbuffer *buffer = NULL;
+ ALsizei i = 0;
+ while(!buffer && i < BufferListItem->num_buffers)
+ buffer = BufferListItem->buffers[i];
+ if(LIKELY(buffer))
+ {
+ if(props->SpatializeMode == SpatializeOn ||
+ (props->SpatializeMode == SpatializeAuto && buffer->FmtChannels == FmtMono))
+ CalcAttnSourceParams(voice, props, buffer, context);
+ else
+ CalcNonAttnSourceParams(voice, props, buffer, context);
+ break;
+ }
+ BufferListItem = ATOMIC_LOAD(&BufferListItem->next, almemory_order_acquire);
+ }
+}
+
+
+static void ProcessParamUpdates(ALCcontext *ctx, const struct ALeffectslotArray *slots)
+{
+ ALvoice **voice, **voice_end;
+ ALsource *source;
+ ALsizei i;
+
+ IncrementRef(&ctx->UpdateCount);
+ if(!ATOMIC_LOAD(&ctx->HoldUpdates, almemory_order_acquire))
+ {
+ bool cforce = CalcContextParams(ctx);
+ bool force = CalcListenerParams(ctx) | cforce;
+ for(i = 0;i < slots->count;i++)
+ force |= CalcEffectSlotParams(slots->slot[i], ctx, cforce);
+
+ voice = ctx->Voices;
+ voice_end = voice + ctx->VoiceCount;
+ for(;voice != voice_end;++voice)
+ {
+ source = ATOMIC_LOAD(&(*voice)->Source, almemory_order_acquire);
+ if(source) CalcSourceParams(*voice, ctx, force);
+ }
+ }
+ IncrementRef(&ctx->UpdateCount);
+}
+
+
+static void ApplyStablizer(FrontStablizer *Stablizer, ALfloat (*RESTRICT Buffer)[BUFFERSIZE],
+ int lidx, int ridx, int cidx, ALsizei SamplesToDo,
+ ALsizei NumChannels)
+{
+ ALfloat (*RESTRICT lsplit)[BUFFERSIZE] = Stablizer->LSplit;
+ ALfloat (*RESTRICT rsplit)[BUFFERSIZE] = Stablizer->RSplit;
+ ALsizei i;
+
+ /* Apply an all-pass to all channels, except the front-left and front-
+ * right, so they maintain the same relative phase.
+ */
+ for(i = 0;i < NumChannels;i++)
+ {
+ if(i == lidx || i == ridx)
+ continue;
+ splitterap_process(&Stablizer->APFilter[i], Buffer[i], SamplesToDo);
+ }
+
+ bandsplit_process(&Stablizer->LFilter, lsplit[1], lsplit[0], Buffer[lidx], SamplesToDo);
+ bandsplit_process(&Stablizer->RFilter, rsplit[1], rsplit[0], Buffer[ridx], SamplesToDo);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat lfsum, hfsum;
+ ALfloat m, s, c;
+
+ lfsum = lsplit[0][i] + rsplit[0][i];
+ hfsum = lsplit[1][i] + rsplit[1][i];
+ s = lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i];
+
+ /* This pans the separate low- and high-frequency sums between being on
+ * the center channel and the left/right channels. The low-frequency
+ * sum is 1/3rd toward center (2/3rds on left/right) and the high-
+ * frequency sum is 1/4th toward center (3/4ths on left/right). These
+ * values can be tweaked.
+ */
+ m = lfsum*cosf(1.0f/3.0f * F_PI_2) + hfsum*cosf(1.0f/4.0f * F_PI_2);
+ c = lfsum*sinf(1.0f/3.0f * F_PI_2) + hfsum*sinf(1.0f/4.0f * F_PI_2);
+
+ /* The generated center channel signal adds to the existing signal,
+ * while the modified left and right channels replace.
+ */
+ Buffer[lidx][i] = (m + s) * 0.5f;
+ Buffer[ridx][i] = (m - s) * 0.5f;
+ Buffer[cidx][i] += c * 0.5f;
+ }
+}
+
+static void ApplyDistanceComp(ALfloat (*RESTRICT Samples)[BUFFERSIZE], DistanceComp *distcomp,
+ ALfloat *RESTRICT Values, ALsizei SamplesToDo, ALsizei numchans)
+{
+ ALsizei i, c;
+
+ for(c = 0;c < numchans;c++)
+ {
+ ALfloat *RESTRICT inout = Samples[c];
+ const ALfloat gain = distcomp[c].Gain;
+ const ALsizei base = distcomp[c].Length;
+ ALfloat *RESTRICT distbuf = distcomp[c].Buffer;
+
+ if(base == 0)
+ {
+ if(gain < 1.0f)
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ inout[i] *= gain;
+ }
+ continue;
+ }
+
+ if(LIKELY(SamplesToDo >= base))
+ {
+ for(i = 0;i < base;i++)
+ Values[i] = distbuf[i];
+ for(;i < SamplesToDo;i++)
+ Values[i] = inout[i-base];
+ memcpy(distbuf, &inout[SamplesToDo-base], base*sizeof(ALfloat));
+ }
+ else
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ Values[i] = distbuf[i];
+ memmove(distbuf, distbuf+SamplesToDo, (base-SamplesToDo)*sizeof(ALfloat));
+ memcpy(distbuf+base-SamplesToDo, inout, SamplesToDo*sizeof(ALfloat));
+ }
+ for(i = 0;i < SamplesToDo;i++)
+ inout[i] = Values[i]*gain;
+ }
+}
+
+static void ApplyDither(ALfloat (*RESTRICT Samples)[BUFFERSIZE], ALuint *dither_seed,
+ const ALfloat quant_scale, const ALsizei SamplesToDo,
+ const ALsizei numchans)
+{
+ const ALfloat invscale = 1.0f / quant_scale;
+ ALuint seed = *dither_seed;
+ ALsizei c, i;
+
+ ASSUME(numchans > 0);
+ ASSUME(SamplesToDo > 0);
+
+ /* Dithering. Step 1, generate whitenoise (uniform distribution of random
+ * values between -1 and +1). Step 2 is to add the noise to the samples,
+ * before rounding and after scaling up to the desired quantization depth.
+ */
+ for(c = 0;c < numchans;c++)
+ {
+ ALfloat *RESTRICT samples = Samples[c];
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat val = samples[i] * quant_scale;
+ ALuint rng0 = dither_rng(&seed);
+ ALuint rng1 = dither_rng(&seed);
+ val += (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
+ samples[i] = fast_roundf(val) * invscale;
+ }
+ }
+ *dither_seed = seed;
+}
+
+
+static inline ALfloat Conv_ALfloat(ALfloat val)
+{ return val; }
+static inline ALint Conv_ALint(ALfloat val)
+{
+ /* Floats have a 23-bit mantissa. There is an implied 1 bit in the mantissa
+ * along with the sign bit, giving 25 bits total, so [-16777216, +16777216]
+ * is the max value a normalized float can be scaled to before losing
+ * precision.
+ */
+ return fastf2i(clampf(val*16777216.0f, -16777216.0f, 16777215.0f))<<7;
+}
+static inline ALshort Conv_ALshort(ALfloat val)
+{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
+static inline ALbyte Conv_ALbyte(ALfloat val)
+{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
+
+/* Define unsigned output variations. */
+#define DECL_TEMPLATE(T, func, O) \
+static inline T Conv_##T(ALfloat val) { return func(val)+O; }
+
+DECL_TEMPLATE(ALubyte, Conv_ALbyte, 128)
+DECL_TEMPLATE(ALushort, Conv_ALshort, 32768)
+DECL_TEMPLATE(ALuint, Conv_ALint, 2147483648u)
+
+#undef DECL_TEMPLATE
+
+#define DECL_TEMPLATE(T, A) \
+static void Write##A(const ALfloat (*RESTRICT InBuffer)[BUFFERSIZE], \
+ ALvoid *OutBuffer, ALsizei Offset, ALsizei SamplesToDo, \
+ ALsizei numchans) \
+{ \
+ ALsizei i, j; \
+ \
+ ASSUME(numchans > 0); \
+ ASSUME(SamplesToDo > 0); \
+ \
+ for(j = 0;j < numchans;j++) \
+ { \
+ const ALfloat *RESTRICT in = InBuffer[j]; \
+ T *RESTRICT out = (T*)OutBuffer + Offset*numchans + j; \
+ \
+ for(i = 0;i < SamplesToDo;i++) \
+ out[i*numchans] = Conv_##T(in[i]); \
+ } \
+}
+
+DECL_TEMPLATE(ALfloat, F32)
+DECL_TEMPLATE(ALuint, UI32)
+DECL_TEMPLATE(ALint, I32)
+DECL_TEMPLATE(ALushort, UI16)
+DECL_TEMPLATE(ALshort, I16)
+DECL_TEMPLATE(ALubyte, UI8)
+DECL_TEMPLATE(ALbyte, I8)
+
+#undef DECL_TEMPLATE
+
+
+void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples)
+{
+ ALsizei SamplesToDo;
+ ALsizei SamplesDone;
+ ALCcontext *ctx;
+ ALsizei i, c;
+
+ START_MIXER_MODE();
+ for(SamplesDone = 0;SamplesDone < NumSamples;)
+ {
+ SamplesToDo = mini(NumSamples-SamplesDone, BUFFERSIZE);
+ for(c = 0;c < device->Dry.NumChannels;c++)
+ memset(device->Dry.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
+ if(device->Dry.Buffer != device->FOAOut.Buffer)
+ for(c = 0;c < device->FOAOut.NumChannels;c++)
+ memset(device->FOAOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
+ if(device->Dry.Buffer != device->RealOut.Buffer)
+ for(c = 0;c < device->RealOut.NumChannels;c++)
+ memset(device->RealOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
+
+ IncrementRef(&device->MixCount);
+
+ ctx = ATOMIC_LOAD(&device->ContextList, almemory_order_acquire);
+ while(ctx)
+ {
+ const struct ALeffectslotArray *auxslots;
+
+ auxslots = ATOMIC_LOAD(&ctx->ActiveAuxSlots, almemory_order_acquire);
+ ProcessParamUpdates(ctx, auxslots);
+
+ for(i = 0;i < auxslots->count;i++)
+ {
+ ALeffectslot *slot = auxslots->slot[i];
+ for(c = 0;c < slot->NumChannels;c++)
+ memset(slot->WetBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
+ }
+
+ /* source processing */
+ for(i = 0;i < ctx->VoiceCount;i++)
+ {
+ ALvoice *voice = ctx->Voices[i];
+ ALsource *source = ATOMIC_LOAD(&voice->Source, almemory_order_acquire);
+ if(source && ATOMIC_LOAD(&voice->Playing, almemory_order_relaxed) &&
+ voice->Step > 0)
+ {
+ if(!MixSource(voice, source->id, ctx, SamplesToDo))
+ {
+ ATOMIC_STORE(&voice->Source, static_cast<ALsource*>(nullptr),
+ almemory_order_relaxed);
+ ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
+ SendSourceStoppedEvent(ctx, source->id);
+ }
+ }
+ }
+
+ /* effect slot processing */
+ for(i = 0;i < auxslots->count;i++)
+ {
+ const ALeffectslot *slot = auxslots->slot[i];
+ ALeffectState *state = slot->Params.EffectState;
+ V(state,process)(SamplesToDo, slot->WetBuffer, state->OutBuffer,
+ state->OutChannels);
+ }
+
+ ctx = ATOMIC_LOAD(&ctx->next, almemory_order_relaxed);
+ }
+
+ /* Increment the clock time. Every second's worth of samples is
+ * converted and added to clock base so that large sample counts don't
+ * overflow during conversion. This also guarantees an exact, stable
+ * conversion. */
+ device->SamplesDone += SamplesToDo;
+ device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
+ device->SamplesDone %= device->Frequency;
+ IncrementRef(&device->MixCount);
+
+ /* Apply post-process for finalizing the Dry mix to the RealOut
+ * (Ambisonic decode, UHJ encode, etc).
+ */
+ if(LIKELY(device->PostProcess))
+ device->PostProcess(device, SamplesToDo);
+
+ if(device->Stablizer)
+ {
+ int lidx = GetChannelIdxByName(&device->RealOut, FrontLeft);
+ int ridx = GetChannelIdxByName(&device->RealOut, FrontRight);
+ int cidx = GetChannelIdxByName(&device->RealOut, FrontCenter);
+ assert(lidx >= 0 && ridx >= 0 && cidx >= 0);
+
+ ApplyStablizer(device->Stablizer, device->RealOut.Buffer, lidx, ridx, cidx,
+ SamplesToDo, device->RealOut.NumChannels);
+ }
+
+ ApplyDistanceComp(device->RealOut.Buffer, device->ChannelDelay, device->TempBuffer[0],
+ SamplesToDo, device->RealOut.NumChannels);
+
+ if(device->Limiter)
+ ApplyCompression(device->Limiter, SamplesToDo, device->RealOut.Buffer);
+
+ if(device->DitherDepth > 0.0f)
+ ApplyDither(device->RealOut.Buffer, &device->DitherSeed, device->DitherDepth,
+ SamplesToDo, device->RealOut.NumChannels);
+
+ if(LIKELY(OutBuffer))
+ {
+ ALfloat (*Buffer)[BUFFERSIZE] = device->RealOut.Buffer;
+ ALsizei Channels = device->RealOut.NumChannels;
+
+ switch(device->FmtType)
+ {
+#define HANDLE_WRITE(T, S) case T: \
+ Write##S(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
+ HANDLE_WRITE(DevFmtByte, I8)
+ HANDLE_WRITE(DevFmtUByte, UI8)
+ HANDLE_WRITE(DevFmtShort, I16)
+ HANDLE_WRITE(DevFmtUShort, UI16)
+ HANDLE_WRITE(DevFmtInt, I32)
+ HANDLE_WRITE(DevFmtUInt, UI32)
+ HANDLE_WRITE(DevFmtFloat, F32)
+#undef HANDLE_WRITE
+ }
+ }
+
+ SamplesDone += SamplesToDo;
+ }
+ END_MIXER_MODE();
+}
+
+
+void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
+{
+ AsyncEvent evt = ASYNC_EVENT(EventType_Disconnected);
+ ALCcontext *ctx;
+ va_list args;
+ int msglen;
+
+ if(!ATOMIC_EXCHANGE(&device->Connected, AL_FALSE, almemory_order_acq_rel))
+ return;
+
+ evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
+ evt.u.user.id = 0;
+ evt.u.user.param = 0;
+
+ va_start(args, msg);
+ msglen = vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args);
+ va_end(args);
+
+ if(msglen < 0 || (size_t)msglen >= sizeof(evt.u.user.msg))
+ evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
+
+ ctx = ATOMIC_LOAD_SEQ(&device->ContextList);
+ while(ctx)
+ {
+ ALbitfieldSOFT enabledevt = ATOMIC_LOAD(&ctx->EnabledEvts, almemory_order_acquire);
+ ALsizei i;
+
+ if((enabledevt&EventType_Disconnected) &&
+ ll_ringbuffer_write(ctx->AsyncEvents, (const char*)&evt, 1) == 1)
+ alsem_post(&ctx->EventSem);
+
+ for(i = 0;i < ctx->VoiceCount;i++)
+ {
+ ALvoice *voice = ctx->Voices[i];
+ ALsource *source;
+
+ source = static_cast<ALsource*>(ATOMIC_EXCHANGE_PTR(&voice->Source,
+ static_cast<ALsource*>(nullptr), almemory_order_relaxed));
+ if(source && ATOMIC_LOAD(&voice->Playing, almemory_order_relaxed))
+ {
+ /* If the source's voice was playing, it's now effectively
+ * stopped (the source state will be updated the next time it's
+ * checked).
+ */
+ SendSourceStoppedEvent(ctx, source->id);
+ }
+ ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
+ }
+
+ ctx = ATOMIC_LOAD(&ctx->next, almemory_order_relaxed);
+ }
+}