/************************************************************************************ Filename : OVR_SensorCalibration.cpp Content : Calibration data implementation for the IMU messages Created : January 28, 2014 Authors : Max Katsev Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.1 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *************************************************************************************/ #include "OVR_SensorCalibration.h" #include "Kernel/OVR_Log.h" #include "Kernel/OVR_Threads.h" #include namespace OVR { using namespace Alg; const UByte VERSION = 2; const UByte MAX_COMPAT_VERSION = 15; SensorCalibration::SensorCalibration(SensorDevice* pSensor) : MagCalibrated(false), GyroFilter(6000), GyroAutoTemperature(0) { this->pSensor = pSensor; }; void SensorCalibration::Initialize() { // read factory calibration pSensor->GetFactoryCalibration(&AccelOffset, &GyroAutoOffset, &AccelMatrix, &GyroMatrix, &GyroAutoTemperature); // if the headset has an autocalibrated offset, prefer it over the factory defaults GyroOffsetReport gyroReport; bool result = pSensor->GetGyroOffsetReport(&gyroReport); if (result && gyroReport.Version != GyroOffsetReport::Version_NoOffset) { GyroAutoOffset = (Vector3f) gyroReport.Offset; GyroAutoTemperature = (float) gyroReport.Temperature; } // read the temperature tables and prepare the interpolation structures result = pSensor->GetAllTemperatureReports(&TemperatureReports); OVR_ASSERT(result); for (int i = 0; i < 3; i++) Interpolators[i].Initialize(TemperatureReports, i); // read the mag calibration MagCalibrationReport report; result = pSensor->GetMagCalibrationReport(&report); MagCalibrated = result && report.Version > 0; MagMatrix = report.Calibration; if (!MagCalibrated) { // OVR_ASSERT(false); LogError("Magnetometer calibration not found!\n"); } } void SensorCalibration::DebugPrintLocalTemperatureTable() { LogText("TemperatureReports:\n"); for (int i = 0; i < (int)TemperatureReports.GetSize(); i++) { for (int j = 0; j < (int)TemperatureReports[i].GetSize(); j++) { TemperatureReport& tr = TemperatureReports[i][j]; LogText("[%d][%d]: Version=%3d, Bin=%d/%d, " "Sample=%d/%d, TargetTemp=%3.1lf, " "ActualTemp=%4.1lf, " "Offset=(%7.2lf, %7.2lf, %7.2lf), " "Time=%d\n", i, j, tr.Version, tr.Bin, tr.NumBins, tr.Sample, tr.NumSamples, tr.TargetTemperature, tr.ActualTemperature, tr.Offset.x, tr.Offset.y, tr.Offset.z, tr.Time); } } } void SensorCalibration::DebugClearHeadsetTemperatureReports() { OVR_ASSERT(pSensor != NULL); bool result; Array > temperatureReports; pSensor->GetAllTemperatureReports(&temperatureReports); OVR_ASSERT(temperatureReports.GetSize() > 0); OVR_ASSERT(temperatureReports[0].GetSize() > 0); TemperatureReport& tr = TemperatureReports[0][0]; tr.ActualTemperature = 0.0; tr.Time = 0; tr.Version = 0; tr.Offset.x = tr.Offset.y = tr.Offset.z = 0.0; for (UByte i = 0; i < tr.NumBins; i++) { tr.Bin = i; for (UByte j = 0; j < tr.NumSamples; j++) { tr.Sample = j; result = pSensor->SetTemperatureReport(tr); OVR_ASSERT(result); // Need to wait for the tracker board to finish writing to eeprom. Thread::MSleep(50); } } } void SensorCalibration::Apply(MessageBodyFrame& msg) { AutocalibrateGyro(msg); // compute the interpolated offset Vector3f gyroOffset; for (int i = 0; i < 3; i++) gyroOffset[i] = (float) Interpolators[i].GetOffset(msg.Temperature, GyroAutoTemperature, GyroAutoOffset[i]); // apply calibration msg.RotationRate = GyroMatrix.Transform(msg.RotationRate - gyroOffset); msg.Acceleration = AccelMatrix.Transform(msg.Acceleration - AccelOffset); if (MagCalibrated) msg.MagneticField = MagMatrix.Transform(msg.MagneticField); } void SensorCalibration::AutocalibrateGyro(MessageBodyFrame const& msg) { const float alpha = 0.4f; // 1.25f is a scaling factor related to conversion from per-axis comparison to length comparison const float absLimit = 1.25f * 0.349066f; const float noiseLimit = 1.25f * 0.03f; Vector3f gyro = msg.RotationRate; // do a moving average to reject short term noise Vector3f avg = (GyroFilter.IsEmpty()) ? gyro : gyro * alpha + GyroFilter.PeekBack() * (1 - alpha); // Make sure the absolute value is below what is likely motion // Make sure it is close enough to the current average that it is probably noise and not motion if (avg.Length() >= absLimit || (avg - GyroFilter.Mean()).Length() >= noiseLimit) GyroFilter.Clear(); GyroFilter.PushBack(avg); // if had a reasonable number of samples already use it for the current offset if (GyroFilter.GetSize() > GyroFilter.GetCapacity() / 2) { GyroAutoOffset = GyroFilter.Mean(); GyroAutoTemperature = msg.Temperature; // After ~6 seconds of no motion, use the average as the new zero rate offset if (GyroFilter.IsFull()) StoreAutoOffset(); } } void SensorCalibration::StoreAutoOffset() { const double maxDeltaT = 2.5; const double minExtraDeltaT = 0.5; const UInt32 minDelay = 24 * 3600; // 1 day in seconds // find the best bin UPInt binIdx = 0; for (UPInt i = 1; i < TemperatureReports.GetSize(); i++) if (Abs(GyroAutoTemperature - TemperatureReports[i][0].TargetTemperature) < Abs(GyroAutoTemperature - TemperatureReports[binIdx][0].TargetTemperature)) binIdx = i; // find the oldest and newest samples // NB: uninitialized samples have Time == 0, so they will get picked as the oldest UPInt newestIdx = 0, oldestIdx = 0; for (UPInt i = 1; i < TemperatureReports[binIdx].GetSize(); i++) { // if the version is newer - do nothing if (TemperatureReports[binIdx][i].Version > VERSION) return; if (TemperatureReports[binIdx][i].Time > TemperatureReports[binIdx][newestIdx].Time) newestIdx = i; if (TemperatureReports[binIdx][i].Time < TemperatureReports[binIdx][oldestIdx].Time) oldestIdx = i; } TemperatureReport& oldestReport = TemperatureReports[binIdx][oldestIdx]; TemperatureReport& newestReport = TemperatureReports[binIdx][newestIdx]; OVR_ASSERT((oldestReport.Sample == 0 && newestReport.Sample == 0 && newestReport.Version == 0) || oldestReport.Sample == (newestReport.Sample + 1) % newestReport.NumSamples); bool writeSuccess = false; UInt32 now = (UInt32) time(0); if (now - newestReport.Time > minDelay) { // only write a new sample if the temperature is close enough if (Abs(GyroAutoTemperature - oldestReport.TargetTemperature) < maxDeltaT) { oldestReport.Time = now; oldestReport.ActualTemperature = GyroAutoTemperature; oldestReport.Offset = (Vector3d) GyroAutoOffset; oldestReport.Version = VERSION; writeSuccess = pSensor->SetTemperatureReport(oldestReport); OVR_ASSERT(writeSuccess); } } else { // if the newest sample is too recent - _update_ it if significantly closer to the target temp if (Abs(GyroAutoTemperature - newestReport.TargetTemperature) + minExtraDeltaT < Abs(newestReport.ActualTemperature - newestReport.TargetTemperature)) { // (do not update the time!) newestReport.ActualTemperature = GyroAutoTemperature; newestReport.Offset = (Vector3d) GyroAutoOffset; newestReport.Version = VERSION; writeSuccess = pSensor->SetTemperatureReport(newestReport); OVR_ASSERT(writeSuccess); } } // update the interpolators with the new data // this is not particularly expensive call and would only happen rarely // but if performance is a problem, it's possible to only recompute the data that has changed if (writeSuccess) for (int i = 0; i < 3; i++) Interpolators[i].Initialize(TemperatureReports, i); } const TemperatureReport& median(const Array& temperatureReportsBin, int coord) { Array values; values.Reserve(temperatureReportsBin.GetSize()); for (unsigned i = 0; i < temperatureReportsBin.GetSize(); i++) if (temperatureReportsBin[i].ActualTemperature != 0) values.PushBack(temperatureReportsBin[i].Offset[coord]); if (values.GetSize() > 0) { double med = Median(values); // this is kind of a hack for (unsigned i = 0; i < temperatureReportsBin.GetSize(); i++) if (temperatureReportsBin[i].Offset[coord] == med) return temperatureReportsBin[i]; // if we haven't found the median in the original array, something is wrong OVR_DEBUG_BREAK; } return temperatureReportsBin[0]; } void OffsetInterpolator::Initialize(Array > const& temperatureReports, int coord) { int bins = (int) temperatureReports.GetSize(); Temperatures.Clear(); Temperatures.Reserve(bins); Values.Clear(); Values.Reserve(bins); for (int bin = 0; bin < bins; bin++) { OVR_ASSERT(temperatureReports[bin].GetSize() == temperatureReports[0].GetSize()); const TemperatureReport& report = median(temperatureReports[bin], coord); if (report.Version > 0 && report.Version <= MAX_COMPAT_VERSION) { Temperatures.PushBack(report.ActualTemperature); Values.PushBack(report.Offset[coord]); } } } double OffsetInterpolator::GetOffset(double targetTemperature, double autoTemperature, double autoValue) { const double autoRangeExtra = 1.0; const double minInterpolationDist = 0.5; // difference between current and autocalibrated temperature adjusted for preference over historical data const double adjustedDeltaT = Abs(autoTemperature - targetTemperature) - autoRangeExtra; int count = (int) Temperatures.GetSize(); // handle special cases when we don't have enough data for proper interpolation if (count == 0) return autoValue; if (count == 1) { if (adjustedDeltaT < Abs(Temperatures[0] - targetTemperature)) return autoValue; else return Values[0]; } // first, find the interval that contains targetTemperature // if all points are on the same side of targetTemperature, find the adjacent interval int l; if (targetTemperature < Temperatures[1]) l = 0; else if (targetTemperature >= Temperatures[count - 2]) l = count - 2; else for (l = 1; l < count - 2; l++) if (Temperatures[l] <= targetTemperature && targetTemperature < Temperatures[l+1]) break; int u = l + 1; // extend the interval if it's too small and the interpolation is unreliable if (Temperatures[u] - Temperatures[l] < minInterpolationDist) { if (l > 0 && (u == count - 1 || Temperatures[u] - Temperatures[l - 1] < Temperatures[u + 1] - Temperatures[l])) l--; else if (u < count - 1) u++; } // verify correctness OVR_ASSERT(l >= 0 && u < count); OVR_ASSERT(l == 0 || Temperatures[l] <= targetTemperature); OVR_ASSERT(u == count - 1 || targetTemperature < Temperatures[u]); OVR_ASSERT((l == 0 && u == count - 1) || Temperatures[u] - Temperatures[l] > minInterpolationDist); OVR_ASSERT(Temperatures[l] <= Temperatures[u]); // perform the interpolation double slope; if (Temperatures[u] - Temperatures[l] >= minInterpolationDist) slope = (Values[u] - Values[l]) / (Temperatures[u] - Temperatures[l]); else // avoid a badly conditioned problem slope = 0; if (adjustedDeltaT < Abs(Temperatures[u] - targetTemperature)) // use the autocalibrated value, if it's close return autoValue + slope * (targetTemperature - autoTemperature); else return Values[u] + slope * (targetTemperature - Temperatures[u]); } } // namespace OVR