/************************************************************************************ PublicHeader: None Filename : OVR_Hash.h Content : Template hash-table/set implementation Created : September 19, 2012 Notes : Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.1 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #ifndef OVR_Hash_h #define OVR_Hash_h #include "OVR_ContainerAllocator.h" #include "OVR_Alg.h" // 'new' operator is redefined/used in this file. #undef new namespace OVR { //----------------------------------------------------------------------------------- // ***** Hash Table Implementation // HastSet and Hash. // // Hash table, linear probing, internal chaining. One interesting/nice thing // about this implementation is that the table itself is a flat chunk of memory // containing no pointers, only relative indices. If the key and value types // of the Hash contain no pointers, then the Hash can be serialized using raw IO. // // Never shrinks, unless you explicitly Clear() it. Expands on // demand, though. For best results, if you know roughly how big your // table will be, default it to that size when you create it. // // Key usability feature: // // 1. Allows node hash values to either be cached or not. // // 2. Allows for alternative keys with methods such as GetAlt(). Handy // if you need to search nodes by their components; no need to create // temporary nodes. // // *** Hash functors: // // IdentityHash - use when the key is already a good hash // HFixedSizeHash - general hash based on object's in-memory representation. // Hash is just the input value; can use this for integer-indexed hash tables. template class IdentityHash { public: size_t operator()(const C& data) const { return (size_t) data; } }; // Computes a hash of an object's representation. template class FixedSizeHash { public: // Alternative: "sdbm" hash function, suggested at same web page // above, http::/www.cs.yorku.ca/~oz/hash.html // This is somewhat slower then Bernstein, but it works way better than the above // hash function for hashing large numbers of 32-bit ints. static OVR_FORCE_INLINE size_t SDBM_Hash(const void* data_in, size_t size, size_t seed = 5381) { const uint8_t* data = (const uint8_t*) data_in; size_t h = seed; while (size > 0) { size--; h = (h << 16) + (h << 6) - h + (size_t)data[size]; } return h; } size_t operator()(const C& data) const { unsigned char* p = (unsigned char*) &data; int size = sizeof(C); return SDBM_Hash(p, size); } }; // *** HashsetEntry Entry types. // Compact hash table Entry type that re-computes hash keys during hash traversal. // Good to use if the hash function is cheap or the hash value is already cached in C. template class HashsetEntry { public: // Internal chaining for collisions. intptr_t NextInChain; C Value; HashsetEntry() : NextInChain(-2) { } HashsetEntry(const HashsetEntry& e) : NextInChain(e.NextInChain), Value(e.Value) { } HashsetEntry(const C& key, intptr_t next) : NextInChain(next), Value(key) { } bool IsEmpty() const { return NextInChain == -2; } bool IsEndOfChain() const { return NextInChain == -1; } // Cached hash value access - can be optimized bu storing hash locally. // Mask value only needs to be used if SetCachedHash is not implemented. size_t GetCachedHash(size_t maskValue) const { return HashF()(Value) & maskValue; } void SetCachedHash(size_t) {} void Clear() { Value.~C(); // placement delete NextInChain = -2; } // Free is only used from dtor of hash; Clear is used during regular operations: // assignment, hash reallocations, value reassignments, so on. void Free() { Clear(); } }; // Hash table Entry type that caches the Entry hash value for nodes, so that it // does not need to be re-computed during access. template class HashsetCachedEntry { public: // Internal chaining for collisions. intptr_t NextInChain; size_t HashValue; C Value; HashsetCachedEntry() : NextInChain(-2) { } HashsetCachedEntry(const HashsetCachedEntry& e) : NextInChain(e.NextInChain), HashValue(e.HashValue), Value(e.Value) { } HashsetCachedEntry(const C& key, intptr_t next) : NextInChain(next), Value(key) { } bool IsEmpty() const { return NextInChain == -2; } bool IsEndOfChain() const { return NextInChain == -1; } // Cached hash value access - can be optimized bu storing hash locally. // Mask value only needs to be used if SetCachedHash is not implemented. size_t GetCachedHash(size_t maskValue) const { OVR_UNUSED(maskValue); return HashValue; } void SetCachedHash(size_t hashValue) { HashValue = hashValue; } void Clear() { Value.~C(); NextInChain = -2; } // Free is only used from dtor of hash; Clear is used during regular operations: // assignment, hash reallocations, value reassignments, so on. void Free() { Clear(); } }; //----------------------------------------------------------------------------------- // *** HashSet implementation - relies on either cached or regular entries. // // Use: Entry = HashsetCachedEntry if hashes are expensive to // compute and thus need caching in entries. // Entry = HashsetEntry if hashes are already externally cached. // template, class AltHashF = HashF, class Allocator = ContainerAllocator, class Entry = HashsetCachedEntry > class HashSetBase { enum { HashMinSize = 8 }; public: OVR_MEMORY_REDEFINE_NEW(HashSetBase) typedef HashSetBase SelfType; HashSetBase() : pTable(NULL) { } HashSetBase(int sizeHint) : pTable(NULL) { SetCapacity(this, sizeHint); } HashSetBase(const SelfType& src) : pTable(NULL) { Assign(this, src); } ~HashSetBase() { if (pTable) { // Delete the entries. for (size_t i = 0, n = pTable->SizeMask; i <= n; i++) { Entry* e = &E(i); if (!e->IsEmpty()) e->Free(); } Allocator::Free(pTable); pTable = NULL; } } void Assign(const SelfType& src) { Clear(); if (src.IsEmpty() == false) { SetCapacity(src.GetSize()); for (ConstIterator it = src.Begin(); it != src.End(); ++it) { Add(*it); } } } // Remove all entries from the HashSet table. void Clear() { if (pTable) { // Delete the entries. for (size_t i = 0, n = pTable->SizeMask; i <= n; i++) { Entry* e = &E(i); if (!e->IsEmpty()) e->Clear(); } Allocator::Free(pTable); pTable = NULL; } } // Returns true if the HashSet is empty. bool IsEmpty() const { return pTable == NULL || pTable->EntryCount == 0; } // Set a new or existing value under the key, to the value. // Pass a different class of 'key' so that assignment reference object // can be passed instead of the actual object. template void Set(const CRef& key) { size_t hashValue = HashF()(key); intptr_t index = (intptr_t)-1; if (pTable != NULL) index = findIndexCore(key, hashValue & pTable->SizeMask); if (index >= 0) { E(index).Value = key; } else { // Entry under key doesn't exist. add(key, hashValue); } } template inline void Add(const CRef& key) { size_t hashValue = HashF()(key); add(key, hashValue); } // Remove by alternative key. template void RemoveAlt(const K& key) { if (pTable == NULL) return; size_t hashValue = AltHashF()(key); intptr_t index = hashValue & pTable->SizeMask; Entry* e = &E(index); // If empty node or occupied by collider, we have nothing to remove. if (e->IsEmpty() || (e->GetCachedHash(pTable->SizeMask) != (size_t)index)) return; // Save index intptr_t naturalIndex = index; intptr_t prevIndex = -1; while ((e->GetCachedHash(pTable->SizeMask) != (size_t)naturalIndex) || !(e->Value == key)) { // Keep looking through the chain. prevIndex = index; index = e->NextInChain; if (index == -1) return; // End of chain, item not found e = &E(index); } // Found it - our item is at index if (naturalIndex == index) { // If we have a follower, move it to us if (!e->IsEndOfChain()) { Entry* enext = &E(e->NextInChain); e->Clear(); new (e) Entry(*enext); // Point us to the follower's cell that will be cleared e = enext; } } else { // We are not at natural index, so deal with the prev items next index E(prevIndex).NextInChain = e->NextInChain; } // Clear us, of the follower cell that was moved. e->Clear(); pTable->EntryCount --; // Should we check the size to condense hash? ... } // Remove by main key. template void Remove(const CRef& key) { RemoveAlt(key); } // Retrieve the pointer to a value under the given key. // - If there's no value under the key, then return NULL. // - If there is a value, return the pointer. template C* Get(const K& key) { intptr_t index = findIndex(key); if (index >= 0) return &E(index).Value; return 0; } template const C* Get(const K& key) const { intptr_t index = findIndex(key); if (index >= 0) return &E(index).Value; return 0; } // Alternative key versions of Get. Used by Hash. template const C* GetAlt(const K& key) const { intptr_t index = findIndexAlt(key); if (index >= 0) return &E(index).Value; return 0; } template C* GetAlt(const K& key) { intptr_t index = findIndexAlt(key); if (index >= 0) return &E(index).Value; return 0; } template bool GetAlt(const K& key, C* pval) const { intptr_t index = findIndexAlt(key); if (index >= 0) { if (pval) *pval = E(index).Value; return true; } return false; } size_t GetSize() const { return pTable == NULL ? 0 : (size_t)pTable->EntryCount; } int GetSizeI() const { return (int)GetSize(); } // Resize the HashSet table to fit one more Entry. Often this // doesn't involve any action. void CheckExpand() { if (pTable == NULL) { // Initial creation of table. Make a minimum-sized table. setRawCapacity(HashMinSize); } else if (pTable->EntryCount * 5 > (pTable->SizeMask + 1) * 4) { // pTable is more than 5/4 ths full. Expand. setRawCapacity((pTable->SizeMask + 1) * 2); } } // Hint the bucket count to >= n. void Resize(size_t n) { // Not really sure what this means in relation to // STLport's hash_map... they say they "increase the // bucket count to at least n" -- but does that mean // their real capacity after Resize(n) is more like // n*2 (since they do linked-list chaining within // buckets?). SetCapacity(n); } // Size the HashSet so that it can comfortably contain the given // number of elements. If the HashSet already contains more // elements than newSize, then this may be a no-op. void SetCapacity(size_t newSize) { size_t newRawSize = (newSize * 5) / 4; if (newRawSize <= GetSize()) return; setRawCapacity(newRawSize); } // Disable inappropriate 'operator ->' warning on MSVC6. #ifdef OVR_CC_MSVC #if (OVR_CC_MSVC < 1300) # pragma warning(disable : 4284) #endif #endif // Iterator API, like STL. struct ConstIterator { const C& operator * () const { OVR_ASSERT(Index >= 0 && Index <= (intptr_t)pHash->pTable->SizeMask); return pHash->E(Index).Value; } const C* operator -> () const { OVR_ASSERT(Index >= 0 && Index <= (intptr_t)pHash->pTable->SizeMask); return &pHash->E(Index).Value; } void operator ++ () { // Find next non-empty Entry. if (Index <= (intptr_t)pHash->pTable->SizeMask) { Index++; while ((size_t)Index <= pHash->pTable->SizeMask && pHash->E(Index).IsEmpty()) { Index++; } } } bool operator == (const ConstIterator& it) const { if (IsEnd() && it.IsEnd()) { return true; } else { return (pHash == it.pHash) && (Index == it.Index); } } bool operator != (const ConstIterator& it) const { return ! (*this == it); } bool IsEnd() const { return (pHash == NULL) || (pHash->pTable == NULL) || (Index > (intptr_t)pHash->pTable->SizeMask); } ConstIterator() : pHash(NULL), Index(0) { } public: // Constructor was intentionally made public to allow create // iterator with arbitrary index. ConstIterator(const SelfType* h, intptr_t index) : pHash(h), Index(index) { } const SelfType* GetContainer() const { return pHash; } intptr_t GetIndex() const { return Index; } protected: friend class HashSetBase; const SelfType* pHash; intptr_t Index; }; friend struct ConstIterator; // Non-const Iterator; Get most of it from ConstIterator. struct Iterator : public ConstIterator { // Allow non-const access to entries. C& operator*() const { OVR_ASSERT(ConstIterator::Index >= 0 && ConstIterator::Index <= (intptr_t)ConstIterator::pHash->pTable->SizeMask); return const_cast(ConstIterator::pHash)->E(ConstIterator::Index).Value; } C* operator->() const { return &(operator*()); } Iterator() : ConstIterator(NULL, 0) { } // Removes current element from Hash void Remove() { RemoveAlt(operator*()); } template void RemoveAlt(const K& key) { SelfType* phash = const_cast(ConstIterator::pHash); //Entry* ee = &phash->E(ConstIterator::Index); //const C& key = ee->Value; size_t hashValue = AltHashF()(key); intptr_t index = hashValue & phash->pTable->SizeMask; Entry* e = &phash->E(index); // If empty node or occupied by collider, we have nothing to remove. if (e->IsEmpty() || (e->GetCachedHash(phash->pTable->SizeMask) != (size_t)index)) return; // Save index intptr_t naturalIndex = index; intptr_t prevIndex = -1; while ((e->GetCachedHash(phash->pTable->SizeMask) != (size_t)naturalIndex) || !(e->Value == key)) { // Keep looking through the chain. prevIndex = index; index = e->NextInChain; if (index == -1) return; // End of chain, item not found e = &phash->E(index); } if (index == (intptr_t)ConstIterator::Index) { // Found it - our item is at index if (naturalIndex == index) { // If we have a follower, move it to us if (!e->IsEndOfChain()) { Entry* enext = &phash->E(e->NextInChain); e->Clear(); new (e) Entry(*enext); // Point us to the follower's cell that will be cleared e = enext; --ConstIterator::Index; } } else { // We are not at natural index, so deal with the prev items next index phash->E(prevIndex).NextInChain = e->NextInChain; } // Clear us, of the follower cell that was moved. e->Clear(); phash->pTable->EntryCount --; } else OVR_ASSERT(0); //? } private: friend class HashSetBase; Iterator(SelfType* h, intptr_t i0) : ConstIterator(h, i0) { } }; friend struct Iterator; Iterator Begin() { if (pTable == 0) return Iterator(NULL, 0); // Scan till we hit the First valid Entry. size_t i0 = 0; while (i0 <= pTable->SizeMask && E(i0).IsEmpty()) { i0++; } return Iterator(this, i0); } Iterator End() { return Iterator(NULL, 0); } ConstIterator Begin() const { return const_cast(this)->Begin(); } ConstIterator End() const { return const_cast(this)->End(); } template Iterator Find(const K& key) { intptr_t index = findIndex(key); if (index >= 0) return Iterator(this, index); return Iterator(NULL, 0); } template Iterator FindAlt(const K& key) { intptr_t index = findIndexAlt(key); if (index >= 0) return Iterator(this, index); return Iterator(NULL, 0); } template ConstIterator Find(const K& key) const { return const_cast(this)->Find(key); } template ConstIterator FindAlt(const K& key) const { return const_cast(this)->FindAlt(key); } private: // Find the index of the matching Entry. If no match, then return -1. template intptr_t findIndex(const K& key) const { if (pTable == NULL) return -1; size_t hashValue = HashF()(key) & pTable->SizeMask; return findIndexCore(key, hashValue); } template intptr_t findIndexAlt(const K& key) const { if (pTable == NULL) return -1; size_t hashValue = AltHashF()(key) & pTable->SizeMask; return findIndexCore(key, hashValue); } // Find the index of the matching Entry. If no match, then return -1. template intptr_t findIndexCore(const K& key, size_t hashValue) const { // Table must exist. OVR_ASSERT(pTable != 0); // Hash key must be 'and-ed' by the caller. OVR_ASSERT((hashValue & ~pTable->SizeMask) == 0); size_t index = hashValue; const Entry* e = &E(index); // If empty or occupied by a collider, not found. if (e->IsEmpty() || (e->GetCachedHash(pTable->SizeMask) != index)) return -1; while(1) { OVR_ASSERT(e->GetCachedHash(pTable->SizeMask) == hashValue); if (e->GetCachedHash(pTable->SizeMask) == hashValue && e->Value == key) { // Found it. return index; } // Values can not be equal at this point. // That would mean that the hash key for the same value differs. OVR_ASSERT(!(e->Value == key)); // Keep looking through the chain. index = e->NextInChain; if (index == (size_t)-1) break; // end of chain e = &E(index); OVR_ASSERT(!e->IsEmpty()); } return -1; } // Add a new value to the HashSet table, under the specified key. template void add(const CRef& key, size_t hashValue) { CheckExpand(); hashValue &= pTable->SizeMask; pTable->EntryCount++; intptr_t index = hashValue; Entry* naturalEntry = &(E(index)); if (naturalEntry->IsEmpty()) { // Put the new Entry in. new (naturalEntry) Entry(key, -1); } else { // Find a blank spot. intptr_t blankIndex = index; do { blankIndex = (blankIndex + 1) & pTable->SizeMask; } while(!E(blankIndex).IsEmpty()); Entry* blankEntry = &E(blankIndex); if (naturalEntry->GetCachedHash(pTable->SizeMask) == (size_t)index) { // Collision. Link into this chain. // Move existing list head. new (blankEntry) Entry(*naturalEntry); // placement new, copy ctor // Put the new info in the natural Entry. naturalEntry->Value = key; naturalEntry->NextInChain = blankIndex; } else { // Existing Entry does not naturally // belong in this slot. Existing // Entry must be moved. // Find natural location of collided element (i.e. root of chain) intptr_t collidedIndex = naturalEntry->GetCachedHash(pTable->SizeMask); OVR_ASSERT(collidedIndex >= 0 && collidedIndex <= (intptr_t)pTable->SizeMask); for (;;) { Entry* e = &E(collidedIndex); if (e->NextInChain == index) { // Here's where we need to splice. new (blankEntry) Entry(*naturalEntry); e->NextInChain = blankIndex; break; } collidedIndex = e->NextInChain; OVR_ASSERT(collidedIndex >= 0 && collidedIndex <= (intptr_t)pTable->SizeMask); } // Put the new data in the natural Entry. naturalEntry->Value = key; naturalEntry->NextInChain = -1; } } // Record hash value: has effect only if cached node is used. naturalEntry->SetCachedHash(hashValue); } // Index access helpers. Entry& E(size_t index) { // Must have pTable and access needs to be within bounds. OVR_ASSERT(index <= pTable->SizeMask); return *(((Entry*) (pTable + 1)) + index); } const Entry& E(size_t index) const { OVR_ASSERT(index <= pTable->SizeMask); return *(((Entry*) (pTable + 1)) + index); } // Resize the HashSet table to the given size (Rehash the // contents of the current table). The arg is the number of // HashSet table entries, not the number of elements we should // actually contain (which will be less than this). void setRawCapacity(size_t newSize) { if (newSize == 0) { // Special case. Clear(); return; } // Minimum size; don't incur rehashing cost when expanding // very small tables. Not that we perform this check before // 'log2f' call to avoid fp exception with newSize == 1. if (newSize < HashMinSize) newSize = HashMinSize; else { // Force newSize to be a power of two. int bits = Alg::UpperBit(newSize-1) + 1; // Chop( Log2f((float)(newSize-1)) + 1); OVR_ASSERT((size_t(1) << bits) >= newSize); newSize = size_t(1) << bits; } SelfType newHash; newHash.pTable = (TableType*) Allocator::Alloc( sizeof(TableType) + sizeof(Entry) * newSize); // Need to do something on alloc failure! OVR_ASSERT(newHash.pTable); newHash.pTable->EntryCount = 0; newHash.pTable->SizeMask = newSize - 1; size_t i, n; // Mark all entries as empty. for (i = 0; i < newSize; i++) newHash.E(i).NextInChain = -2; // Copy stuff to newHash if (pTable) { for (i = 0, n = pTable->SizeMask; i <= n; i++) { Entry* e = &E(i); if (e->IsEmpty() == false) { // Insert old Entry into new HashSet. newHash.Add(e->Value); // placement delete of old element e->Clear(); } } // Delete our old data buffer. Allocator::Free(pTable); } // Steal newHash's data. pTable = newHash.pTable; newHash.pTable = NULL; } struct TableType { size_t EntryCount; size_t SizeMask; // Entry array follows this structure // in memory. }; TableType* pTable; }; //----------------------------------------------------------------------------------- template, class AltHashF = HashF, class Allocator = ContainerAllocator, class Entry = HashsetCachedEntry > class HashSet : public HashSetBase { public: typedef HashSetBase BaseType; typedef HashSet SelfType; HashSet() { } HashSet(int sizeHint) : BaseType(sizeHint) { } HashSet(const SelfType& src) : BaseType(src) { } ~HashSet() { } void operator = (const SelfType& src) { BaseType::Assign(src); } // Set a new or existing value under the key, to the value. // Pass a different class of 'key' so that assignment reference object // can be passed instead of the actual object. template void Set(const CRef& key) { BaseType::Set(key); } template inline void Add(const CRef& key) { BaseType::Add(key); } // Hint the bucket count to >= n. void Resize(size_t n) { BaseType::SetCapacity(n); } // Size the HashSet so that it can comfortably contain the given // number of elements. If the HashSet already contains more // elements than newSize, then this may be a no-op. void SetCapacity(size_t newSize) { BaseType::SetCapacity(newSize); } }; // HashSet with uncached hash code; declared for convenience. template, class AltHashF = HashF, class Allocator = ContainerAllocator > class HashSetUncached : public HashSet > { public: typedef HashSetUncached SelfType; typedef HashSet > BaseType; // Delegated constructors. HashSetUncached() { } HashSetUncached(int sizeHint) : BaseType(sizeHint) { } HashSetUncached(const SelfType& src) : BaseType(src) { } ~HashSetUncached() { } void operator = (const SelfType& src) { BaseType::operator = (src); } }; //----------------------------------------------------------------------------------- // ***** Hash hash table implementation // Node for Hash - necessary so that Hash can delegate its implementation // to HashSet. template struct HashNode { typedef HashNode SelfType; typedef C FirstType; typedef U SecondType; C First; U Second; // NodeRef is used to allow passing of elements into HashSet // without using a temporary object. struct NodeRef { const C* pFirst; const U* pSecond; NodeRef(const C& f, const U& s) : pFirst(&f), pSecond(&s) { } NodeRef(const NodeRef& src) : pFirst(src.pFirst), pSecond(src.pSecond) { } // Enable computation of ghash_node_hashf. inline size_t GetHash() const { return HashF()(*pFirst); } // Necessary conversion to allow HashNode::operator == to work. operator const C& () const { return *pFirst; } }; // Note: No default constructor is necessary. HashNode(const HashNode& src) : First(src.First), Second(src.Second) { } HashNode(const NodeRef& src) : First(*src.pFirst), Second(*src.pSecond) { } void operator = (const NodeRef& src) { First = *src.pFirst; Second = *src.pSecond; } template bool operator == (const K& src) const { return (First == src); } template static size_t CalcHash(const K& data) { return HashF()(data); } inline size_t GetHash() const { return HashF()(First); } // Hash functors used with this node. A separate functor is used for alternative // key lookup so that it does not need to access the '.First' element. struct NodeHashF { template size_t operator()(const K& data) const { return data.GetHash(); } }; struct NodeAltHashF { template size_t operator()(const K& data) const { return HashNode::CalcHash(data); } }; }; // **** Extra hashset_entry types to allow NodeRef construction. // The big difference between the below types and the ones used in hash_set is that // these allow initializing the node with 'typename C::NodeRef& keyRef', which // is critical to avoid temporary node allocation on stack when using placement new. // Compact hash table Entry type that re-computes hash keys during hash traversal. // Good to use if the hash function is cheap or the hash value is already cached in C. template class HashsetNodeEntry { public: // Internal chaining for collisions. intptr_t NextInChain; C Value; HashsetNodeEntry() : NextInChain(-2) { } HashsetNodeEntry(const HashsetNodeEntry& e) : NextInChain(e.NextInChain), Value(e.Value) { } HashsetNodeEntry(const C& key, intptr_t next) : NextInChain(next), Value(key) { } HashsetNodeEntry(const typename C::NodeRef& keyRef, intptr_t next) : NextInChain(next), Value(keyRef) { } bool IsEmpty() const { return NextInChain == -2; } bool IsEndOfChain() const { return NextInChain == -1; } size_t GetCachedHash(size_t maskValue) const { return HashF()(Value) & maskValue; } void SetCachedHash(size_t hashValue) { OVR_UNUSED(hashValue); } void Clear() { Value.~C(); // placement delete NextInChain = -2; } // Free is only used from dtor of hash; Clear is used during regular operations: // assignment, hash reallocations, value reassignments, so on. void Free() { Clear(); } }; // Hash table Entry type that caches the Entry hash value for nodes, so that it // does not need to be re-computed during access. template class HashsetCachedNodeEntry { public: // Internal chaining for collisions. intptr_t NextInChain; size_t HashValue; C Value; HashsetCachedNodeEntry() : NextInChain(-2) { } HashsetCachedNodeEntry(const HashsetCachedNodeEntry& e) : NextInChain(e.NextInChain), HashValue(e.HashValue), Value(e.Value) { } HashsetCachedNodeEntry(const C& key, intptr_t next) : NextInChain(next), Value(key) { } HashsetCachedNodeEntry(const typename C::NodeRef& keyRef, intptr_t next) : NextInChain(next), Value(keyRef) { } bool IsEmpty() const { return NextInChain == -2; } bool IsEndOfChain() const { return NextInChain == -1; } size_t GetCachedHash(size_t maskValue) const { OVR_UNUSED(maskValue); return HashValue; } void SetCachedHash(size_t hashValue) { HashValue = hashValue; } void Clear() { Value.~C(); NextInChain = -2; } // Free is only used from dtor of hash; Clear is used during regular operations: // assignment, hash reallocations, value reassignments, so on. void Free() { Clear(); } }; //----------------------------------------------------------------------------------- template, class Allocator = ContainerAllocator, class HashNode = OVR::HashNode, class Entry = HashsetCachedNodeEntry, class Container = HashSet > class Hash { public: OVR_MEMORY_REDEFINE_NEW(Hash) // Types used for hash_set. typedef U ValueType; typedef Hash SelfType; // Actual hash table itself, implemented as hash_set. Container mHash; public: Hash() { } Hash(int sizeHint) : mHash(sizeHint) { } Hash(const SelfType& src) : mHash(src.mHash) { } ~Hash() { } void operator = (const SelfType& src) { mHash = src.mHash; } // Remove all entries from the Hash table. inline void Clear() { mHash.Clear(); } // Returns true if the Hash is empty. inline bool IsEmpty() const { return mHash.IsEmpty(); } // Access (set). inline void Set(const C& key, const U& value) { typename HashNode::NodeRef e(key, value); mHash.Set(e); } inline void Add(const C& key, const U& value) { typename HashNode::NodeRef e(key, value); mHash.Add(e); } // Removes an element by clearing its Entry. inline void Remove(const C& key) { mHash.RemoveAlt(key); } template inline void RemoveAlt(const K& key) { mHash.RemoveAlt(key); } // Retrieve the value under the given key. // - If there's no value under the key, then return false and leave *pvalue alone. // - If there is a value, return true, and Set *Pvalue to the Entry's value. // - If value == NULL, return true or false according to the presence of the key. bool Get(const C& key, U* pvalue) const { const HashNode* p = mHash.GetAlt(key); if (p) { if (pvalue) *pvalue = p->Second; return true; } return false; } template bool GetAlt(const K& key, U* pvalue) const { const HashNode* p = mHash.GetAlt(key); if (p) { if (pvalue) *pvalue = p->Second; return true; } return false; } // Retrieve the pointer to a value under the given key. // - If there's no value under the key, then return NULL. // - If there is a value, return the pointer. inline U* Get(const C& key) { HashNode* p = mHash.GetAlt(key); return p ? &p->Second : 0; } inline const U* Get(const C& key) const { const HashNode* p = mHash.GetAlt(key); return p ? &p->Second : 0; } template inline U* GetAlt(const K& key) { HashNode* p = mHash.GetAlt(key); return p ? &p->Second : 0; } template inline const U* GetAlt(const K& key) const { const HashNode* p = mHash.GetAlt(key); return p ? &p->Second : 0; } // Sizing methods - delegate to Hash. inline size_t GetSize() const { return mHash.GetSize(); } inline int GetSizeI() const { return (int)GetSize(); } inline void Resize(size_t n) { mHash.Resize(n); } inline void SetCapacity(size_t newSize) { mHash.SetCapacity(newSize); } // Iterator API, like STL. typedef typename Container::ConstIterator ConstIterator; typedef typename Container::Iterator Iterator; inline Iterator Begin() { return mHash.Begin(); } inline Iterator End() { return mHash.End(); } inline ConstIterator Begin() const { return mHash.Begin(); } inline ConstIterator End() const { return mHash.End(); } Iterator Find(const C& key) { return mHash.FindAlt(key); } ConstIterator Find(const C& key) const { return mHash.FindAlt(key); } template Iterator FindAlt(const K& key) { return mHash.FindAlt(key); } template ConstIterator FindAlt(const K& key) const { return mHash.FindAlt(key); } }; // Hash with uncached hash code; declared for convenience. template, class Allocator = ContainerAllocator > class HashUncached : public Hash, HashsetNodeEntry, typename HashNode::NodeHashF> > { public: typedef HashUncached SelfType; typedef Hash, HashsetNodeEntry, typename HashNode::NodeHashF> > BaseType; // Delegated constructors. HashUncached() { } HashUncached(int sizeHint) : BaseType(sizeHint) { } HashUncached(const SelfType& src) : BaseType(src) { } ~HashUncached() { } void operator = (const SelfType& src) { BaseType::operator = (src); } }; // And identity hash in which keys serve as hash value. Can be uncached, // since hash computation is assumed cheap. template, class HashF = IdentityHash > class HashIdentity : public HashUncached { public: typedef HashIdentity SelfType; typedef HashUncached BaseType; // Delegated constructors. HashIdentity() { } HashIdentity(int sizeHint) : BaseType(sizeHint) { } HashIdentity(const SelfType& src) : BaseType(src) { } ~HashIdentity() { } void operator = (const SelfType& src) { BaseType::operator = (src); } }; } // OVR #ifdef OVR_DEFINE_NEW #define new OVR_DEFINE_NEW #endif #endif