1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package javabullet.linearmath;
import javabullet.BulletGlobals;
import javabullet.BulletStack;
import javax.vecmath.Matrix3f;
import javax.vecmath.Quat4f;
import javax.vecmath.Vector3f;
/**
*
* @author jezek2
*/
public class TransformUtil {
public static final float SIMDSQRT12 = 0.7071067811865475244008443621048490f;
public static final float ANGULAR_MOTION_THRESHOLD = 0.5f*BulletGlobals.SIMD_HALF_PI;
public static float recipSqrt(float x) {
return 1f / (float)Math.sqrt(x); /* reciprocal square root */
}
public static void planeSpace1(Vector3f n, Vector3f p, Vector3f q) {
if (Math.abs(n.z) > SIMDSQRT12) {
// choose p in y-z plane
float a = n.y * n.y + n.z * n.z;
float k = recipSqrt(a);
p.set(0, -n.z * k, n.y * k);
// set q = n x p
q.set(a * k, -n.x * p.z, n.x * p.y);
}
else {
// choose p in x-y plane
float a = n.x * n.x + n.y * n.y;
float k = recipSqrt(a);
p.set(-n.y * k, n.x * k, 0);
// set q = n x p
q.set(-n.z * p.y, n.z * p.x, a * k);
}
}
public static void integrateTransform(Transform curTrans, Vector3f linvel, Vector3f angvel, float timeStep, Transform predictedTransform) {
BulletStack stack = BulletStack.get();
stack.vectors.push();
stack.quats.push();
try {
predictedTransform.origin.scaleAdd(timeStep, linvel, curTrans.origin);
// //#define QUATERNION_DERIVATIVE
// #ifdef QUATERNION_DERIVATIVE
// btQuaternion predictedOrn = curTrans.getRotation();
// predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
// predictedOrn.normalize();
// #else
// exponential map
Vector3f axis = stack.vectors.get();
float fAngle = angvel.length();
// limit the angular motion
if (fAngle * timeStep > ANGULAR_MOTION_THRESHOLD) {
fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
}
if (fAngle < 0.001f) {
// use Taylor's expansions of sync function
axis.scale(0.5f * timeStep - (timeStep * timeStep * timeStep) * (0.020833333333f) * fAngle * fAngle, angvel);
}
else {
// sync(fAngle) = sin(c*fAngle)/t
axis.scale((float) Math.sin(0.5f * fAngle * timeStep) / fAngle, angvel);
}
Quat4f dorn = stack.quats.get(axis.x, axis.y, axis.z, (float) Math.cos(fAngle * timeStep * 0.5f));
Quat4f orn0 = stack.quats.get(curTrans.getRotation());
Quat4f predictedOrn = stack.quats.get();
predictedOrn.mul(dorn, orn0);
predictedOrn.normalize();
// #endif
predictedTransform.setRotation(predictedOrn);
}
finally {
stack.vectors.pop();
stack.quats.pop();
}
}
public static void calculateVelocity(Transform transform0, Transform transform1, float timeStep, Vector3f linVel, Vector3f angVel) {
BulletStack stack = BulletStack.get();
stack.vectors.push();
try {
linVel.sub(transform1.origin, transform0.origin);
linVel.scale(1f / timeStep);
Vector3f axis = stack.vectors.get();
float[] angle = new float[1];
calculateDiffAxisAngle(transform0, transform1, axis, angle);
angVel.scale(angle[0] / timeStep, axis);
}
finally {
stack.vectors.pop();
}
}
public static void calculateDiffAxisAngle(Transform transform0, Transform transform1, Vector3f axis, float[] angle) {
BulletStack stack = BulletStack.get();
stack.matrices.push();
stack.quats.push();
try {
// #ifdef USE_QUATERNION_DIFF
// btQuaternion orn0 = transform0.getRotation();
// btQuaternion orn1a = transform1.getRotation();
// btQuaternion orn1 = orn0.farthest(orn1a);
// btQuaternion dorn = orn1 * orn0.inverse();
// #else
Matrix3f tmp = stack.matrices.get();
tmp.set(transform0.basis);
MatrixUtil.invert(tmp);
Matrix3f dmat = stack.matrices.get();
dmat.mul(transform1.basis, tmp);
Quat4f dorn = stack.quats.get();
MatrixUtil.getRotation(dmat, dorn);
// #endif
// floating point inaccuracy can lead to w component > 1..., which breaks
dorn.normalize();
angle[0] = QuaternionUtil.getAngle(dorn);
axis.set(dorn.x, dorn.y, dorn.z);
// TODO: probably not needed
//axis[3] = btScalar(0.);
// check for axis length
float len = axis.lengthSquared();
if (len < BulletGlobals.FLT_EPSILON * BulletGlobals.FLT_EPSILON) {
axis.set(1f, 0f, 0f);
}
else {
axis.scale(1f / (float) Math.sqrt(len));
}
}
finally {
stack.matrices.pop();
stack.quats.pop();
}
}
}
|