# GlueGen Native Data & Function Mapping for Java™ ## References - [GlueGen Git Repo](https://jogamp.org/cgit/gluegen.git/about/) - [GlueGen Java™ API-Doc](https://jogamp.org/deployment/jogamp-next/javadoc/gluegen/javadoc/) - [GlueGen Manual](https://jogamp.org/gluegen/doc/manual/) - [GlueGen Project Page](https://jogamp.org/gluegen/www/) - [How To Build](https://jogamp.org/gluegen/doc/HowToBuild.html) ## Overview [GlueGen](https://jogamp.org/gluegen/www/) is a compiler for function and data-structure declarations, generating Java and JNI C code offline at compile time and allows using native libraries within your Java application. GlueGen also provides a comprehensive [runtime library](https://jogamp.org/deployment/jogamp-next/javadoc/gluegen/javadoc/) offering - Support for multi-arch and java code fat-jar deployment - Native library including JNI bundle handling and Jar file cache - Platform architecture information retrieval, ELF parser, alignment etc - Enhanced NIO buffer handling for pointer, arrays, DMA mapping etc - Network Uri RFC 2396, connection and resource handler to simplify asset loading - Bitstream, hash maps, ringbuffer, sha cumulator, reflection and threading utils - Abstract AudioFormat and AudioSink interfaces, concurrent locks .. and more GlueGen's compiler reads ANSI C header files and separate configuration files which provide control over many aspects of the glue code generation. GlueGen uses a complete ANSI C parser and an internal representation (IR) capable of representing all C types to represent the APIs for which it generates interfaces. It has the ability to perform significant transformations on the IR before glue code emission. GlueGen can produce native foreign function bindings to Java™ as well as [map native data structures](#struct-mapping) to be fully accessible from Java™ including potential calls to [embedded function pointer](#struct-function-pointer-support). GlueGen supports [registering Java™ callback methods](#java-callback) to receive asynchronous and off-thread native toolkit events, where a generated native callback function dispatches the events to Java™. GlueGen also supports [producing an OO-Style API mapping](#oo-style-api-interface-mapping) like [JOGL's incremental OpenGL Profile API levels](../../jogl/doc/uml/html/index.html). GlueGen is capable to bind low-level APIs such as the Java™ Native Interface (JNI) and the AWT Native Interface (JAWT) back up to the Java programming language. Further, GlueGen supports [generating `JNI_OnLoad*(..)` for dynamic and static libraries](#libraryonload-librarybasename-for-jni_onload-), also resolving off-thread `JNIEnv*` lookup. GlueGen utilizes [JCPP](https://jogamp.org/cgit/jcpp.git/about/), migrated C preprocessor written in Java™. GlueGen is used for the [JogAmp](https://jogamp.org) projects [JOAL](https://jogamp.org/cgit/joal.git/about/), [JOGL](https://jogamp.org/cgit/jogl.git/about/) and [JOCL](https://jogamp.org/cgit/jocl.git/). GlueGen is part of [the JogAmp project](https://jogamp.org). ## Primitive Mapping Gluegen has build-in types (terminal symbols) for: | type | java-bits | native-bits
x32 | native bits
x64 | type | signed | origin | |:-----|:----------|:-----------------------|:---------------------|:--------|:-------|:-------| | void | 0 | 0 | 0 | void | void | ANSI-C | | char | 8 | 8 | 8 | integer | any | ANSI-C | | short | 16 | 16 | 16 | integer | any | ANSI-C | | int | 32 | 32 | 32 | integer | any | ANSI-C | | long | 64 | 32 | **32**† | integer | any | ANSI-C - Windows | | long | 64 | 32 | **64** | integer | any | ANSI-C - Unix | | float | 32 | 32 | 32 | float | signed | ANSI-C | | double | 64 | 64 | 64 | double | signed | ANSI-C | | \_\_int32 | 32 | 32 | 32 | integer | any | windows | | \_\_int64 | 64 | 64 | 64 | integer | any | windows | | int8\_t | 8 | 8 | 8 | integer | signed | stdint.h | | uint8\_t | 8 | 8 | 8 | integer | unsigned | stdint.h | | int16\_t | 16 | 16 | 16 | integer | signed | stdint.h | | uint16\_t | 16 | 16 | 16 | integer | unsigned | stdint.h | | int32\_t | 32 | 32 | 32 | integer | signed | stdint.h | | uint32\_t | 32 | 32 | 32 | integer | unsigned | stdint.h | | int64\_t | 64 | 64 | 64 | integer | signed | stdint.h | | uint64\_t | 64 | 64 | 64 | integer | unsigned | stdint.h | | intptr\_t | 64 | 32 | 64 | integer | signed | stdint.h | | uintptr\_t | 64 | 32 | 64 | integer | unsigned | stdint.h | | ptrdiff\_t | 64 | 32 | 64 | integer | signed | stddef.h | | size\_t | 64 | 32 | 64 | integer | unsigned | stddef.h | | wchar\_t | 32 | 32 | 32 | integer | signed | stddef.h | **Warning:** Try to avoid unspecified bit sized types, especially **long**, since it differs on Unix and Windows! **Notes:** * † Type **long** will result in broken code on Windows, since we don't differentiate the OS and it's bit size is ambiguous. * Anonymous void-pointer _void\*_ are mapped to NIO _Buffer_. * Pointers to pointer-size types like _intptr\_t\*_, _uintptr\_t\*_, _ptrdiff\_t\*_ and _size\_t\*_ are mapped to _PointerBuffer_, to reflect the architecture depending storage size. ### Pointer Mapping *Pointer* values itself are represented as `long` values on the Java side while using the native pointer-size, e.g. 32-bit or 64-bit, on the native end. They may simply be accessible via `long` or `long[]` primitives in Java, or are exposed via `com.jogamp.common.nio.PointerBuffer`. See [Struct Pointer-Pointer Support](#struct-pointer-pointer-support) below. ### String Mapping #### Function return String values Function return values are currently mapped from `char*` to Java String using *UTF-8* via JNI function > `jstring NewStringUTF(JNIEnv *env, const char *bytes)` *FIXME*: This might need more flexibility in case UTF-8 is not suitable for 8-bit wide `char` mappings or wide characters, e.g. for UTF-16 needs to be supported. #### Function argument String values Function argument values are either mapped from `char*` to Java String using *UTF-8* via JNI function > `const char * GetStringUTFChars(JNIEnv *env, jstring string, jboolean *isCopy)`. Alternatively, if a 16-bit wide *character* type has been detected, i.e. *short*, the native *character* are mapped to Java using *UTF-16* via JNI function > `void GetStringRegion(JNIEnv *env, jstring str, jsize start, jsize len, jchar *buf)`. #### Struct String mapping String value mapping for `Struct` fields is performed solely from the Java side using *Charset* and is hence most flexible. By default, *UTF-8* is being used for getter and setter of String values. The *Struct* class provides two methods to get and set the used *Charset* for conversion ``` /** Returns the Charset for this class's String mapping, default is StandardCharsets.UTF_8. */ public static Charset getCharset() { return _charset; }; /** Sets the Charset for this class's String mapping, default is StandardCharsets.UTF_8. */ public static void setCharset(Charset cs) { _charset = cs; } ``` In case the String length has not been configured via `ReturnedArrayLength`, it will be dynamically calculated via `strnlen(aptr, max_len)`. The maximum length default for the `strnlen(..)` operation is 8192 bytes and can be get and set using: ``` /** Returns the maximum number of bytes to read to determine native string length using `strnlen(..)`, default is 8192. */ public static int getMaxStrnlen() { return _max_strnlen; }; /** Sets the maximum number of bytes to read to determine native string length using `strnlen(..)`, default is 8192. */ public static void setMaxStrnlen(int v) { _max_strnlen = v; } ``` *FIXME*: This only works reliable using an 8-bit Charset encoding, e.g. the default *UTF-8*. ### Alignment for Compound Data In general, depending on CPU and it's configuration (OS), alignment is set up for each type (char, short, int, long, ..). Compounds (structures) are aligned naturally, i.e. their inner components are aligned and are itself aligned to it's largest element. See: * [Wikipedia Data Structure Alignment](http://en.wikipedia.org/wiki/Data_structure_alignment) * [Wikipedia Data Structure Alignment - Padding](http://en.wikipedia.org/wiki/Data_structure_alignment#Data_structure_padding) * [Viva64 Data Alignment](http://www.viva64.com/en/l/0021/) * [Apple: Darwin 64bit Porting - Data Type Size & Alignment](http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/64bitPorting/transition/transition.html#//apple_ref/doc/uid/TP40001064-CH207-SW1) #### Simple alignment arithmetic Modulo operation, where the 2nd handles the case offset == alignment: > padding = ( alignment - ( offset % alignment ) ) % alignment ; > aligned\_offset = offset + padding ; Optimization utilizing alignment as a multiple of 2 `-> x % 2n == x & ( 2n - 1 )` > remainder = offset & ( alignment - 1 ) ; > padding = ( remainder > 0 ) ? alignment - remainder : 0 ; > aligned\_offset = offset + padding ; Without branching, using the 2nd modulo operation for the case offset == alignment: > padding = ( alignment - ( offset & ( alignment - 1 ) ) ) & ( alignment - 1 ) ; > aligned\_offset = offset + padding ; See `com.jogamp.gluegen.cgram.types.SizeThunk.align(..)`. #### Type Size & Alignment for x86, x86\_64, armv6l-32bit-eabi and Window(mingw/mingw64) Runtime query is implemented as follows: ``` typedef struct { char fill; // nibble one byte // padding to align s1: padding_0 type_t s1; // } test_struct_type_t; padding_0 = sizeof(test_struct_type_t) - sizeof(type_t) - sizeof(char) ; alignmentOf(type_t) = sizeof(test_struct_type_t) - sizeof(type_t) ; ``` | type | size
*32 bit* | alignment
*32 bit* | size
*64 bit* | alignment
*64 bit* | |:------------|:-------------------|:------------------------|:-------------------|:------------------------| | char | 1 | 1 | 1 | 1 | | short | 2 | 2 | 2 | 2 | | int | 4 | 4 | 4 | 4 | | float | 4 | 4 | 4 | 4 | | long | 4 | 4 | 8†,4∗ | 8†,4∗ | | pointer | 4 | 4 | 8 | 8 | | long long | 8 | 4†,8∗+ | 8 | 8 | | double | 8 | 4†,8∗+ | 8 | 8 | | long double | 12†∗,8+,16\- | 4†∗,8+,16\- | 16 | 16 | † Linux, Darwin +armv7l-eabi \- MacOsX-32bit-gcc4 ∗ Windows ## OO-Style API Interface Mapping GlueGen supports producing an OO-Style API mapping like [JOGL's incremental OpenGL Profile API levels](../../jogl/doc/uml/html/index.html). ### OO-Style Mapping Settings * `ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL.java` Ignore all extended interface symbols from named Java source file. The named Java source file is parsed and a list of its symbols extracted, allowing GlueGen to ignore these in the generated interface (here GLES3). This complements `Extends` setting, see below. * `Extends GLES3 GLES2` The generated interface GLES3 extends interface GLES2. This complements `ExtendedInterfaceSymbolsIgnore` setting, see above. * `Implements GLES3Impl GLES3` The generated implementation GLES3Impl implements interface GLES3. ### OO-Style Example Example snippet from JOGL's GLES3 interface config `gl-if-es3.cfg` ``` ... ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL2ES2.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GLES2.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL2ES3.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL3ES3.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL4ES3.java ExtendedInterfaceSymbolsIgnore ../src/jogl/classes/com/jogamp/opengl/GLBase.java Package com.jogamp.opengl Style InterfaceOnly JavaClass GLES3 Extends GLES3 GLES2 Extends GLES3 GL4ES3 ... ``` Example snippet from JOGL's GLES3Impl implementation `gl-es3-impl.cfg` ``` ... ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL2ES2.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GLES2.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL2ES3.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL3ES3.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GL4ES3.java ExtendedInterfaceSymbolsIgnore ../build-temp/gensrc/classes/com/jogamp/opengl/GLES3.java ExtendedInterfaceSymbolsIgnore ../src/jogl/classes/com/jogamp/opengl/GLBase.java Style ImplOnly ImplPackage jogamp.opengl.es3 ImplJavaClass GLES3Impl Implements GLES3Impl GLES2 Implements GLES3Impl GLES3 ... ``` Above produces the GLES3 interface and its implementation as visible in JOGL's UML document [about OpenGL Profiles](../../jogl/doc/uml/html/index.html). ## Struct Mapping A *Struct* is a C compound type declaration, which can be mapped to a Java class. A *Struct* may utilize the following data types for its fields * *Primitive*, i.e. *char*, *int32_t*, ... * See [*Primitive Mapping*](#primitive-mapping) above. * See [*Opaque and `void*` notes*](#struct-mapping-notes) below. * See [*Pointer Mapping*](#pointer-mapping) for *pointer-to-pointer* values above and [Struct Pointer-Pointer Support](#struct-pointer-pointer-support) below. * See [*String Mapping*](#string-mapping) above. * *Struct*, i.e. an aggregated or referenced compound variable * *Function Pointer*, a *typedef*'ed and set callable function pointer, see [Struct Function-Pointer Support](#struct-function-pointer-support) below. * *Java Callback from Native Code*, see [section below](#java-callback) A field may be a direct aggregation, i.e. instance, within the struct including an array or a reference to a single element or array via a pointer. Both, *primitive*, *struct* and *pointer* field type mappings only produce pure Java code, utilizing the *GlueGen Runtime*. Hence no additional native code must be compiled nor a resulting additional library loaded to use the mapping. Only when mapping *function-pointer* within *structs*, additional native glue-code is produced to call the underlying native function which has to be compiled and its library loaded. The generated method `public static boolean usesNativeCode()` can be used to validate whether the produced Java class requires a corresponding library for additional native code. ### Struct Mapping Notes * [`Opaque` configured pointer-types](#opaque-java-primitive-type-symbol) are treated as `long` values from the Java side while maintaining their architecture dependent pointer size within native memory. * Void pointers, i.e. `void*`, within a struct are handled as [`Opaque` configured pointer-types](#opaque-java-primitive-type-symbol). * *ConstElemCount* via **ReturnedArrayLength \** implies *native ownership* for a *Pointer* referenced *native* memory if the expression is constant. Otherwise the *native* memory has *java ownership*. See [ReturnedArrayLength Setting](#returnedarraylength-symbol-expression) below. * Utilizing a *flexible* *elemCount* via **ReturnedArrayLength getValElements()** renders us unable to determine ownership of pointer referenced *native* memory segment and hence renders ownership *mixed or ambiguous*, [see \[5\]](#signature-const-int32_t--customsize-ambiguous-java-owned). This is due to the fact, that native code may allocate memory and writes its *elemCount* into the designated field *valElements*. In such cases, the user being aware of the underlying API shall utilize `setVal(..)` and `releaseVal()` with care. * To release native memory with *java ownership*, i.e. a native ByteBuffer, `releaseVal()` can be used. ### GlueGen Struct Settings #### **Opaque** *Java-primitive-type* *symbol* See also [Opaque section in manual](manual/index.html#SecOpaque). * `Opaque long T2_UndefStruct*` Pointers to `T2_UndefStruct` will be handled opaque, i.e. as `long` values from the Java side while maintaining their architecture dependent pointer size within native memory. #### **ImmutableAccess** *symbol* Immutable access can be set for a whole struct or a single field of a struct. Immutable access will simply suppress generating setters in the Java code and hence also reduces the footprint of the generated Java class for such struct. * `ImmutableAccess TK_Struct` Immutable access for the whole struct `TK_Struct Sets pseudo-code flag *ImmutableAccess*, see below. * `ImmutableAccess TK_Struct.val` Immutable access for the single field `val` within struct `TK_Struct` Sets pseudo-code flag *ImmutableAccess*, see below. #### **MaxOneElement** *symbol* * `MaxOneElement TK_Struct.val` Sets field pointer `val` to point to a array with a maximum of one element and unset initial value (zero elements). Sets pseudo-code flag *MaxOneElement*, see below. #### **ReturnedArrayLength** *symbol* *expression* * `ReturnedArrayLength TK_Struct.val 3` Sets field pointer `val` to point to a array with three elements. Sets pseudo-code flag *ConstElemCount*, see below. Having set *ConstElemCount* also implies *native ownership* for a *Pointer* referenced *native* memory. * `ReturnedArrayLength TK_Struct.val 1` Sets field pointer `val` to point to a array with one element. Sets pseudo-code flags *ConstElemCount* and *MaxOneElement*, see below. Having set *ConstElemCount* also implies *native ownership* for a *Pointer* referenced *native* memory. * `ReturnedArrayLength TK_Struct.val getValElements()` Sets field pointer `val` to point to a array with a variable length as described by the field `valElements` retrievable via its getter `getValElements()`. Sets pseudo-code flag *VariaElemCount*, see below. #### **ReturnsString** *symbol* A direct C code `char` array or indirect array via pointer can be interpreted as a Java `String`. * `ReturnsString TK_Struct.name` Sets field char-array or char-pointer `name` to be additionally interpreted as a Java `String`. Besides the `byte[]` and `ByteBuffer` getter and setter variants, a `String` variant will be added. Sets pseudo-code flags *String*, see below. See [*String Mapping*](#string-mapping) above. #### **ReturnsStringOnly** *symbol* * `ReturnsStringOnly TK_Struct.name` Sets field char-array or char-pointer `name` to be exclusively interpreted as a Java `String`. Instead of the `byte[]` and `ByteBuffer` getter and setter variants, a `String` variant will be produced. Sets pseudo-code flags *StringOnly*, see below. See [*String Mapping*](#string-mapping) above. ### Struct Setter Pseudo-Code #### Overview In general we have the following few cases * Array owned by parent struct itself * `int32_t val[10]` * Setter of `val` within range, keeping memory * `const int32_t val[10]` * No setter allowed due to const value * Referenced Memory (array) owned by Java * `int32_t* val` * Setter within range, keeping memory, or replacing memory * `const int32_t* val` * Setter replacing memory, since memory is non-const but value is const * Referenced Memory (array) owned by Native Code due to set *ConstElemCount* * `int32_t* val` * Setter of `val` within range, keeping memory owned by native code * `const int32_t* val` * No setter allowed, since memory is owned by native code and value is const #### Implemented Pseudo Code * *ImmutableAccess*: Drops setter, immutable * *Pointer* & *ConstValue* & *ConstElemCount*: Drops setter, native ownership on const-value * *Array* & *ConstValue* : Drops setter, const-value array * *Primitive* * Single aggregated instance * Store value within *native* memory * *Array* | *Pointer* * *MaxOneElement* * *Pointer* * *ConstValue*: Allocate new memory and store value * *VariaValue*: * *ConstElemCount*: Reuse *native* memory and store value with matching *elemCount 1*, otherwise Exception * *VariaElemCount*: Reuse *native* memory and store value with matching *elemCount 1*, otherwise allocates new memory (had *elemCount 0*) * *Array* & *VariaValue*: Reuse *native* memory and store value (has const *elemCount 1*) * *else*: *SKIP* setter for const single-primitive array * *AnyElementCount* * *String* & *isByteBuffer* & *Pointer* * *ConstElemCount*: Reuse *native* memory and store UTF-8 bytes with EOS with matching *elemCount*, otherwise Exception * *StringOnly*: End, no more setter for this field, otherwise continue * *VariaElemCount*: Allocate new *native* memory and store UTF-8 bytes with EOS * *StringOnly*: End, no more setter for this field, otherwise continue * *ConstValue* * *Pointer* * *VariaElemCount*: Allocates new *native* memory and store value * *else*: *SKIP* setter for const primitive array * *Array* | *ConstElemCount*: Reuse *native* memory and store value with <= *elemCount*, otherwise Exception * *Pointer* & *VariaElemCount*: Reuse *native* memory and store value with <= *elemCount*, otherwise allocate new *native* memory * *Struct* ... ### Struct Java Signature Table Please find below signature table as generated by the *C Declaration* including its *C Modifier*, e.g. `const` for constant, `[const]` for const and non-const and `empty` for non-const (variable). Further, the *GlueGen Setting* (see above) impacts the code generation as well. Below table demonstrates *primitive* types being mapped within a `struct` named `TK_Struct`. A similar mapping is produced for `struct` types, i.e. *compounds*. | C Mod | C Declaration | Java Setter | Java Getter | GlueGen Setting | Ownership | Remarks | |:--------|:--------------|:-----------------------------------------------------------------|:--------------------------------------|:-----------------------------------------------|:----------|:----------| | | | | static boolean usesNativeCode() | | | Java, static,
*true* if using native code | | | | | static int size() | | | Java, static,
native size in bytes | | | | | static TK_Struct create() | | | Java, static ctor | | | | | static TK_Struct create(ByteBuffer) | | | Java, static ctor
w/ existing ByteBuffer | | | | | static TK_Struct derefPointer(long addr) | | | Java, static ctor
dereferencing ByteBuffer
at native address of size() | | | | | ByteBuffer getBuffer() | | | Java,
underlying ByteBuffer | | | | | long getDirectBufferAddress() | | | Java, native address
of underlying getBuffer() | | | int32_t val | setVal(int v) | int getVal() | | Parent | | | const | int32_t val | *none* | int getVal() | | Parent | Read only | | | int32_t val | *none* | int getVal() | **ImmutableAccess** | Parent | Read only | | [const] | int32_t* val | setVal(int v) \[[1](#signature-int32_t--maxoneelement-java-owned)\]\[[2](#signature-const-int32_t--maxoneelement-java-owned)\]
releaseVal() | int getVal()
boolean isValNull()
int getValElemCount() | **MaxOneElement** | Java | Starts w/ null elements,
max 1 element | | const | int32_t* val | *none* | int getVal()
boolean isValNull()
static int getValElemCount() | **ReturnedArrayLength 1** | Native | Const element count 1 | | | int32_t* val | setVal(int v) | int getVal()
boolean isValNull()
static int getValElemCount() | **ReturnedArrayLength 1** | Native | Const element count 1 | | | | int32_t val[3]| setVal(int[] src, int srcPos, int destPos, int len) \[[3](#signature-int32_t3-constelemcount-3-parent-owned)\] | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len) | | Parent | Reuses parent memory,
fixed size. | | const | int32_t val[3]| *none* | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len) | | Parent | Read only | | const | int32_t* val | *none* | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull()
static int getValElemCount() | **ReturnedArrayLength 3** | Native | Read only
Const element count 3 | | | int32_t* val | setVal(int[] src, int srcPos, int destPos, int len) \[[4](#signature-int32_t--constelemcount-3-natively-owned)\] | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull()
static int getValElemCount() | **ReturnedArrayLength 3** | Native | Const element count 3.
Reuses native memory,
fixed size. | | | int32_t* val | setVal(boolean subset, int[] src, int srcPos, int destPos, int len) \[[5](#signature-int32_t--freesize-java-owned)\]
releaseVal() | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull()
int getValElemCount() | | Java | Starts w/ null elements.
Reuses or replaces Java memory,
variable size. | | const | int32_t* val | setVal(int[] src, int srcPos, int len) \[[6](#signature-const-int32_t--freesize-java-owned)\]
releaseVal() | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull()
int getValElemCount() | | Java | Starts w/ null elements.
Replaces Java memory,
variable size. | | | int32_t* val | setVal(boolean subset, int[] src, int srcPos, int destPos, int len) \[[7](#signature-int32_t--customsize-ambiguous-ownership)\]
releaseVal() | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull() | **ReturnedArrayLength getValCount()** | **Ambiguous** | Variable element count
using field *valCount*,
which has getter and setter | | const | int32_t* val | setVal(int[] src, int srcPos, int len) \[[8](#signature-const-int32_t--customsize-ambiguous-ownership)\]
releaseVal() | IntBuffer getVal()
int[] getVal(int srcPos, int[] dest, int destPos, int len)
boolean isValNull() | **ReturnedArrayLength getValCount()** | **Ambiguous** | Variable element count
using field *valCount*,
which has getter and setter | | [const] | char* name | setName(String srcVal)
releaseVal() | String getName()
boolean isNameNull()
int getNameElemCount() | **ReturnsStringOnly** | Java | String only, w/ EOS | | [const] | char* name | setName(String srcVal)
setName(byte[] src, int srcPos, int destPos, int len)
releaseVal() | String getNameAsString()
ByteBuffer getName()
boolean isNameNull()
int getNameElemCount() | **ReturnsString** | Java | String and byte access, w/ EOS| ### Struct Java Signature Examples #### Signature `int32_t *` MaxOneElement, Java owned * `void com.jogamp.gluegen.test.junit.generation.TK_Field.setVariaInt32PointerMaxOneElemElemCount(int src)` Setter for native field variaInt32PointerMaxOneElem, referencing a Java owned array with variable element count of 0 initial elements. Maximum element count is 1. Native Signature: * field-type (PointerType) 'int32_t *' -> (int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[false], int Will reuse memory if existing, otherwise allocating memory. #### Signature `const int32_t *` MaxOneElement, Java owned * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setConstInt32PointerMaxOneElem(int src)` Setter for native field variaInt32PointerMaxOneElem, referencing a Java owned array with variable element count of 0 initial elements. Maximum element count is 1. Native Signature: * field-type (PointerType) 'int32_t *' -> (const int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[native, true], int Always replaces memory due to `const` value modifier. #### Signature `int32_t[3]` ConstElemCount 3, Parent owned * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setVariaInt32ArrayConstLen(int[] src, int srcPos, int destPos, int length)` Setter for native field variaInt32ArrayConstLen, being an array with fixed element count of 3 elements. Native Field Signature (ArrayType) 'int32_t *', size [fixed false, lnx64 12], const[false], array*1 Copies the given source elements into the respective field's existing memory. Parameters: * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * destPos starting element position within the destination with 'destPos >= 0` && `destPos + length <= elemCount`, otherwise an exception is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length` && `destPos + length <= elemCount`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining #### Signature `int32_t *` ConstElemCount 3, Natively owned * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setVariaInt32PointerConstLen(int[] src, int srcPos, int destPos, int length)` Setter for native field variaInt32PointerConstLen, referencing a natively owned array with fixed element count of 3 elements. Native Signature: * field-type (PointerType) 'int32_t *' -> (int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[false], int Copies the given source elements into the respective field's existing memory. Parameters: * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * destPos starting element position within the destination with 'destPos >= 0` && `destPos + length <= elemCount`, otherwise an exception is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length` && `destPos + length <= elemCount`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining #### Signature `int32_t *` FreeSize, Java owned * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setVariaInt32PointerVariaLen(boolean subset, int[] src, int srcPos, int destPos, int length)` Setter for native field variaInt32PointerVariaLen, referencing a Java owned array with variable element count of 0 initial elements. Native Signature: * field-type (PointerType) 'int32_t *' -> (int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[false], int Copies the given source elements into the respective field, either writing into the existing memory or creating a new memory and referencing it. Parameters: * subset if `true` keeps the underlying memory and only allows to set up to `elemCount` elements. Otherwise may replace the underlying memory if `destPos + length != elemCount`. * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * destPos starting element position within the destination with 'destPos >= 0`. If `subset == true`, `destPos + length <= elemCount` also must be be `true`. Otherwise an exception is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining #### Signature `const int32_t *` FreeSize, Java owned * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setConstInt32PointerVariaLen(int[] src, int srcPos, int length)` Setter for native field constInt32PointerVariaLen, referencing a Java owned array with variable element count of 0 initial elements. Native Signature: * field-type (PointerType) 'int32_t *' -> (const int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[native, true], int Replaces the respective field's memory with a new memory segment containing given source elements and referencing it. Parameters: * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining #### Signature `int32_t *` CustomSize, Ambiguous ownership * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setVariaInt32PointerCustomLen(boolean subset, int[] src, int srcPos, int destPos, int length)` Setter for native field variaInt32PointerCustomLen, referencing a mixed and ambigously owned (warning) array with variable element count of getVariaInt32PointerCustomLenElemCount() elements. Native Signature: * field-type (PointerType) 'int32_t *' -> (int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[false], int Copies the given source elements into the respective field, either writing into the existing memory or creating a new memory and referencing it. Parameters: * subset if `true` keeps the underlying memory and only allows to set up to `elemCount` elements. Otherwise may replace the underlying memory if `destPos + length != elemCount`. * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * destPos starting element position within the destination with 'destPos >= 0`. If `subset == true`, `destPos + length <= elemCount` also must be be `true`. Otherwise an exception is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining #### Signature `const int32_t *` CustomSize, Ambiguous ownership * `TK_Field com.jogamp.gluegen.test.junit.generation.TK_Field.setConstInt32PointerCustomLen(int[] src, int srcPos, int length)` Setter for native field constIntxxPointerCustomLen, referencing a mixed and ambigously owned (**warning**) array with variable element count of getConstIntxxPointerCustomLenElemCount() elements. Native Signature: * field-type (PointerType) 'int32_t *' -> (const int32_t) * , size [fixed false, lnx64 8], const[false], pointer*1 * referenced (IntType) typedef 'int32_t', size [fixed true, lnx64 4], const[native, true], int Replaces the respective field's memory with a new memory segment containing given source elements and referencing it. Parameters: * src the source array of elements * srcPos starting element position within the source array with 'srcPos >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown * length the element count to be copied with 'length >= 0` && `srcPos + length <= src.length`, otherwise an IndexOutOfBoundsException is thrown Returns: * this instance of chaining ### Struct Pointer-Pointer Support See primitive [*Pointer Mapping*](#pointer-mapping) above. *Pointer* are exposed in the following examples ``` typedef struct { int32_t* int32PtrArray[10]; int32_t** int32PtrPtr; ... } T2_PointerStorage; ``` or via and undefined forward-declared struct ``` typedef struct T2_UndefStruct* T2_UndefStructPtr; typedef struct { ... T2_UndefStructPtr undefStructPtr; T2_UndefStructPtr undefStructPtrArray[10]; T2_UndefStructPtr* undefStructPtrPtr; const T2_UndefStructPtr* constUndefStructPtrPtr; } T2_PointerStorage; ``` and the following GlueGen configuration ``` Opaque long T2_UndefStruct* Ignore T2_UndefStruct ``` *TODO: Enhance documentation* ### Struct Function-Pointer Support GlueGen supports function pointers as struct fields, generating function calls as methods as well function-pointer opaque getter and setter as `long` types. The latter only in case if mutable, i.e. non-const. #### Example Assume the following C Header file example: ``` typedef struct { int32_t balance; } T2_UserData; typedef int32_t ( * T2_CustomFuncA)(void* aptr); typedef int32_t ( * T2_CustomFuncB)(T2_UserData* pUserData); typedef struct { ... T2_CustomFuncA customFuncAVariantsArray[10]; T2_CustomFuncA* customFuncAVariantsArrayPtr; T2_CustomFuncB customFuncBVariantsArray[10]; T2_CustomFuncB* customFuncBVariantsArrayPtr; } T2_PointerStorage; typedef struct { ... const T2_CustomFuncA CustomFuncA1; T2_CustomFuncB CustomFuncB1; } T2_InitializeOptions; ``` and the following GlueGen configuration ``` Opaque long void* EmitStruct T2_UserData StructPackage T2_UserData com.jogamp.gluegen.test.junit.generation EmitStruct T2_InitializeOptions StructPackage T2_InitializeOptions com.jogamp.gluegen.test.junit.generation ``` This will lead to the following result for `const T2_CustomFuncA customFuncA1` ``` /** * Getter for native field CustomFuncA1, being a struct owned function pointer. *

* Native Field Signature (PointerType) typedef 'T2_CustomFuncA' -> int32_t (*)(void * aptr), size [fixed false, lnx64 8], const[false], pointer*1, funcPointer *

*/ public final long getCustomFuncA1() { .. } /** Interface to C language function:
int32_t CustomFuncA1(void * aptr)
*/ public final int CustomFuncA1(long aptr) { ... } ``` and similar to `T2_CustomFuncB customFuncB1` ``` /** * Setter for native field CustomFuncB1, being a struct owned function pointer. *

* Native Field Signature (PointerType) typedef 'T2_CustomFuncB' -> int32_t (*)(T2_UserData * pUserData), size [fixed false, lnx64 8], const[false], pointer*1, funcPointer *

*/ public final T2_InitializeOptions setCustomFuncB1(long src) { .. } /** * Getter for native field CustomFuncB1, being a struct owned function pointer. *

* Native Field Signature (PointerType) typedef 'T2_CustomFuncB' -> int32_t (*)(T2_UserData * pUserData), size [fixed false, lnx64 8], const[false], pointer*1, funcPointer *

*/ public final long getCustomFuncB1() { .. } /** Interface to C language function:
int32_t CustomFuncB1(T2_UserData * pUserData)
*/ public final int CustomFuncB1(T2_UserData pUserData) { .. } ``` ## Java Callback GlueGen supports registering Java callback methods to receive asynchronous and off-thread native toolkit events, where a generated native callback function dispatches the events to Java. ### Implementation Details Implementation generates a static Java callback dispatcher for each defined `SetCallbackFunction`, which gets invoked by the generated native static counterpart with all arguments required. The *static callback* utilizes its own synchronization for thread-safety and fetches the required data set stored at `SetCallbackFunction` to dispatch the call to the users' `CallbackFunction`. In case the callback has been removed already, the *static callback* simply bails out quietly. The native code does not create, release or manage heap memory and therefore is considered safe. ### *JavaCallback* *UserParam* Mapping Usually the same `UserParam` type is used in both items (or hooks), `SetCallbackFunctionName` and `CallbackFunctionType`, which we call a homogeneous `UserParam` mapping. Even in a homogeneous `UserParam` mapping, handling of the `UserParam` value might differ in the native binding code. To specify a non homogeneous `UserParam` mapping, i.e. heterogeneous `UserParam` mapping, the `UserParam` index of the `SetCallbackFunction` must be [set in the configuration](#javacallback-configuration). The following mappings are supported. #### Pure Java Object User Type (default) A pure Java *Object type* is used for both, `SetCallbackFunctionName` and `CallbackFunctionType`. It's a homogeneous `UserParam` mapping, where the native side receives a simple unique ID and shall not dereference the *pointer*. The static Java callback dispatcher fetches the Java `UserParam` *Object* from the key-mapped data value. Instead of using the default plain Java `Object` type, a [custom *UserParamClass*](#custom-callback-userparamclass) can be specified [in the configuration](#javacallback-configuration), which is recommended for more clarity in the resulting API. #### Struct Type User Param (Homogeneous) A [GlueGen generated *Struct type*](#struct-mapping) is used for both, `SetCallbackFunctionName` and `CallbackFunctionType`. It's a homogeneous `UserParam` mapping, where the native side receives the actual native struct address. The static Java callback dispatcher dereferences the received native struct address (*long*), i.e. rebuilding the *struct Object* to be passed to the users' `CallbackFunction`. #### Struct Type User Param (Heterogeneous) An anonymous pointer (*long*) for `SetCallbackFunctionName` and a [GlueGen generated *struct type*](#struct-mapping) for `CallbackFunctionType` is being used. It's a heterogeneous `UserParam` mapping, where the toolkit is expected to place the given anonymous pointer inside the defined *struct type* passed to the `CallbackFunction`. The `SetCallback-UserParamIndex` for the different parameter-type is [set in the configuration](#javacallback-configuration). The static Java callback dispatcher dereferences the received native struct address (*long*), i.e. rebuilding the *struct Object* to be passed to the users' `CallbackFunction`. ### *JavaCallback* Configuration Configuration directives are as follows: JavaCallbackDef [ []] JavaCallbackKey * * `JavaCallbackDef` and `JavaCallbackKey` use the name of the `SetCallbackFunction` as its first attribute, as it is core to the semantic mapping of all resources. They also have to use the same `CallbackFunctionType`. `JavaCallbackDef` attributes: - `SetCallbackFunction`: `SetCallbackFunction` name of the native toolkit API responsible to set the callback - `SetCallback-UserParamIndex`: `UserParam` parameter-index of the `SetCallbackFunction` - `CallbackFunctionType`: The native toolkit API typedef-name of the function-pointer-type, aka the callback type name - `CallbackFunction-UserParamIndex`: The `userParam` parameter-index of the `CallbackFunctionType`, which allows to [indicate a heterogeneous `UserParam`](#struct-type-user-param-heterogeneous) - `Callback-UserParamClass`: Optional [custom *UserParamClass*](#custom-callback-userparamclass) overriding the default `Object` for non-compound `UserParam` types. - `Callback-KeyClass`: Optional [custom *KeyClass*](#custom-callback-keyclass), providing the hash-map-key. The `SetCallbackFunction` is utilized to set the `CallbackFunction` as well as to remove it passing `null` for the `CallbackFunction`. If mapping the `CallbackFunction` to keys, the user must specify the same key arguments when setting and removing the `CallbackFunction`. #### *JavaCallback* Key Definition If no keys are defined via `JavaCallbackKey` or not manually injected using a custom `Callback-KeyClass`, see below, the `CallbackFunction` has global scope. In case keys are defined via `JavaCallbackKey` and no manually injected custom `Callback-KeyClass` used, a public `Callback-KeyClass` is being generated covering the defined keys. Keys allow to limit the scope, i.e. map multiple `CallbackFunction` to the different keys. To remove a previously set `CallbackFunction` via `SetCallbackFunction`, the key arguments must match. `JavaCallbackKey` attributes - `SetCallbackFunction`: `SetCallbackFunction` name of the native toolkit API responsible to set the callback - `SetCallback-ParamIndex`: List of parameter indices of the `SetCallbackFunction`, denoting the key(s) limiting the callback scope, i.e. the callback and all resources will be mapped to this key. The optional `Callback-KeyClass` may override this semantic. - `CallbackFunctionType`: The native toolkit API typedef-name of the function-pointer-type, the same callback type name as defined in `JavaCallbackDef` - `CallbackFunction-ParamIndex`: List of parameter indices of the `CallbackFunctionType`, matching the semantic parameter of `SetCallback-ParamIndex`. #### Custom `Callback-UserParamClass` Instead of using the default plain Java `Object` for non-compound `UserParam` types, a custom `Callback-UserParamClass` can be specified [in the configuration](#javacallback-configuration), which produces more clarity in the resulting API. #### Custom `Callback-KeyClass` The `Callback-KeyClass` is the optional user-written hash-map-key definition and shall handle all key parameter of the `SetCallbackFunction` as defined via `JavaCallbackKey`, see above. `Callback-KeyClass` may be used to add external key-components, e.g. current-thread or a toolkit dependent context. The `Callback-KeyClass` shall implement the following hash-map-key standard methods - `boolean equals(Object)` - `int hashCode()` - `Callback-KeyClassName(...)` constructor receiving all key parameter of `SetCallbackFunction` as defined via `JavaCallbackKey`, see above. #### Required *LibraryOnLoad* Note that [`LibraryOnLoad `](#libraryonload-librarybasename-for-jni_onload-) must be specified in exactly one native code-unit within one native library. It provides code to allow the generated native callback-function to attach the current thread to the `JavaVM*`, retrieving a valid `JNIEnv*`, see [`LibraryOnLoad `](#libraryonload-librarybasename-for-jni_onload-) for details. ### *JavaCallback* Generated Interfaces, Classes and Methods The public `CallbackFunction` interface is generated. The default public `Callback-KeyClass` is generated if keys are used and no custom class is specified, see above. The public toolkit API `SetCallbackFunction` method is being generated. Additional public *maintenance* methods are generated. In case keys are being used, they expect `Callback-KeyClass` as an argument, otherwise they expect no argument for global scope. In case a `Callback-KeyClass` is used, the additional *maintenance* methods are: - *Set<`Callback-KeyClass`> get`SetCallbackFunctionName`Keys()* - *boolean is`SetCallbackFunctionName`Mapped(`Callback-KeyClass`)* queries whether `SetCallbackFunctionName` is mapped to key. - *`CallbackFunction` get`SetCallbackFunctionName`(`Callback-KeyClass`)* returns the mapped `CallbackFunction`, null if not mapped - *`Callback-UserParamClass` get`SetCallbackFunctionName`UserParam(`Callback-KeyClass`)* returns the mapped `userParam` object, null if not mapped - *void release`SetCallbackFunctionName`(`Callback-KeyClass`)* releases the mapped `CallbackFunction` data set associated via `SetCallbackFunctionName`. - *int releaseAll`SetCallbackFunctionName`()* releases complete mapped `CallbackFunction` data set associated via `SetCallbackFunctionName`. If no `Callback-KeyClass` is used, the additional *maintenance* methods are: - *boolean is`SetCallbackFunctionName`Mapped()* queries whether `SetCallbackFunctionName` is mapped. - *`CallbackFunction` get`SetCallbackFunctionName`()* returns the mapped `CallbackFunction`, null if not mapped - *`Callback-UserParamClass` get`SetCallbackFunctionName`UserParam()* returns the mapped `userParam` object, null if not mapped - *void release`SetCallbackFunctionName`()* releases the mapped `CallbackFunction` data set associated via `SetCallbackFunctionName`. Note that the *release`SetCallbackFunctionName`(\*)* and *releaseAll`SetCallbackFunctionName`()* methods are not the *proper toolkit API way* to remove the callback, try to use original `SetCallbackFunctionName` API method instead using a `null` `CallbackFunction` reference. ### *JavaCallback* Notes Please consider the following *currently enabled* constraints using JavaCallback - Only one interface callback-method binding is allowed for a native callback function, e.g. `T2_CallbackFunc01` (see above) - Implying that the native single function-pointer typedef must be mapped to a single Java method within its interface - Hence it must be avoided that multiple method variation are produced, e.g. due to `char*` to `byte[]` and `String` mapping etc. - The native callback function can only return no-value, i.e. `void`, or a primitive type. Usually `void` is being used in toolkit APIs. - The native callback function argument types must be convertible to JNI Java types as (previously) supported for function return values, using the same conversion function `CMethodBindingEmitter.emitBodyMapCToJNIType(..)`. - To remove a JavaCallback the `SetCallbackFunction` must be called with `null` for the `CallbackFunction` argument but with the same [*key arguments* (see `JavaCallbackKey`)](#javacallback-key-definition) as previously called to set the callback. - Exactly one native code-unit within the library must specify [`LibraryOnLoad libraryBasename`](#libraryonload-librarybasename-for-jni_onload-) - `SetCallbackFunction`, all *maintenance* methods and the native callback dispatcher **are thread-safe** - ... ### JavaCallback Example 1 This example demonstrates a [homogeneous *Java Object* `UserParam` mapping](#pure-java-object-user-type-default) with a [globally scoped](#javacallback-key-definition) `CallbackFunction` and `UserParam`. The callback `T2_CallbackFunc01` has global scope, i.e. is not mapped to any key and can be only set globally. C-API header snippet: ``` typedef void ( * T2_CallbackFunc01)(size_t id, const char* msg, void* usrParam); /** Sets the given `cbFunc` and associated `usrParam` as the callback. Passing NULL for `func` _and_ same `usrParam` removes the callback and its associated resources. */ void MessageCallback01(T2_CallbackFunc01 cbFunc, void* usrParam); void InjectMessageCallback01(size_t id, const char* msg); ``` and the following GlueGen configuration ``` # JavaCallback requires `JNI_OnLoad*(..)` and `JVMUtil_GetJNIEnv(..)` LibraryOnLoad Bindingtest2 ArgumentIsString T2_CallbackFunc01 1 ArgumentIsString InjectMessageCallback01 1 # Define a JavaCallback. # Set JavaCallback via function `MessageCallback01` if `T2_CallbackFunc01` argument is non-null, otherwise removes the mapped callback and associated resources. # # It uses the function-pointer argument `T2_CallbackFunc01` as the callback function type # and marks `T2_CallbackFunc01`s 3rd argument (index 2) as the mandatory user-param. # # This callback has no keys defines, rendering it of global scope! # # Explicit maintenance methods are generated, passing the keys as paramters # - `boolean isMessageCallback01Mapped()` queries whether `MessageCallback0` is mapped globally # - `T2_CallbackFunc01 getMessageCallback01()` returns the global T2_CallbackFunc01, null if not mapped # - `Object getMessageCallback01UserParam()` returns the global `usrParam` object, null if not mapped # - `void releaseMessageCallback01()` releases callback data skipping toolkit API. Favor passing `null` callback ref to `MessageCallback01(..)` JavaCallbackDef MessageCallback01 1 T2_CallbackFunc01 2 ``` Note that [`LibraryOnLoad Bindingtest2`](#libraryonload-librarybasename-for-jni_onload-) must be specified in exactly one native code-unit within the library. It provides code to allow the generated native callback-function to attach the current thread to the `JavaVM*` generating a new `JNIEnv*`in daemon mode - or just to retrieve the thread's `JNIEnv*`, if already attached to the `JavaVM*`. This will lead to the following interface ``` public interface Bindingtest2 { /** JavaCallback interface: T2_CallbackFunc01 -> void (*T2_CallbackFunc01)(size_t id, const char * msg, void * usrParam) */ public static interface T2_CallbackFunc01 { /** Interface to C language function:
void callback(size_t id, const char * msg, void * usrParam)
Alias for: T2_CallbackFunc01 */ public void callback(long id, String msg, Object usrParam); } ... /** Entry point (through function pointer) to C language function:
void MessageCallback01(T2_CallbackFunc01 cbFunc, void * usrParam)
*/ public void MessageCallback01(T2_CallbackFunc01 cbFunc, Object usrParam); /** Returns if callback is mapped for
public void MessageCallback01(T2_CallbackFunc01 cbFunc, Object usrParam) **/ public boolean isMessageCallback01Mapped(); /** Returns T2_CallbackFunc01 callback for
public void MessageCallback01(T2_CallbackFunc01 cbFunc, Object usrParam) **/ public T2_CallbackFunc01 getMessageCallback01(); /** Returns user-param for
public void MessageCallback01(T2_CallbackFunc01 cbFunc, Object usrParam) **/ public Object getMessageCallback01UserParam(); /** Releases callback data skipping toolkit API. Favor passing `null` callback ref to
public void MessageCallback01(T2_CallbackFunc01 cbFunc, Object usrParam) **/ public void releaseMessageCallback01(); /** Entry point (through function pointer) to C language function:
void InjectMessageCallback01(size_t id, const char * msg)
*/ public void InjectMessageCallback01(long id, String msg); ``` ### JavaCallback Example 2a (Default *KeyClass*) This example demonstrates a [homogeneous *Java Object* `UserParam` mapping](#pure-java-object-user-type-default) with a [key-mapped](#javacallback-key-definition) `CallbackFunction` and `UserParam`. Additionally a [custom *UserParamClass*](#custom-callback-userparamclass) `ALCcontext` is being used for more clarity in the resulting API. This example is derived from OpenAL's `AL_SOFT_callback_buffer` extension. The callback `ALBUFFERCALLBACKTYPESOFT` is mapped to `buffer` name, i.e. one callback can be set for each buffer. C-API Header snipped ``` typedef void ( * ALBUFFERCALLBACKTYPESOFT)(int buffer /* key */, void *userptr, int sampledata, int numbytes); void alBufferCallback0(int buffer /* key */, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, void *userptr); void alBufferCallback0Inject(int buffer, int sampledata, int numbytes); ``` and the following GlueGen configuration ``` # Define a JavaCallback. # Set JavaCallback via function `alBufferCallback0` if `ALBUFFERCALLBACKTYPESOFT` argument is non-null, otherwise removes the mapped callback and associated resources. # # It uses the function-pointer argument `ALBUFFERCALLBACKTYPESOFT` as the callback function type # and marks `ALBUFFERCALLBACKTYPESOFT`s 2nd argument (index 1) as the mandatory user-param. # # This callback defines one key, `buffer`, index 0 of alBufferCallback0(..) parameter list, limiting it to buffer-name scope! # The `buffer` key allows setting one callback per buffer-name, compatible with the `AL_SOFT_callback_buffer` spec. # # Explicit queries are generated, passing the keys as paramters # - `Set getAlBufferCallback0Keys()` returns set of Key { int buffer } # - `boolean isAlBufferCallback0Mapped(AlBufferCallback0Key)` queries whether `alBufferCallback0` is mapped to `buffer`. # - `ALBUFFERCALLBACKTYPESOFT getAlBufferCallback0(AlBufferCallback0Key)` returns the `buffer` mapped ALEVENTPROCSOFT, null if not mapped # - `ALCcontext getAlBufferCallback0UserParam(AlBufferCallback0Key)` returns the `buffer` mapped `userptr` object, null if not mapped # - `void releaseAllAlBufferCallback0()` releases all callback data mapped via Key { int buffer } skipping toolkit API. Favor passing `null` callback ref to `alBufferCallback0(..)` # - `void releaseAlBufferCallback0(AlBufferCallback0Key)` releases callback data mapped to Key { int buffer } skipping toolkit API. Favor passing `null` callback ref to `alBufferCallback0(..)` JavaCallbackDef alBufferCallback0 4 ALBUFFERCALLBACKTYPESOFT 1 ALCcontext JavaCallbackKey alBufferCallback0 0 ALBUFFERCALLBACKTYPESOFT 0 ``` leading to the following interface ``` /** JavaCallback interface: ALBUFFERCALLBACKTYPESOFT -> void (*ALBUFFERCALLBACKTYPESOFT)(int buffer, void * userptr, int sampledata, int numbytes) */ public static interface ALBUFFERCALLBACKTYPESOFT { /** Interface to C language function:
void callback(int buffer, void * userptr, int sampledata, int numbytes)
Alias for: ALBUFFERCALLBACKTYPESOFT */ public void callback(int buffer, ALCcontext userptr, int sampledata, int numbytes); } ... /** Key { int buffer } for
public void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, Object userptr) **/ public static class AlBufferCallback0Key { public final int buffer; public AlBufferCallback0Key(int buffer) { this.buffer = buffer; } @Override public boolean equals(final Object o) { if( this == o ) { return true; } if( !(o instanceof AlBufferCallback0Key) ) { return false; } final AlBufferCallback0Key o2 = (AlBufferCallback0Key)o; return buffer == o2.buffer; } @Override public int hashCode() { // 31 * x == (x << 5) - x int hash = buffer; return hash; } } ... /** Returns set of Key { int buffer } for
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public Set getAlBufferCallback0Keys(); /** Returns whether callback Key { int buffer } is mapped for
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public boolean isAlBufferCallback0Mapped(AlBufferCallback0Key key); /** Returns ALBUFFERCALLBACKTYPESOFT callback mapped to Key { int buffer } for
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public ALBUFFERCALLBACKTYPESOFT getAlBufferCallback0(AlBufferCallback0Key key); /** Returns user-param mapped to Key { int buffer } for
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public ALCcontext getAlBufferCallback0UserParam(AlBufferCallback0Key key); /** Releases all callback data mapped via Key { int buffer } skipping toolkit API. Favor passing `null` callback ref to
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public int releaseAllAlBufferCallback0(); /** Releases callback data mapped to Key { int buffer } skipping toolkit API. Favor passing `null` callback ref to
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr) */ public void releaseAlBufferCallback0(AlBufferCallback0Key key); /** Entry point (through function pointer) to C language function:
void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, void * userptr)
*/ public void alBufferCallback0(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr); /** Entry point (through function pointer) to C language function:
void alBufferCallback0Inject(int buffer, int sampledata, int numbytes)
*/ public void alBufferCallback0Inject(int buffer, int sampledata, int numbytes); ``` ### JavaCallback Example 2b (Custom *KeyClass*, different key-parameter order) Similar example as example 2a, but using a [custom *KeyClass*](#custom-callback-keyclass) to map `CallbackFunction` and `UserParam` and also accommodating a different key-parameter order between `SetCallbackFunction` and `CallbackFunction`. C-API Header snipped ``` typedef void ( * ALBUFFERCALLBACKTYPESOFT)(int buffer /* key */, void *userptr, int sampledata, int numbytes); void alBufferCallback1(void *user_ptr, int buffer_key /* key */, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback); void alBufferCallback1Inject(int buffer, int sampledata, int numbytes); ``` GlueGen configuration snippet with the added option attribute for the `Callback-KeyClass` in directive `JavaCallbackDef`. ``` JavaCallbackDef alBufferCallback1 0 ALBUFFERCALLBACKTYPESOFT 1 ALCcontext com.jogamp.gluegen.test.junit.generation.Test4JavaCallback.CustomAlBufferCallback1Key JavaCallbackKey alBufferCallback1 1 ALBUFFERCALLBACKTYPESOFT 0 ``` Implementation utilizes a custom `Callback-KeyClass` implementation for `void alBufferCallback1(int buffer, int format, int freq, ALBUFFERCALLBACKTYPESOFT callback, ALCcontext userptr)`, which uses one key, i.e. `buffer`. ``` public static class CustomAlBufferCallback1Key { private final int buffer; public CustomAlBufferCallback1Key(final int buffer) { this.buffer = buffer; } @Override public boolean equals(final Object o) { if( this == o ) { return true; } if( !(o instanceof CustomAlBufferCallback1Key) ) { return false; } final CustomAlBufferCallback1Key o2 = (CustomAlBufferCallback1Key)o; return buffer == o2.buffer; } @Override public int hashCode() { return buffer; } @Override public String toString() { return "CustomALKey[this "+toHexString(System.identityHashCode(this))+", buffer "+buffer+"]"; } } ``` ### JavaCallback Example 5b (UserParam part of 2 component-key) Similar example as example 2a, but having the `UserParam` as part of the 2 component-key *and* defining `Callback-UserParamClass` class as `ALCcontext`. C-API Header snipped ``` typedef void ( * ALEVENTPROCSOFT)(int eventType, int object, int param, int length, const char *message, void *userParam /* key */); void alEventCallback1(int object /* key */, ALEVENTPROCSOFT callback, void *userParam /* key */); ``` GlueGen configuration snippet with the added option attribute for the `Callback-UserParamClass` in directive `JavaCallbackDef`. ``` ArgumentIsPascalString ALEVENTPROCSOFT 3 4 JavaCallbackDef alEventCallback1 2 ALEVENTPROCSOFT 5 ALCcontext JavaCallbackKey alEventCallback1 0 2 ALEVENTPROCSOFT 1 5 ``` Resulting to the default `KeyClass` ``` /** Key { int object, ALCcontext userParam } for
void alEventCallback1(int object, ALEVENTPROCSOFT callback, ALCcontext userParam) */ public static class AlEventCallback1Key { public final int object; public final ALCcontext userParam; public AlEventCallback1Key(int object, ALCcontext userParam) { this.object = object; this.userParam = userParam; } @Override public boolean equals(final Object o) { if( this == o ) { return true; } if( !(o instanceof AlEventCallback1Key) ) { return false; } final AlEventCallback1Key o2 = (AlEventCallback1Key)o; return object == o2.object && userParam == o2.userParam; } @Override public int hashCode() { // 31 * x == (x << 5) - x int hash = object; hash = ((hash << 5) - hash) + System.identityHashCode( userParam ); return hash; } } ``` ### JavaCallback Example 11a (*Homogeneous Struct Type*) This example demonstrates a [homogeneous *Struct* `UserParam` mapping](#struct-type-user-param-homogeneous) with a [key-mapped](#javacallback-key-definition) `CallbackFunction` and `UserParam`. The callback `T2_CallbackFunc11` is passed by the toolkit to the `CallbackFunction` and by the user to the registration method `MessageCallback11b(..)`. C-API Header snipped ``` typedef struct { int32_t ApiVersion; void* Data; long i; long r; size_t id; } T2_Callback11UserType; typedef void ( * T2_CallbackFunc11)(size_t id, const T2_Callback11UserType* usrParam, long val); void MessageCallback11a(size_t id /* key */, T2_CallbackFunc11 cbFunc, const T2_Callback11UserType* usrParam); void MessageCallback11aInject(size_t id, long val); ``` and the following GlueGen configuration ``` JavaCallbackDef MessageCallback11a 2 T2_CallbackFunc11 1 JavaCallbackKey MessageCallback11a 0 T2_CallbackFunc11 0 ``` leading to the following interface ``` /** JavaCallback interface: T2_CallbackFunc11 -> void (*T2_CallbackFunc11)(size_t id, const T2_Callback11UserType * usrParam, long val) */ public static interface T2_CallbackFunc11 { /** Interface to C language function:
void callback(size_t id, const T2_Callback11UserType * usrParam, long val)
Alias for: T2_CallbackFunc11 */ public void callback(long id, T2_Callback11UserType usrParam, long val); } ... public static class MessageCallback11aKey { ... } ... /** Returns set of Key { long id } for
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public Set getMessageCallback11aKeys(); /** Returns whether callback Key { long id } is mapped for
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public boolean isMessageCallback11aMapped(MessageCallback11aKey key); /** Returns T2_CallbackFunc11 callback mapped to Key { long id } for
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public T2_CallbackFunc11 getMessageCallback11a(MessageCallback11aKey key); /** Returns user-param mapped to Key { long id } for
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public T2_Callback11UserType getMessageCallback11aUserParam(MessageCallback11aKey key); /** Releases all callback data mapped via Key { long id } skipping toolkit API. Favor passing `null` callback ref to
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public int releaseAllMessageCallback11a(); /** Releases callback data mapped to Key { long id } skipping toolkit API. Favor passing `null` callback ref to
void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam) */ public void releaseMessageCallback11a(MessageCallback11aKey key); /** Entry point (through function pointer) to C language function:
void MessageCallback11a(size_t id, T2_CallbackFunc11 cbFunc, const T2_Callback11UserType * usrParam)
*/ public void MessageCallback11a(long id, T2_CallbackFunc11 cbFunc, T2_Callback11UserType usrParam); /** Entry point (through function pointer) to C language function:
void MessageCallback11aInject(size_t id, long val)
*/ public void MessageCallback11aInject(long id, long val); ``` ### JavaCallback Example 11b (*Heterogeneous Pointer/Struct Type*) This example demonstrates a [heterogeneous *Struct* `UserParam` mapping](#struct-type-user-param-heterogeneous) with a [key-mapped](#javacallback-key-definition) `CallbackFunction` and `UserParam`. The callback `T2_CallbackFunc11` is managed by the toolkit and passed to the callback function, while user passes a `void*` as a `long` value to the registration method `MessageCallback11b(..)`. The toolkit associates the users' `void*` pointer with the `T2_CallbackFunc11`. C-API Header snipped ``` typedef struct { int32_t ApiVersion; void* Data; long i; long r; size_t id; } T2_Callback11UserType; typedef void ( * T2_CallbackFunc11)(size_t id, const T2_Callback11UserType* usrParam, long val); void MessageCallback11b(size_t id /* key */, T2_CallbackFunc11 cbFunc, void* Data); void MessageCallback11bInject(size_t id, long val); ``` and the following GlueGen configuration ``` JavaCallbackDef MessageCallback11b 2 T2_CallbackFunc11 1 JavaCallbackKey MessageCallback11b 0 T2_CallbackFunc11 0 ``` leading to the following interface ``` /** JavaCallback interface: T2_CallbackFunc11 -> void (*T2_CallbackFunc11)(size_t id, const T2_Callback11UserType * usrParam, long val) */ public static interface T2_CallbackFunc11 { /** Interface to C language function:
void callback(size_t id, const T2_Callback11UserType * usrParam, long val)
Alias for: T2_CallbackFunc11 */ public void callback(long id, T2_Callback11UserType usrParam, long val); } ... public static class MessageCallback11bKey { ... } ... /** Returns set of Key { long id } for
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public Set getMessageCallback11bKeys(); /** Returns whether callback Key { long id } is mapped for
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public boolean isMessageCallback11bMapped(MessageCallback11bKey key); /** Returns T2_CallbackFunc11 callback mapped to Key { long id } for
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public T2_CallbackFunc11 getMessageCallback11b(MessageCallback11bKey key); /** Returns user-param mapped to Key { long id } for
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public Object getMessageCallback11bUserParam(MessageCallback11bKey key); /** Releases all callback data mapped via Key { long id } skipping toolkit API. Favor passing `null` callback ref to
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public int releaseAllMessageCallback11b(); /** Releases callback data mapped to Key { long id } skipping toolkit API. Favor passing `null` callback ref to
void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data) */ public void releaseMessageCallback11b(MessageCallback11bKey key); /** Entry point (through function pointer) to C language function:
void MessageCallback11b(size_t id, T2_CallbackFunc11 cbFunc, void * Data)
*/ public void MessageCallback11b(long id, T2_CallbackFunc11 cbFunc, long Data); /** Entry point (through function pointer) to C language function:
void MessageCallback11bInject(size_t id, long val)
*/ public void MessageCallback11bInject(long id, long val); ``` *TODO: Enhance documentation* ## Misc Configurations ### `LibraryOnLoad ` for `JNI_OnLoad*(..)` ... `LibraryOnLoad ` *can* be specified in one native code-unit within one native library maximum, otherwise multiple function definitions would occur. In case [Java™ callback methods are used](#java-callback), it is required to have `LibraryOnLoad ` specified in exactly one native code-unit within one native library. `LibraryOnLoad ` generates native JNI code to handle the `JavaVM*` instance - `JavaVM* JVMUtil_GetJavaVM()` returning the static `JavaVM*` instance for `LibraryBasename` set by `JNI_OnLoad*()` - `JNI_OnLoad(..)` setting the static `JavaVM*` instance for `LibraryBasename`, used for dynamic libraries, - `JNI_OnLoad_(..)` setting the static `JavaVM*` instance for `LibraryBasename`, used for static libraries, Further the following functions are produced to attach and detach the current thread to and from the JVM, getting and releasing the `JNIEnv*` - `JNIEnv* JVMUtil_GetJNIEnv(int asDaemon, int* jvmAttached)` returns the `JNIEnv*` with current thread being newly attached to the `JavaVM*` **if** result `*jvmAttached == true`, otherwise the current thread was already attached to the `JavaVM*` - `void JVMUtil_ReleaseJNIEnv(JNIEnv* env, int detachJVM)` releases the `JNIEnv*`, i.e. detaching the current thread from the `JavaVM*` **if** `detachJVM == true`, otherwise funtion does nothing. ## Platform Header Files GlueGen provides convenient platform headers, which can be included in your C header files for native compilation and GlueGen code generation. Example: ``` #include #include uint64_t test64; size_t size1; ptrdiff_t ptr1; ``` To compile this file you have to include the following folder to your compilers system includes, ie `-I`: ``` gluegen/make/stub_includes/platform ``` To generate code for this file you have to include the following folder to your GlueGen `includeRefid` element: ``` gluegen/make/stub_includes/gluegen ``` ## Pre-Defined Macros To identity a GlueGen code generation run, GlueGen defines the following macros: ``` #define __GLUEGEN__ 2 ```