summaryrefslogtreecommitdiffstats
path: root/include/jau/int_math.hpp
blob: cd377951e5da77f55272c820807acc1dc85a283b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * Author: Sven Gothel <sgothel@jausoft.com>
 * Copyright (c) 2020 Gothel Software e.K.
 * Copyright (c) 2020 ZAFENA AB
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#ifndef JAU_BASIC_INT_MATH_HPP_
#define JAU_BASIC_INT_MATH_HPP_

#include <cmath>

namespace jau {
    /**
    // *************************************************
    // *************************************************
    // *************************************************
     */

    /**
     * Natural 'size_t' alternative using 'unsigned int' as its natural sized type.
     * <p>
     * The leading 'n' stands for natural.
     * </p>
     * <p>
     * This is a compromise to indicate intend,
     * but to avoid handling a multiple sized 'size_t' footprint where not desired.
     * </p>
     */
    typedef unsigned int nsize_t;

    /**
     * Natural 'ssize_t' alternative using 'signed int' as its natural sized type.
     * <p>
     * The leading 'n' stands for natural.
     * </p>
     * <p>
     * This is a compromise to indicate intend,
     * but to avoid handling a multiple sized 'ssize_t' footprint where not desired.
     * </p>
     */
    typedef signed int snsize_t;

    /**
    // *************************************************
    // *************************************************
    // *************************************************
     */

    /**
     * Returns the value of the sign function.
     * <pre>
     * -1 for x < 0
     *  0 for x = 0
     *  1 for x > 0
     * </pre>
     * Implementation is type safe.
     * @tparam T an integral number type
     * @param x the integral number
     * @return function result
     */
    template <typename T>
    constexpr snsize_t sign(const T x) noexcept
    {
        return (T(0) < x) - (x < T(0));
    }

    /**
     * Safely inverts the sign of an integral number.
     * <p>
     * Implementation takes special care to have T_MIN, i.e. std::numeric_limits<T>::min(),
     * converted to T_MAX, i.e. std::numeric_limits<T>::max().<br>
     * This is necessary since <code>T_MAX < | -T_MIN |</code> and the result would
     * not fit in the return type T otherwise.
     * </p>
     * Hence for the extreme minimum case:
     * <pre>
     * jau::invert_sign<int32_t>(INT32_MIN) = | INT32_MIN | - 1 = INT32_MAX
     * </pre>
     * Otherwise with x < 0:
     * <pre>
     * jau::invert_sign<int32_t>(x) = | x | = -x
     * </pre>
     * and x >= 0:
     * <pre>
     * jau::invert_sign<int32_t>(x) = -x
     * </pre>
     * @tparam T
     * @param x
     * @return
     */
    template <typename T>
    constexpr T invert_sign(const T x) noexcept
    {
        return std::numeric_limits<T>::min() == x ? std::numeric_limits<T>::max() : -x;
    }

    /**
     * Returns the absolute value of an integral number
     * <p>
     * Implementation uses jau::invert_sign() to have a safe absolute value conversion, if required.
     * </p>
     * @tparam T an integral number type
     * @param x the integral number
     * @return function result
     */
    template <typename T>
    constexpr T abs(const T x) noexcept
    {
        return sign(x) < 0 ? invert_sign<T>( x ) : x;
    }

    /**
     * Returns the number of decimal digits of the given integral value number using std::log10<T>().<br>
     * If sign_is_digit == true (default), treats a potential negative sign as a digit.
     * <pre>
     * x < 0: 1 + (int) ( log10( -x ) ) + ( sign_is_digit ? 1 : 0 )
     * x = 0: 1
     * x > 0: 1 + (int) ( log10(  x ) )
     * </pre>
     * Implementation uses jau::invert_sign() to have a safe absolute value conversion, if required.
     * <p>
     * Convenience method, reusing precomputed sign of value to avoid redundant computations.
     * </p>
     * @tparam T an integral integer type
     * @param x the integral integer
     * @param x_sign the pre-determined sign of the given value x
     * @param sign_is_digit if true and value is negative, adds one to result for sign. Defaults to true.
     * @return digit count
     */
    template<typename T>
    constexpr nsize_t digits10(const T x, const snsize_t x_sign, const bool sign_is_digit=true) noexcept
    {
        if( x_sign == 0 ) {
            return 1;
        }
        if( x_sign < 0 ) {
            return 1 + static_cast<nsize_t>( std::log10<T>( invert_sign<T>( x ) ) ) + ( sign_is_digit ? 1 : 0 );
        } else {
            return 1 + static_cast<nsize_t>( std::log10<T>(                 x   ) );
        }
    }

    /**
     * Returns the number of decimal digits of the given integral value number using std::log10<T>().
     * If sign_is_digit == true (default), treats a potential negative sign as a digit.
     * <pre>
     * x < 0: 1 + (int) ( log10( -x ) ) + ( sign_is_digit ? 1 : 0 )
     * x = 0: 1
     * x > 0: 1 + (int) ( log10(  x ) )
     * </pre>
     * Implementation uses jau::invert_sign() to have a safe absolute value conversion, if required.
     * @tparam T an integral integer type
     * @param x the integral integer
     * @param sign_is_digit if true and value is negative, adds one to result for sign. Defaults to true.
     * @return digit count
     */
    template<typename T>
    constexpr nsize_t digits10(const T x, const bool sign_is_digit=true) noexcept
    {
        return digits10<T>(x, jau::sign<T>(x), sign_is_digit);
    }

} // namespace jau

#endif /* JAU_BASIC_INT_MATH_HPP_ */