summaryrefslogtreecommitdiffstats
path: root/include/jau/darray.hpp
blob: dc7f166a1b51aa5f92bf79209b3ad733718fd1ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
/*
 * Author: Sven Gothel <sgothel@jausoft.com>
 * Copyright (c) 2020 Gothel Software e.K.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#ifndef JAU_DYN_ARRAY_HPP_
#define JAU_DYN_ARRAY_HPP_

#include <cstring>
#include <string>
#include <cstdint>
#include <limits>
#include <atomic>
#include <memory>
#include <mutex>
#include <condition_variable>
#include <initializer_list>
#include <algorithm>
#include <utility>

#include <jau/debug.hpp>
#include <jau/basic_types.hpp>
#include <jau/ordered_atomic.hpp>
#include <jau/callocator.hpp>
#include <jau/basic_algos.hpp>

namespace jau {

// #define JAU_DEBUG_DARRAY0 1
#if JAU_DEBUG_DARRAY0
    #define JAU_DARRAY_PRINTF0(...) { fprintf(stderr, __VA_ARGS__); fflush(stderr); }
#else
    #define JAU_DARRAY_PRINTF0(...)
#endif

// #define JAU_DEBUG_DARRAY 1
#if JAU_DEBUG_DARRAY
    #define JAU_DARRAY_PRINTF(...) { fprintf(stderr, __VA_ARGS__); fflush(stderr); }
#else
    #define JAU_DARRAY_PRINTF(...)
#endif

    /** \addtogroup DataStructs
     *
     *  @{
     */

    /**
     * Implementation of a dynamic linear array storage, aka vector.<br>
     * Goals are to support a high-performance CoW dynamic array implementation, jau::cow_darray,<br>
     * exposing fine grained control over its underlying storage facility.<br>
     * Further, jau::darray provides high-performance and efficient storage properties on its own.
     *
     * This class shall be compliant with <i>C++ named requirements for Container</i>.
     *
     * API and design differences to std::vector
     * - jau::darray adds a parameterized <i>growth factor</i> aspect, default to golden ration jau::darray::DEFAULT_GROWTH_FACTOR
     * - <i>capacity</i> control via constructor and operations, related to <i>growth factor</i>.
     * - Iterator jau::darray::const_iterator .. are harmonized with jau::cow_ro_iterator .. used in jau:cow_darray.
     * - ...
     * - Custom constructor and operations, supporting a more efficient jau::cow_darray implementation.
     * - Custom template typename Size_type, defaults to jau::nsize_t.
     * - ...
     * - <b>Removed</b>: size_type x value_type fill operations, e.g. assign, constructor, .... for clarity, since supporting <i>capacity</i>.
     * - ...
     * - <b>TODO</b>: std::initializer_list<T> methods, ctor is provided.
     *
     * Implementation differences to std::vector and some details
     * - Using zero overhead <i>value_type*</i> as iterator type.
     * - ...
     * - Storage is operated on three iterator: <i>begin</i>, <i>end</i> and <i>storage_end</i>.
     * - Constructs and destructs value_type via <i>placement new</i> within the pre-allocated array capacity. Latter is managed via allocator_type.
     *
     *
     * @anchor darray_ntt_params
     * ### Non-Type Template Parameter (NTTP) controlling Value_type memory
     * @anchor darray_memmove
     * #### use_memmove
     * `use_memmove` can be overriden and defaults to `std::is_trivially_copyable_v<Value_type>`.
     *
     * The default value has been chosen with care, see C++ Standard section 6.9 Types [TriviallyCopyable](https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable).
     *
     * See [Trivial destructor](https://en.cppreference.com/w/cpp/language/destructor#Trivial_destructor)
     * being key requirement to [TriviallyCopyable](https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable).
     * > A trivial destructor is a destructor that performs no action.
     * > Objects with trivial destructors don't require a delete-expression and may be disposed of by simply deallocating their storage.
     * > All data types compatible with the C language (POD types) are trivially destructible.`
     *
     * However, since the destructor is not being called when using `memmove` on elements within this container,
     * the requirements are more relaxed and *TriviallyCopyable* not required nor guaranteed, see below.
     *
     * `memmove` will be used to move an object inside this container memory only,
     * i.e. where construction and destruction is controlled.
     * Not requiring *TriviallyCopyable* constraints `memmove` as follows:
     * - We can't `memmove` one or more objects into this container, even with an `rvalue` reference.
     *   The `rvalue`'s destructor will be called and potential acquired resources are lost.
     * - We can `memmove` an object around within this container, i.e. when growing or shrinking the array. (*Used*)
     * - We can `memmove` an object out of this container to the user. (*Unused*)
     *
     * Relaxed requirements for `use_memmove` are:
     * - Not using inner class pointer to inner class fields or methods (like launching a thread).
     * - TBD ???
     *
     * Since element pointer and iterator are always invalidated for container after storage mutation,
     * above constraints are not really anything novel and go along with normal std::vector.
     *
     * Users may include `typedef container_memmove_compliant` in their Value_type class
     * to enforce `use_memmove` as follows:
     * - `typedef std::true_type  container_memmove_compliant;`
     *
     * @anchor darray_secmem
     * #### use_secmem
     * `use_secmem` can be overriden and defaults to `false`.
     *
     * `use_secmem`, if enabled, ensures that the underlying memory will be zeroed out
     * after use and element erasure.
     *
     * Users may include `typedef enforce_secmem` in their Value_type class
     * to enforce `use_secmem` as follows:
     * - `typedef std::true_type  enforce_secmem;`
     *
     * @see cow_darray
     */
    template <typename Value_type, typename Alloc_type = jau::callocator<Value_type>, typename Size_type = jau::nsize_t,
              bool use_memmove = std::is_trivially_copyable_v<Value_type> || is_container_memmove_compliant_v<Value_type>,
              bool use_secmem  = is_enforcing_secmem_v<Value_type>
             >
    class darray
    {
        public:
            /** Default growth factor using the golden ratio 1.618 */
            constexpr static const float DEFAULT_GROWTH_FACTOR = 1.618f;

            constexpr static const bool uses_memmove = use_memmove;
            constexpr static const bool uses_secmem  = use_secmem;
            constexpr static const bool uses_realloc = use_memmove && std::is_base_of_v<jau::callocator<Value_type>, Alloc_type>;

            // typedefs' for C++ named requirements: Container

            typedef Value_type                                  value_type;
            typedef value_type*                                 pointer;
            typedef const value_type*                           const_pointer;
            typedef value_type&                                 reference;
            typedef const value_type&                           const_reference;
            typedef value_type*                                 iterator;
            typedef const value_type*                           const_iterator;
            typedef Size_type                                   size_type;
            typedef typename std::make_signed<size_type>::type  difference_type;
            // typedef std::reverse_iterator<iterator>          reverse_iterator;
            // typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
            typedef Alloc_type                                  allocator_type;

            /** Used to determine whether this type is a darray or has a darray, see ::is_darray_type<T> */
            typedef bool                                        darray_tag;

        private:
            typedef std::remove_const_t<Value_type>             value_type_mutable;
            /** Required to create and move immutable elements, aka const */
            typedef value_type_mutable*                         pointer_mutable;

            static constexpr void* voidptr_cast(const_pointer p) { return reinterpret_cast<void*>( const_cast<pointer_mutable>( p ) ); }

            constexpr static const size_type DIFF_MAX = std::numeric_limits<difference_type>::max();
            constexpr static const size_type MIN_SIZE_AT_GROW = 10;

            allocator_type alloc_inst;
            pointer begin_;
            pointer end_;
            pointer storage_end_;
            float growth_factor_;

            /**
             * Allocates a new store using allocator_type.
             * <p>
             * Throws jau::IllegalArgumentException() if size_ > <code>std::numeric_limits<difference_type>::max()</code>, i.e. difference_type maximum.
             * </p>
             * <p>
             * Throws jau::OutOfMemoryError() if allocator_type::allocate() returns nullptr.
             * </p>
             * @param alloc the allocator_type instance
             * @param size_ the element count, must be <= <code>std::numeric_limits<difference_type>::max()</code>
             * @return nullptr if given <code>0 == size_</code> or the newly allocated memory
             */
            constexpr value_type * allocStore(const size_type size_) {
                if( 0 != size_ ) {
                    if( size_ > DIFF_MAX ) {
                        throw jau::IllegalArgumentException("alloc "+std::to_string(size_)+" > difference_type max "+
                                std::to_string(DIFF_MAX), E_FILE_LINE);
                    }
                    value_type * m = alloc_inst.allocate(size_);
                    if( nullptr == m ) {
                        throw jau::OutOfMemoryError("alloc "+std::to_string(size_)+" elements * "+
                                std::to_string(sizeof(value_type))+" bytes/element = "+
                                std::to_string(size_ * sizeof(value_type))+" bytes -> nullptr", E_FILE_LINE);
                    }
                    return m;
                }
                return nullptr;
            }

            template<class _Alloc_type>
            constexpr value_type * reallocStore(const size_type new_capacity_,
                    std::enable_if_t< std::is_base_of<jau::callocator<value_type>, _Alloc_type>::value, bool > = true )
            {
                if( new_capacity_ > DIFF_MAX ) {
                    throw jau::IllegalArgumentException("realloc "+std::to_string(new_capacity_)+" > difference_type max "+
                            std::to_string(DIFF_MAX), E_FILE_LINE);
                }
                value_type * m = alloc_inst.reallocate(begin_, storage_end_-begin_, new_capacity_);
                if( nullptr == m ) {
                    free(const_cast<pointer_mutable>(begin_)); // has not been touched by realloc
                    throw jau::OutOfMemoryError("realloc "+std::to_string(new_capacity_)+" elements * "+
                            std::to_string(sizeof(value_type))+" bytes/element = "+
                            std::to_string(new_capacity_ * sizeof(value_type))+" bytes -> nullptr", E_FILE_LINE);
                }
                return m;
            }
            template<class _Alloc_type>
            constexpr value_type * reallocStore(const size_type new_capacity_,
                    std::enable_if_t< !std::is_base_of<jau::callocator<value_type>, _Alloc_type>::value, bool > = true )
            {
                (void)new_capacity_;
                throw jau::UnsupportedOperationException("realloc not supported on non allocator_type not based upon jau::callocator", E_FILE_LINE);
            }

            constexpr void freeStore() {
                if( nullptr != begin_ ) {
                    alloc_inst.deallocate(begin_, storage_end_-begin_);
                }
            }

            constexpr void clear_iterator() noexcept {
                begin_       = nullptr;
                end_         = nullptr;
                storage_end_ = nullptr;
            }

            constexpr void set_iterator(pointer new_storage_, difference_type size_, difference_type capacity_) noexcept {
                begin_       = new_storage_;
                end_         = new_storage_+size_;
                storage_end_ = new_storage_+capacity_;
            }

            constexpr void set_iterator(difference_type size_, difference_type capacity_) noexcept {
                end_         = begin_+size_;
                storage_end_ = begin_+capacity_;
            }

            constexpr void dtor_one(iterator pos) {
                JAU_DARRAY_PRINTF0("dtor [%zd], count 1\n", (pos-begin_));
                ( pos )->~value_type(); // placement new -> manual destruction!
                if constexpr ( uses_secmem ) {
                    ::explicit_bzero(voidptr_cast(pos), sizeof(value_type));
                }
            }

            constexpr size_type dtor_range(iterator first, const_iterator last) {
                size_type count=0;
                JAU_DARRAY_PRINTF0("dtor [%zd .. %zd], count %zd\n", (first-begin_), (last-begin_)-1, (last-first));
                for(; first < last; ++first, ++count ) {
                    ( first )->~value_type(); // placement new -> manual destruction!
                }
                if constexpr ( uses_secmem ) {
                    ::explicit_bzero(voidptr_cast(last-count), count*sizeof(value_type));
                }
                return count;
            }

            constexpr void ctor_copy_range(pointer dest, iterator first, const_iterator last) {
                JAU_DARRAY_PRINTF0("ctor_copy_range [%zd .. %zd] -> ??, dist %zd\n", (first-begin_), (last-begin_)-1, (last-first));
                for(; first < last; ++dest, ++first) {
                    new (const_cast<pointer_mutable>(dest)) value_type( *first ); // placement new
                }
            }
            constexpr pointer clone_range(iterator first, const_iterator last) {
                JAU_DARRAY_PRINTF0("clone_range [%zd .. %zd], count %zd\n", (first-begin_), (last-begin_)-1, (last-first));
                pointer dest = allocStore(size_type(last-first));
                ctor_copy_range(dest, first, last);
                return dest;
            }
            constexpr pointer clone_range(const size_type dest_capacity, iterator first, const_iterator last) {
                JAU_DARRAY_PRINTF0("clone_range [%zd .. %zd], count %zd -> %d\n", (first-begin_), (last-begin_)-1, (last-first), (int)dest_capacity);
                pointer dest = allocStore(dest_capacity);
                ctor_copy_range(dest, first, last);
                return dest;
            }
            constexpr void ctor_copy_range_check(pointer dest, iterator first, const_iterator last) {
                JAU_DARRAY_PRINTF0("ctor_copy_range_check [%zd .. %zd] -> ??, dist %zd\n", (first-begin_), (last-begin_)-1, (last-first));
                if( first > last ) {
                    throw jau::IllegalArgumentException("first "+to_hexstring(first)+" > last "+to_hexstring(last), E_FILE_LINE);
                }
                for(; first < last; ++dest, ++first) {
                    new (const_cast<pointer_mutable>(dest)) value_type( *first ); // placement new
                }
            }
            constexpr pointer clone_range_check(const size_type dest_capacity, iterator first, const_iterator last) {
                JAU_DARRAY_PRINTF0("clone_range_check [%zd .. %zd], count %zd -> %d\n", (first-begin_), (last-begin_)-1, (last-first), (int)dest_capacity);
                if( dest_capacity < size_type(last-first) ) {
                    throw jau::IllegalArgumentException("capacity "+std::to_string(dest_capacity)+" < source range "+
                                                        std::to_string(difference_type(last-first)), E_FILE_LINE);
                }
                pointer dest = allocStore(dest_capacity);
                ctor_copy_range_check(dest, first, last);
                return dest;
            }

            template< class InputIt >
            constexpr static void ctor_copy_range_foreign(pointer dest, InputIt first, InputIt last) {
                if( first > last ) {
                    throw jau::IllegalArgumentException("first "+jau::to_string( first )+" > last "+
                                                                 jau::to_string( last ), E_FILE_LINE);
                }
                for(; first != last; ++dest, ++first) {
                    new (const_cast<pointer_mutable>(dest)) value_type( *first ); // placement new
                }
            }
            template< class InputIt >
            constexpr pointer clone_range_foreign(const size_type dest_capacity, InputIt first, InputIt last) {
                if( dest_capacity < size_type(last-first) ) {
                    throw jau::IllegalArgumentException("capacity "+std::to_string(dest_capacity)+" < source range "+
                                                        std::to_string(difference_type(last-first)), E_FILE_LINE);
                }
                pointer dest = allocStore(dest_capacity);
                ctor_copy_range_foreign(dest, first, last);
                return dest;
            }

            constexpr void realloc_storage_move(const size_type new_capacity) {
                if constexpr ( !uses_memmove ) {
                    pointer new_storage = allocStore(new_capacity);
                    {
                        iterator dest = new_storage;
                        iterator first = begin_;
                        for(; first < end_; ++dest, ++first) {
                            new (const_cast<pointer_mutable>(dest)) value_type( std::move( *first ) ); // placement new
                            dtor_one(first); // manual destruction, even after std::move (object still exists)
                        }
                    }
                    freeStore();
                    set_iterator(new_storage, size(), new_capacity);
                } else if constexpr ( uses_realloc ) {
                    pointer new_storage = reallocStore<allocator_type>(new_capacity);
                    set_iterator(new_storage, size(), new_capacity);
                } else {
                    pointer new_storage = allocStore(new_capacity);
                    ::memmove(voidptr_cast(new_storage),
                              begin_, (uint8_t*)end_-(uint8_t*)begin_); // we can simply copy the memory over, also no overlap
                    freeStore();
                    set_iterator(new_storage, size(), new_capacity);
                }
            }
            constexpr void grow_storage_move(const size_type new_capacity) {
                /**
                 * Determine a grown_capacity, which is at least
                 * - MIN_SIZE_AT_GROW
                 * - old_capacity * growth_factor ..
                 */
                const size_type old_capacity = capacity();
                const size_type grown_capacity = std::max<size_type>(
                                                         std::max<size_type>( MIN_SIZE_AT_GROW, new_capacity ),
                                                         std::max<size_type>( new_capacity, static_cast<size_type>(old_capacity * growth_factor_ + 0.5f) )
                                                     );
                realloc_storage_move( grown_capacity );
            }
            constexpr void grow_storage_move() {
                realloc_storage_move( get_grown_capacity() );
            }

            constexpr void move_elements(iterator dest, const_iterator first, const difference_type count) noexcept {
                // Debatable here: "Moved source array has been taken over, flush sources' pointer to avoid value_type dtor releasing taken resources!"
                // Debatable, b/c is this even possible for user to hold an instance the way, that a dtor gets called? Probably not.
                // Hence we leave it to 'uses_secmem' to bzero...
                if constexpr ( uses_memmove ) {
                    // handles overlap
                    ::memmove(voidptr_cast(dest),
                              first, sizeof(value_type)*count);
                    if constexpr ( uses_secmem ) {
                        if( dest < first ) {
                            // move elems left
                            JAU_DARRAY_PRINTF0("move_elements.mmm.left [%zd .. %zd] -> %zd, dist %zd\n", (first-begin_), ((first + count)-begin_)-1, (dest-begin_), (first-dest));
                            ::explicit_bzero(voidptr_cast(dest+count), (first-dest)*sizeof(value_type));
                        } else {
                            // move elems right
                            JAU_DARRAY_PRINTF0("move_elements.mmm.right [%zd .. %zd] -> %zd, dist %zd\n", (first-begin_), ((first + count)-begin_)-1, (dest-begin_), (dest-first));
                            ::explicit_bzero(voidptr_cast(first), (dest-first)*sizeof(value_type));
                        }
                    }
                } else {
                    if( dest < first ) {
                        // move elems left
                        const_iterator last = first + count;
                        JAU_DARRAY_PRINTF0("move_elements.def.left [%zd .. %zd] -> %zd, dist %zd\n", (first-begin_), (last-begin_)-1, (dest-begin_), (first-dest));
                        for(; first < last; ++dest, ++first ) {
                            new (const_cast<pointer_mutable>(dest)) value_type( std::move( *first ) ); // placement new
                            dtor_one( const_cast<value_type*>( first ) ); // manual destruction, even after std::move (object still exists)
                        }
                    } else {
                        // move elems right
                        iterator last = const_cast<iterator>(first + count);
                        JAU_DARRAY_PRINTF0("move_elements.def.right [%zd .. %zd] -> %zd, dist %zd\n", (first-begin_), (last-begin_)-1, (dest-begin_), (dest-first));
                        dest += count - 1;
                        for(--last; first <= last; --dest, --last ) {
                            new (const_cast<pointer_mutable>(dest)) value_type( std::move( *last ) ); // placement new
                            dtor_one( last ); // manual destruction, even after std::move (object still exists)
                        }
                    }
                }
            }


        public:

            // ctor w/o elements

            /**
             * Default constructor, giving zero capacity and zero memory footprint.
             */
            constexpr darray() noexcept
            : alloc_inst(), begin_( nullptr ), end_( nullptr ), storage_end_( nullptr ),
              growth_factor_(DEFAULT_GROWTH_FACTOR) {
                JAU_DARRAY_PRINTF("ctor def: %s\n", get_info().c_str());
            }

            /**
             * Creating an empty instance with initial capacity and other (default) properties.
             * @param capacity initial capacity of the new instance.
             * @param growth_factor given growth factor
             * @param alloc given allocator_type
             */
            constexpr explicit darray(size_type capacity, const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
            : alloc_inst( alloc ), begin_( allocStore(capacity) ), end_( begin_ ), storage_end_( begin_ + capacity ),
              growth_factor_( growth_factor ) {
                JAU_DARRAY_PRINTF("ctor 1: %s\n", get_info().c_str());
            }

            // copy_ctor on darray elements

            /**
             * Creates a new instance, copying all elements from the given darray.<br>
             * Capacity and size will equal the given array, i.e. the result is a trimmed jau::darray.
             * @param x the given darray, all elements will be copied into the new instance.
             */
            constexpr darray(const darray& x)
            : alloc_inst( x.alloc_inst ), begin_( clone_range(x.begin_, x.end_) ), end_( begin_ + x.size() ),
              storage_end_( begin_ + x.size() ), growth_factor_( x.growth_factor_ ) {
                JAU_DARRAY_PRINTF("ctor copy0: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("ctor copy0:    x %s\n", x.get_info().c_str());
            }

            /**
             * Creates a new instance, copying all elements from the given darray.<br>
             * Capacity and size will equal the given array, i.e. the result is a trimmed jau::darray.
             * @param x the given darray, all elements will be copied into the new instance.
             * @param growth_factor custom growth factor
             * @param alloc custom allocator_type instance
             */
            constexpr explicit darray(const darray& x, const float growth_factor, const allocator_type& alloc)
            : alloc_inst( alloc ), begin_( clone_range(x.begin_, x.end_) ), end_( begin_ + x.size() ),
              storage_end_( begin_ + x.size() ), growth_factor_( growth_factor ) {
                JAU_DARRAY_PRINTF("ctor copy1: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("ctor copy1:    x %s\n", x.get_info().c_str());
            }

            /**
             * Creates a new instance with custom initial storage capacity, copying all elements from the given darray.<br>
             * Size will equal the given array.
             * <p>
             * Throws jau::IllegalArgumentException() if <code>_capacity < x.size()</code>.
             * </p>
             * @param x the given darray, all elements will be copied into the new instance.
             * @param _capacity custom initial storage capacity
             * @param growth_factor custom growth factor
             * @param alloc custom allocator_type instance
             */
            constexpr explicit darray(const darray& x, const size_type _capacity, const float growth_factor, const allocator_type& alloc)
            : alloc_inst( alloc ), begin_( clone_range( _capacity, x.begin_, x.end_) ), end_( begin_ + x.size() ),
              storage_end_( begin_ + _capacity ), growth_factor_( growth_factor ) {
                JAU_DARRAY_PRINTF("ctor copy2: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("ctor copy2:    x %s\n", x.get_info().c_str());
            }

            /**
             * Like std::vector::operator=(&), assignment
             */
            constexpr darray& operator=(const darray& x) {
                JAU_DARRAY_PRINTF("assignment copy.0: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("assignment copy.0:    x %s\n", x.get_info().c_str());
                if( this != &x ) {
                    const size_type capacity_ = capacity();
                    const size_type x_size_ = x.size();
                    dtor_range(begin_, end_);
                    growth_factor_ = x.growth_factor_;
                    if( x_size_ > capacity_ ) {
                        freeStore();
                        begin_ =  clone_range(x_size_, x.begin_, x.end_);
                        set_iterator(x_size_, x_size_);
                    } else {
                        ctor_copy_range(begin_, x.begin_, x.end_);
                        set_iterator(x_size_, capacity_);
                    }
                }
                JAU_DARRAY_PRINTF("assignment copy.X: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("assignment copy.X:    x %s\n", x.get_info().c_str());
                return *this;
            }

            // move_ctor on darray elements

            constexpr darray(darray && x) noexcept
            : alloc_inst( std::move(x.alloc_inst) ), begin_( std::move(x.begin_) ), end_( std::move(x.end_) ),
              storage_end_( std::move(x.storage_end_) ), growth_factor_( std::move(x.growth_factor_) )
            {
                JAU_DARRAY_PRINTF("ctor move0: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("ctor move0:    x %s\n", x.get_info().c_str());
                // Moved source array has been taken over, flush sources' pointer to avoid value_type dtor releasing taken resources!
                x.clear_iterator();
            }

            constexpr explicit darray(darray && x, const float growth_factor, const allocator_type& alloc) noexcept
            : alloc_inst( std::move(alloc) ), begin_( std::move(x.begin_) ), end_( std::move(x.end_) ),
              storage_end_( std::move(x.storage_end_) ), growth_factor_( std::move(growth_factor) )
            {
                JAU_DARRAY_PRINTF("ctor move1: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("ctor move1:    x %s\n", x.get_info().c_str());
                // Moved source array has been taken over, flush sources' pointer to avoid value_type dtor releasing taken resources!
                x.clear_iterator();
            }

            /**
             * Like std::vector::operator=(&&), move.
             */
            constexpr darray& operator=(darray&& x) noexcept {
                JAU_DARRAY_PRINTF("assignment move.0: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("assignment move.0:    x %s\n", x.get_info().c_str());
                if( this != &x ) {
                    clear();
                    alloc_inst = std::move(x.alloc_inst);
                    begin_ = std::move(x.begin_);
                    end_ = std::move(x.end_);
                    storage_end_ = std::move(x.storage_end_);
                    growth_factor_ = std::move( x.growth_factor_ );

                    // Moved source array has been taken over, flush sources' pointer to avoid value_type dtor releasing taken resources!
                    x.clear_iterator();
                }
                JAU_DARRAY_PRINTF("assignment move.X: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("assignment move.X:    x %s\n", x.get_info().c_str());
                return *this;
            }

            // ctor on const_iterator and foreign template iterator

            /**
             * Creates a new instance with custom initial storage capacity,
             * copying all elements from the given const_iterator value_type range [first, last).<br>
             * Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
             * <p>
             * Throws jau::IllegalArgumentException() if <code>_capacity < size_type(last - first)</code>.
             * </p>
             * @param _capacity custom initial storage capacity
             * @param first const_iterator to first element of value_type range [first, last)
             * @param last const_iterator to last element of value_type range [first, last)
             * @param growth_factor custom growth factor
             * @param alloc custom allocator_type instance
             */
            constexpr explicit darray(const size_type _capacity, const_iterator first, const_iterator last,
                                      const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
            : alloc_inst( alloc ), begin_( clone_range_check(_capacity, first, last) ), end_(begin_ + size_type(last - first) ),
              storage_end_( begin_ + _capacity ), growth_factor_( growth_factor ) {
                JAU_DARRAY_PRINTF("ctor iters0: %s\n", get_info().c_str());
            }

            /**
             * Creates a new instance with custom initial storage capacity,
             * copying all elements from the given template input-iterator value_type range [first, last).<br>
             * Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
             * <p>
             * Throws jau::IllegalArgumentException() if <code>_capacity < size_type(last - first)</code>.
             * </p>
             * @tparam InputIt template input-iterator custom type
             * @param _capacity custom initial storage capacity
             * @param first template input-iterator to first element of value_type range [first, last)
             * @param last template input-iterator to last element of value_type range [first, last)
             * @param growth_factor custom growth factor
             * @param alloc custom allocator_type instance
             */
            template< class InputIt >
            constexpr explicit darray(const size_type _capacity, InputIt first, InputIt last,
                                      const float growth_factor=DEFAULT_GROWTH_FACTOR, const allocator_type& alloc = allocator_type())
            : alloc_inst( alloc ), begin_( clone_range_foreign(_capacity, first, last) ), end_(begin_ + size_type(last - first) ),
              storage_end_( begin_ + _capacity ), growth_factor_( growth_factor ) {
                JAU_DARRAY_PRINTF("ctor iters1: %s\n", get_info().c_str());
            }

            /**
             * Creates a new instance,
             * copying all elements from the given template input-iterator value_type range [first, last).<br>
             * Size will equal the range [first, last), i.e. <code>size_type(last-first)</code>.
             * @tparam InputIt template input-iterator custom type
             * @param first template input-iterator to first element of value_type range [first, last)
             * @param last template input-iterator to last element of value_type range [first, last)
             * @param alloc custom allocator_type instance
             */
            template< class InputIt >
            constexpr darray(InputIt first, InputIt last, const allocator_type& alloc = allocator_type())
            : alloc_inst( alloc ), begin_( clone_range_foreign(size_type(last - first), first, last) ), end_(begin_ + size_type(last - first) ),
              storage_end_( begin_ + size_type(last - first) ), growth_factor_( DEFAULT_GROWTH_FACTOR ) {
                JAU_DARRAY_PRINTF("ctor iters2: %s\n", get_info().c_str());
            }

            /**
             * Create a new instance from an initializer list.
             *
             * Using the `std::initializer_list` requires to *copy* the given value_type objects into this darray.
             *
             * To utilize more efficient move semantics, see push_back_list() and jau::make_darray().
             *
             * @param initlist initializer_list.
             * @param alloc allocator
             * @see push_back_list()
             * @see jau::make_darray()
             */
            constexpr darray(std::initializer_list<value_type> initlist, const allocator_type& alloc = allocator_type())
            : alloc_inst( alloc ), begin_( clone_range_foreign(initlist.size(), initlist.begin(), initlist.end()) ),
              end_(begin_ + initlist.size() ), storage_end_( begin_ + initlist.size() ), growth_factor_( DEFAULT_GROWTH_FACTOR ) {
                JAU_DARRAY_PRINTF("ctor initlist: %s\n", get_info().c_str());
            }

            ~darray() noexcept {
                JAU_DARRAY_PRINTF("dtor: %s\n", get_info().c_str());
                clear();
            }

            /**
             * Returns <code>std::numeric_limits<difference_type>::max()</code> as the maximum array size.
             * <p>
             * We rely on the signed <code>difference_type</code> for pointer arithmetic,
             * deducing ranges from iterator.
             * </p>
             */
            constexpr size_type max_size() const noexcept { return DIFF_MAX; }

            // iterator

            constexpr iterator begin() noexcept { return begin_; }

            constexpr const_iterator begin() const noexcept { return begin_; }

            constexpr const_iterator cbegin() const noexcept { return begin_; }

            constexpr iterator end() noexcept { return end_; }

            constexpr const_iterator end() const noexcept { return end_; }

            constexpr const_iterator cend() const noexcept { return end_; }

#if 0
            constexpr iterator storage_end() noexcept { return storage_end_; }

            constexpr const_iterator storage_end() const noexcept { return storage_end_; }

            constexpr const_iterator cstorage_end() const noexcept { return storage_end_; }
#endif

            // read access

            const allocator_type& get_allocator_ref() const noexcept {
                return alloc_inst;
            }

            allocator_type get_allocator() const noexcept {
                return allocator_type(alloc_inst);
            }

            constexpr float growth_factor() const noexcept {
                return growth_factor_;
            }

            /**
             * Return the current capacity.
             */
            constexpr size_type capacity() const noexcept { return size_type(storage_end_ - begin_); }

            /**
             * Return the current capacity() multiplied by the growth factor, minimum is max(capacity()+1, 10).
             */
            constexpr size_type get_grown_capacity() const noexcept {
                const size_type a_capacity = capacity();
                return std::max<size_type>( std::max<size_type>( MIN_SIZE_AT_GROW, a_capacity+1 ),
                                            static_cast<size_type>(a_capacity * growth_factor_ + 0.5f) );
            }

            /**
             * Like std::vector::empty().
             */
            constexpr bool empty() const noexcept { return begin_ == end_; }

            /**
             * Returns true if capacity has been reached and the next push_back()
             * will grow the storage and invalidates all iterators and references.
             */
            constexpr bool capacity_reached() const noexcept { return end_ >= storage_end_; }

            /**
             * Like std::vector::size().
             */
            constexpr size_type size() const noexcept { return size_type(end_ - begin_); }

            // mixed mutable/immutable element access

            /**
             * Like std::vector::front(), mutable access.
             */
            constexpr reference front() { return *begin_; }

            /**
             * Like std::vector::front(), immutable access.
             */
            constexpr const_reference front() const { return *begin_; }

            /**
             * Like std::vector::back(), mutable access.
             */
            constexpr reference back() { return *(end_-1); }

            /**
             * Like std::vector::back(), immutable access.
             */
            constexpr const_reference back() const { return *(end_-1); }

            /**
             * Like std::vector::data(), const immutable pointer
             */
            constexpr const_pointer data() const noexcept { return begin_; }

            /**
             * Like std::vector::data(), mutable pointer
             */
            constexpr pointer data() noexcept { return begin_; }

            /**
             * Like std::vector::operator[](size_type), immutable reference.
             */
            const_reference operator[](size_type i) const noexcept {
                return *(begin_+i);
            }

            /**
             * Like std::vector::operator[](size_type), mutable reference.
             */
            reference operator[](size_type i) noexcept {
                return *(begin_+i);
            }

            /**
             * Like std::vector::at(size_type), immutable reference.
             */
            const_reference at(size_type i) const {
                if( 0 <= i && i < size() ) {
                    return *(begin_+i);
                }
                throw jau::IndexOutOfBoundsException(i, size(), E_FILE_LINE);
            }

            /**
             * Like std::vector::at(size_type), mutable reference.
             */
            reference at(size_type i) {
                if( 0 <= i && i < size() ) {
                    return *(begin_+i);
                }
                throw jau::IndexOutOfBoundsException(i, size(), E_FILE_LINE);
            }

            // write access, mutable array operations

            /**
             * Like std::vector::reserve(), increases this instance's capacity to <code>new_capacity</code>.
             * <p>
             * Only creates a new storage and invalidates iterators if <code>new_capacity</code>
             * is greater than the current jau::darray::capacity().
             * </p>
             */
            void reserve(size_type new_capacity) {
                const size_type capacity_ = capacity();
                if( new_capacity > capacity_ ) {
                    grow_storage_move(new_capacity);
                }
            }
            
            /**
             * Like std::vector::shrink_to_fit(), but ensured `constexpr`.
             *
             * If capacity() > size(), reallocate storage to size().
             */
            constexpr void shrink_to_fit() {
                const size_type size_ = size();
                const size_type capacity_ = capacity();
                if( capacity_ > size_ ) {
                    realloc_storage_move(size_);
                }                
            }
            
            /**
             * Like std::vector::assign()
             * @tparam InputIt foreign input-iterator to range of value_type [first, last)
             * @param first first foreign input-iterator to range of value_type [first, last)
             * @param last last foreign input-iterator to range of value_type [first, last)
             */
            template< class InputIt >
            constexpr void assign( InputIt first, InputIt last ) {
                const size_type size_ = size();
                const size_type capacity_ = capacity();
                const size_type x_size_ = size_type(last - first);
                dtor_range(begin_, end_);
                if( x_size_ > capacity_ ) {
                    freeStore();
                    begin_ =  clone_range_foreign(x_size_, first, last);
                    set_iterator(x_size_, x_size_);
                } else {
                    ctor_copy_range_foreign(begin_, first, last);
                    set_iterator(x_size_, capacity_);
                }
            }
            /**
             * Like std::vector::assign(), but non-template overload using const_iterator.
             * @param first first const_iterator to range of value_type [first, last)
             * @param last last const_iterator to range of value_type [first, last)
             */
            constexpr void assign( const_iterator first, const_iterator last ) {
                const size_type size_ = size();
                const size_type capacity_ = capacity();
                const size_type x_size_ = size_type(last - first);
                dtor_range(begin_, end_);
                if( x_size_ > capacity_ ) {
                    freeStore();
                    begin_ =  clone_range_check(x_size_, first, last);
                    set_iterator(x_size_, x_size_);
                } else {
                    ctor_copy_range_check(begin_, first, last);
                    set_iterator(x_size_, capacity_);
                }
            }

            /**
             * Like std::vector::clear(), but ending with zero capacity.
             */
            constexpr void clear() noexcept {
                dtor_range(begin_, end_);
                freeStore();
                begin_ = nullptr;
                end_ = nullptr;
                storage_end_ = nullptr;
            }

            /**
             * Like std::vector::swap().
             */
            constexpr void swap(darray& x) noexcept {
                JAU_DARRAY_PRINTF("swap.0: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("swap.0:    x %s\n", x.get_info().c_str());
                std::swap(alloc_inst, x.alloc_inst);
                std::swap(begin_, x.begin_);
                std::swap(end_, x.end_);
                std::swap(storage_end_, x.storage_end_);
                std::swap(growth_factor_, x.growth_factor_);
                JAU_DARRAY_PRINTF("swap.X: this %s\n", get_info().c_str());
                JAU_DARRAY_PRINTF("swap.X:    x %s\n", x.get_info().c_str());
            }

            /**
             * Like std::vector::pop_back().
             */
            constexpr void pop_back() noexcept {
                if( begin_ != end_ ) {
                    dtor_one( --end_ );
                }
            }

            /**
             * Like std::vector::erase(), removes the elements at pos.
             * @return iterator following the last removed element.
             */
            constexpr iterator erase (const_iterator pos) {
                if( begin_ <= pos && pos < end_ ) {
                    dtor_one( const_cast<value_type*>( pos ) );
                    const difference_type right_count = end_ - ( pos + 1 ); // pos is exclusive
                    if( 0 < right_count ) {
                        move_elements(const_cast<value_type*>(pos), pos+1, right_count); // move right elems one left
                    }
                    --end_;
                }
                return begin_ <= const_cast<iterator>(pos) && const_cast<iterator>(pos) <= end_ ? const_cast<iterator>(pos) : end_;
            }

            /**
             * Like std::vector::erase(), removes the elements in the range [first, last).
             * @return iterator following the last removed element.
             */
            constexpr iterator erase (iterator first, const_iterator last) {
                const size_type count = dtor_range(first, last);
                if( count > 0 ) {
                    const difference_type right_count = end_ - last;  // last is exclusive
                    if( 0 < right_count ) {
                        move_elements(first, last, right_count); // move right elems count left
                    }
                    end_ -= count;
                }
                return begin_ <= const_cast<iterator>(first) && const_cast<iterator>(first) <= end_ ? const_cast<iterator>(first) : end_;
            }

            /**
             * Like std::vector::insert(), copy
             * <p>
             * Inserts the element before pos
             * and moves all elements from there to the right beforehand.
             * </p>
             * <p>
             * size will be increased by one.
             * </p>
             * @param pos iterator before which the content will be inserted. pos may be the end() iterator
             * @param x element value to insert
             */
            constexpr iterator insert(const_iterator pos, const value_type& x) {
                if( begin_ <= pos && pos <= end_ ) {
                    const size_type pos_idx = pos - begin_;
                    if( end_ == storage_end_ ) {
                        grow_storage_move();
                    }
                    iterator pos_new = begin_ + pos_idx;
                    const difference_type right_count = end_ - pos_new; // include original element at 'pos_new'
                    if( 0 < right_count ) {
                        move_elements(pos_new+1, pos_new, right_count); // move elems one right
                    }
                    new (const_cast<pointer_mutable>(pos_new)) value_type( x ); // placement new
                    ++end_;

                    return begin_ <= pos_new && pos_new <= end_ ? pos_new : end_;
                } else {
                    throw jau::IndexOutOfBoundsException(std::to_string(difference_type(pos - begin_)), std::to_string(size()), E_FILE_LINE);
                }
            }

            /**
             * Like std::vector::insert(), move
             * <p>
             * Inserts the element before the given position
             * and moves all elements from there to the right beforehand.
             * </p>
             * <p>
             * size will be increased by one.
             * </p>
             * @param pos iterator before which the content will be inserted. pos may be the end() iterator
             * @param x element value to be moved into
             */
            constexpr iterator insert(const_iterator pos, value_type&& x) {
                if( begin_ <= pos && pos <= end_ ) {
                    const size_type pos_idx = pos - begin_;
                    if( end_ == storage_end_ ) {
                        grow_storage_move();
                    }
                    iterator pos_new = begin_ + pos_idx;
                    const difference_type right_count = end_ - pos_new; // include original element at 'pos_new'
                    if( 0 < right_count ) {
                        move_elements(pos_new+1, pos_new, right_count); // move elems one right
                    }
                    new (const_cast<pointer_mutable>(pos_new)) value_type( std::move( x ) ); // placement new
                    ++end_;

                    return begin_ <= pos_new && pos_new <= end_ ? pos_new : end_;
                } else {
                    throw jau::IndexOutOfBoundsException(std::to_string(difference_type(pos - begin_)), std::to_string(size()), E_FILE_LINE);
                }
            }

            /**
             * Like std::vector::emplace(), construct a new element in place.
             * <p>
             * Constructs the element before the given position using placement new
             * and moves all elements from there to the right beforehand.
             * </p>
             * <p>
             * size will be increased by one.
             * </p>
             * @param pos iterator before which the content will be inserted. pos may be the end() iterator
             * @param args arguments to forward to the constructor of the element
             */
            template<typename... Args>
            constexpr iterator emplace(const_iterator pos, Args&&... args) {
                if( begin_ <= pos && pos <= end_ ) {
                    const size_type pos_idx = pos - begin_;
                    if( end_ == storage_end_ ) {
                        grow_storage_move();
                    }
                    iterator pos_new = begin_ + pos_idx;
                    const difference_type right_count = end_ - pos_new; // include original element at 'pos_new'
                    if( 0 < right_count ) {
                        move_elements(pos_new+1, pos_new, right_count); // move elems one right
                    }
                    new (const_cast<pointer_mutable>(pos_new)) value_type( std::forward<Args>(args)... ); // placement new, construct in-place
                    ++end_;

                    return begin_ <= pos_new && pos_new <= end_ ? pos_new : end_;
                } else {
                    throw jau::IndexOutOfBoundsException(std::to_string(difference_type(pos - begin_)), std::to_string(size()), E_FILE_LINE);
                }
            }

            /**
             * Like std::vector::insert(), inserting the value_type range [first, last).
             * @tparam InputIt foreign input-iterator to range of value_type [first, last)
             * @param pos iterator before which the content will be inserted. pos may be the end() iterator
             * @param first first foreign input-iterator to range of value_type [first, last)
             * @param last last foreign input-iterator to range of value_type [first, last)
             * @return Iterator pointing to the first element inserted, or pos if first==last.
             */
            template< class InputIt >
            constexpr iterator insert( const_iterator pos, InputIt first, InputIt last ) {
                if( begin_ <= pos && pos <= end_ ) {
                    const size_type new_elem_count = size_type(last - first);
                    const size_type pos_idx = pos - begin_;
                    if( end_ + new_elem_count >= storage_end_ ) {
                        grow_storage_move(size() + new_elem_count);
                    }
                    iterator pos_new = begin_ + pos_idx;
                    const difference_type right_count = end_ - pos_new; // include original element at 'pos_new'
                    if( 0 < right_count ) {
                        move_elements(pos_new + new_elem_count, pos_new, right_count); // move elems count right
                    }
                    ctor_copy_range_foreign(pos_new, first, last);
                    end_ += new_elem_count;

                    return begin_ <= pos_new && pos_new <= end_ ? pos_new : end_;
                } else {
                    throw jau::IndexOutOfBoundsException(std::to_string(difference_type(pos - begin_)), std::to_string(size()), E_FILE_LINE);
                }
            }

            /**
             * Like std::vector::push_back(), copy
             * @param x the value to be added at the tail.
             */
            constexpr void push_back(const value_type& x) {
                if( end_ == storage_end_ ) {
                    grow_storage_move();
                }
                new (const_cast<pointer_mutable>(end_)) value_type( x ); // placement new
                ++end_;
            }

            /**
             * Like std::vector::push_back(), move
             * @param x the value to be added at the tail.
             */
            constexpr void push_back(value_type&& x) {
                if( end_ == storage_end_ ) {
                    grow_storage_move();
                }
                new (const_cast<pointer_mutable>(end_)) value_type( std::move(x) ); // placement new, just one element - no optimization
                ++end_;
            }

            /**
             * Like std::vector::emplace_back(), construct a new element in place at the end().
             * <p>
             * Constructs the element at the end() using placement new.
             * </p>
             * <p>
             * size will be increased by one.
             * </p>
             * @param args arguments to forward to the constructor of the element
             */
            template<typename... Args>
            constexpr reference emplace_back(Args&&... args) {
                if( end_ == storage_end_ ) {
                    grow_storage_move();
                }
                new (const_cast<pointer_mutable>(end_)) value_type( std::forward<Args>(args)... ); // placement new, construct in-place
                reference res = *end_;
                ++end_;
                return res;
            }

            /**
             * Like std::vector::push_back(), but appends the value_type range [first, last).
             * @tparam InputIt foreign input-iterator to range of value_type [first, last)
             * @param first first foreign input-iterator to range of value_type [first, last)
             * @param last last foreign input-iterator to range of value_type [first, last)
             */
            template< class InputIt >
            constexpr void push_back( InputIt first, InputIt last ) {
                const size_type count = size_type(last - first);

                if( end_ + count >= storage_end_ ) {
                    grow_storage_move(size() + count);
                }
                ctor_copy_range_foreign(end_, first, last);
                end_ += count;
            }

            /**
             * Like push_back(), but for more multiple const r-value to copy.
             *
             * @tparam Args
             * @param args r-value references to copy into this storage
             */
            template <typename... Args>
            constexpr void push_back_list(const Args&... args)
            {
                const size_type count = sizeof...(Args);

                JAU_DARRAY_PRINTF("push_back_list.copy.0: %zu elems: this %s\n", count, get_info().c_str());

                if( end_ + count >= storage_end_ ) {
                    grow_storage_move(size() + count);
                }
                // C++17 fold expression on above C++11 template pack args
                ( new (const_cast<pointer_mutable>(end_++)) value_type( args ), ... ); // @suppress("Syntax error")

                JAU_DARRAY_PRINTF("push_back_list.copy.X: %zu elems: this %s\n", count, get_info().c_str());
            }

            /**
             * Like push_back(), but for more multiple r-value references to move.
             *
             * @tparam Args
             * @param args r-value references to move into this storage
             * @see jau::make_darray()
             */
            template <typename... Args>
            constexpr void push_back_list(Args&&... args)
            {
                const size_type count = sizeof...(Args);

                JAU_DARRAY_PRINTF("push_back_list.move.0: %zu elems: this %s\n", count, get_info().c_str());

                if( end_ + count >= storage_end_ ) {
                    grow_storage_move(size() + count);
                }
                // C++17 fold expression on above C++11 template pack args
                ( new (const_cast<pointer_mutable>(end_++)) value_type( std::move(args) ), ... ); // @suppress("Syntax error")

                JAU_DARRAY_PRINTF("push_back_list.move.X: %zu elems: this %s\n", count, get_info().c_str());
            }

            /**
             * Generic value_type equal comparator to be user defined for e.g. jau::darray::push_back_unique().
             * @param a one element of the equality test.
             * @param b the other element of the equality test.
             * @return true if both are equal
             */
            typedef bool(*equal_comparator)(const value_type& a, const value_type& b);

            /**
             * Like std::vector::push_back(), but only if the newly added element does not yet exist.
             * <p>
             * Examples
             * <pre>
             *     static jau::darray<Thing>::equal_comparator thingEqComparator =
             *                  [](const Thing &a, const Thing &b) -> bool { return a == b; };
             *     ...
             *     jau::darray<Thing> list;
             *
             *     bool added = list.push_back_unique(new_element, thingEqComparator);
             *     ...
             *     darray<std::shared_ptr<Thing>> listOfRefs;
             *     bool added = listOfRefs.push_back_unique(new_element,
             *                    [](const std::shared_ptr<Thing> &a, const std::shared_ptr<Thing> &b) -> bool { return *a == *b; });
             * </pre>
             * </p>
             * @param x the value to be added at the tail, if not existing yet.
             * @param comparator the equal comparator to return true if both given elements are equal
             * @return true if the element has been uniquely added, otherwise false
             */
            constexpr bool push_back_unique(const value_type& x, equal_comparator comparator) {
                for(auto it = begin_; it != end_; ) {
                    if( comparator( *it, x ) ) {
                        return false; // already included
                    } else {
                        ++it;
                    }
                }
                push_back(x);
                return true;
            }

            /**
             * Erase either the first matching element or all matching elements.
             * <p>
             * Examples
             * <pre>
             *     darray<Thing> list;
             *     int count = list.erase_matching(element, true,
             *                    [](const Thing &a, const Thing &b) -> bool { return a == b; });
             *     ...
             *     static jau::darray<Thing>::equal_comparator thingRefEqComparator =
             *                  [](const std::shared_ptr<Thing> &a, const std::shared_ptr<Thing> &b) -> bool { return *a == *b; };
             *     ...
             *     darray<std::shared_ptr<Thing>> listOfRefs;
             *     int count = listOfRefs.erase_matching(element, false, thingRefEqComparator);
             * </pre>
             * </p>
             * @param x the value to be added at the tail, if not existing yet.
             * @param all_matching if true, erase all matching elements, otherwise only the first matching element.
             * @param comparator the equal comparator to return true if both given elements are equal
             * @return number of erased elements
             */
            constexpr int erase_matching(const value_type& x, const bool all_matching, equal_comparator comparator) {
                int count = 0;
                for(auto it = end_-1; begin_ <= it; --it) {
                    if( comparator( *it, x ) ) {
                        erase(it);
                        ++count;
                        if( !all_matching ) {
                            break;
                        }
                    }
                }
                return count;
            }

            constexpr_cxx20 std::string toString() const noexcept {
                std::string res("{ " + std::to_string( size() ) + ": ");
                int i=0;
                jau::for_each_const(*this, [&res, &i](const value_type & e) {
                    if( 1 < ++i ) { res.append(", "); }
                    res.append( jau::to_string(e) );
                } );
                res.append(" }");
                return res;
            }

            constexpr_cxx20 std::string get_info() const noexcept {
                difference_type cap_ = (storage_end_-begin_);
                difference_type size_ = (end_-begin_);
                std::string res("darray[this "+jau::to_hexstring(this)+
                                ", size "+std::to_string(size_)+" / "+std::to_string(cap_)+
                                ", growth "+std::to_string(growth_factor_)+
                                ", type[integral "+std::to_string(std::is_integral_v<Value_type>)+
                                ", trivialCpy "+std::to_string(std::is_trivially_copyable_v<Value_type>)+
                                "], uses[mmove "+std::to_string(uses_memmove)+
                                ", realloc "+std::to_string(uses_realloc)+
                                ", smem "+std::to_string(uses_secmem)+
                                "], begin "+jau::to_hexstring(begin_)+
                                ", end "+jau::to_hexstring(end_)+
                                ", send "+jau::to_hexstring(storage_end_)+
                                "]");
                return res;
            }
    };

    /**
     * Construct a darray<T> instance, initialized by move semantics from the variadic (template pack) argument list.
     *
     * std::initializer_list<T> enforces to copy the created instances into the container,
     * since its iterator references to `const` value_type.
     *
     * This alternative template passes the r-value argument references to darray::push_back_list(),
     * hence using `std::move` without copying semantics.
     *
     * All argument types must be of same type, i.e. std::is_same.
     * The deduced darray<T> instance also uses same type as its Value_type.
     *
     * @tparam First the first argument type, must be same
     * @tparam Next all other argument types, must be same
     * @tparam
     * @param arg1 the first r-value
     * @param argsN the other r-values
     * @return the new `darray`
     * @see darray::push_back_list()
     * @see make_darray()
     */
    template <typename First, typename... Next,
              // std::enable_if_t< ( std::is_same<First, Next>::value && ... ), bool> = true>
              std::enable_if_t< std::conjunction_v<std::is_same<First, Next>... >, bool> = true>
    constexpr darray< First > make_darray(First&& arg1, Next&&... argsN)
    {
        darray< First > d(1 + sizeof...(Next));
        // C++17 fold expression on above C++11 template pack arg1 and argsN
        // d.push_back_list( std::forward<First>(arg1), ( std::forward<Next>(argsN), ... ) ); // @suppress("Syntax error")
        d.push_back_list( arg1, argsN... ); // @suppress("Syntax error")
        return d;
    }

    /**
     * Complement constructor for darray<T> instance, move semantics initializer for one argument.
     * @tparam First
     * @tparam Next
     * @param arg1
     * @return
     * @see darray::push_back()
     * @see darray::push_back_list()
     * @see make_darray()
     */
    template <typename First, typename... Next>
    constexpr darray< First > make_darray(First&& arg1)
    {
        darray< First > d(1);
        d.push_back( std::forward<First>(arg1) );
        return d;
    }

    /****************************************************************************************
     ****************************************************************************************/

    template<typename Value_type, typename Alloc_type>
    std::ostream & operator << (std::ostream &out, const darray<Value_type, Alloc_type> &c) {
        out << c.toString();
        return out;
    }

    /****************************************************************************************
     ****************************************************************************************/

    template<typename Value_type, typename Alloc_type>
    inline bool operator==(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs) {
        if( &rhs == &lhs ) {
            return true;
        }
        return (rhs.size() == lhs.size() && std::equal(rhs.cbegin(), rhs.cend(), lhs.cbegin()));
    }
    template<typename Value_type, typename Alloc_type>
    inline bool operator!=(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs) {
        return !(rhs==lhs);
    }

    template<typename Value_type, typename Alloc_type>
    inline bool operator<(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs)
    { return std::lexicographical_compare(rhs.cbegin(), rhs.cend(), lhs.cbegin(), lhs.cend()); }

    template<typename Value_type, typename Alloc_type>
    inline bool operator>(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs)
    { return lhs < rhs; }

    template<typename Value_type, typename Alloc_type>
    inline bool operator<=(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs)
    { return !(lhs < rhs); }

    template<typename Value_type, typename Alloc_type>
    inline bool operator>=(const darray<Value_type, Alloc_type>& rhs, const darray<Value_type, Alloc_type>& lhs)
    { return !(rhs < lhs); }

    template<typename Value_type, typename Alloc_type>
    inline void swap(darray<Value_type, Alloc_type>& rhs, darray<Value_type, Alloc_type>& lhs) noexcept
    { rhs.swap(lhs); }

    /****************************************************************************************
     ****************************************************************************************/

    /**
     * <code>template< class T > is_darray_type<T>::value</code> compile-time Type Trait,
     * determining whether the given template class is a - or has a darray type, e.g. jau::cow_darray,
     * jau::darray.
     */
    template< class, class = void >
    struct is_darray_type : std::false_type { };

    /**
     * <code>template< class T > is_darray_type<T>::value</code> compile-time Type Trait,
     * determining whether the given template class is a - or has a darray type, e.g. jau::cow_darray,
     * jau::darray.
     */
    template< class T >
    struct is_darray_type<T, std::void_t<typename T::darray_tag>> : std::true_type { };

    /**@}*/

} /* namespace jau */

#endif /* JAU_DYN_ARRAY_HPP_ */