1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
/*************************************************
* XTEA Source File *
* (C) 1999-2007 The Botan Project *
*************************************************/
#include <botan/xtea.h>
#include <botan/bit_ops.h>
#include <botan/parsing.h>
namespace Botan {
/*************************************************
* XTEA Encryption *
*************************************************/
void XTEA::enc(const byte in[], byte out[]) const
{
u32bit left = make_u32bit(in[0], in[1], in[2], in[3]),
right = make_u32bit(in[4], in[5], in[6], in[7]);
for(u32bit j = 0; j != 32; ++j)
{
left += (((right << 4) ^ (right >> 5)) + right) ^ EK[2*j];
right += (((left << 4) ^ (left >> 5)) + left) ^ EK[2*j+1];
}
out[0] = get_byte(0, left); out[1] = get_byte(1, left);
out[2] = get_byte(2, left); out[3] = get_byte(3, left);
out[4] = get_byte(0, right); out[5] = get_byte(1, right);
out[6] = get_byte(2, right); out[7] = get_byte(3, right);
}
/*************************************************
* XTEA Decryption *
*************************************************/
void XTEA::dec(const byte in[], byte out[]) const
{
u32bit left = make_u32bit(in[0], in[1], in[2], in[3]),
right = make_u32bit(in[4], in[5], in[6], in[7]);
for(u32bit j = 32; j > 0; --j)
{
right -= (((left << 4) ^ (left >> 5)) + left) ^ EK[2*j - 1];
left -= (((right << 4) ^ (right >> 5)) + right) ^ EK[2*j - 2];
}
out[0] = get_byte(0, left); out[1] = get_byte(1, left);
out[2] = get_byte(2, left); out[3] = get_byte(3, left);
out[4] = get_byte(0, right); out[5] = get_byte(1, right);
out[6] = get_byte(2, right); out[7] = get_byte(3, right);
}
/*************************************************
* XTEA Key Schedule *
*************************************************/
void XTEA::key(const byte key[], u32bit)
{
static const u32bit DELTAS[64] = {
0x00000000, 0x9E3779B9, 0x9E3779B9, 0x3C6EF372, 0x3C6EF372, 0xDAA66D2B,
0xDAA66D2B, 0x78DDE6E4, 0x78DDE6E4, 0x1715609D, 0x1715609D, 0xB54CDA56,
0xB54CDA56, 0x5384540F, 0x5384540F, 0xF1BBCDC8, 0xF1BBCDC8, 0x8FF34781,
0x8FF34781, 0x2E2AC13A, 0x2E2AC13A, 0xCC623AF3, 0xCC623AF3, 0x6A99B4AC,
0x6A99B4AC, 0x08D12E65, 0x08D12E65, 0xA708A81E, 0xA708A81E, 0x454021D7,
0x454021D7, 0xE3779B90, 0xE3779B90, 0x81AF1549, 0x81AF1549, 0x1FE68F02,
0x1FE68F02, 0xBE1E08BB, 0xBE1E08BB, 0x5C558274, 0x5C558274, 0xFA8CFC2D,
0xFA8CFC2D, 0x98C475E6, 0x98C475E6, 0x36FBEF9F, 0x36FBEF9F, 0xD5336958,
0xD5336958, 0x736AE311, 0x736AE311, 0x11A25CCA, 0x11A25CCA, 0xAFD9D683,
0xAFD9D683, 0x4E11503C, 0x4E11503C, 0xEC48C9F5, 0xEC48C9F5, 0x8A8043AE,
0x8A8043AE, 0x28B7BD67, 0x28B7BD67, 0xC6EF3720 };
static const byte KEY_INDEX[64] = {
0x00, 0x03, 0x01, 0x02, 0x02, 0x01, 0x03, 0x00, 0x00, 0x00, 0x01, 0x03,
0x02, 0x02, 0x03, 0x01, 0x00, 0x00, 0x01, 0x00, 0x02, 0x03, 0x03, 0x02,
0x00, 0x01, 0x01, 0x01, 0x02, 0x00, 0x03, 0x03, 0x00, 0x02, 0x01, 0x01,
0x02, 0x01, 0x03, 0x00, 0x00, 0x03, 0x01, 0x02, 0x02, 0x01, 0x03, 0x01,
0x00, 0x00, 0x01, 0x03, 0x02, 0x02, 0x03, 0x02, 0x00, 0x01, 0x01, 0x00,
0x02, 0x03, 0x03, 0x02 };
SecureBuffer<u32bit, 4> UK;
for(u32bit j = 0; j != 4; ++j)
UK[j] = make_u32bit(key[4*j], key[4*j+1], key[4*j+2], key[4*j+3]);
for(u32bit j = 0; j != 64; ++j)
EK[j] = DELTAS[j] + UK[KEY_INDEX[j]];
}
}
|